#SASGF

Paper 5115-2020
Work Smarter, Not Harder: Learning to Live without Your X

Amit Patel; Lewis Mitchell

ABSTRACT

Within the SAS® community, a great deal of the population are experts in their own fields,
but those aren't always technical roles. After supporting hundreds of users over a number of
years, we realized there is one question that always comes up — how do we live without our
X? With X-commands, pretty much anything is possible, and that unlimited potential makes
both administrators and auditors nervous. As environments evolve and controls tighten, the
loss of X-commands is all but inevitable for most teams; but never fear, there are
alternatives! This paper will discuss how to replace the following: getting file listings;
making and deleting directories and files; changing file permissions; Microsoft Windows
compression. By harnessing the power of built-in SAS functions as well as other
functionality, we are able to replicate much of what users have lost out on when faced with
X-commands being disabled, enabling users to finally move on from their X.

INTRODUCTION

There are many benefits which come with having X-commands enabled, but due to tighter
controls around operating models, some companies are restricting access to X-commands.
The SAS language has a variety of tools which can support users in everyday activities, but
sometimes these may not be perceived to be as easy to use as X-commands. In this paper
we discuss how the macros provided have been developed, to make all commands easily
accessible to all users. Wherever possible the macros should act as a suitable replacement
for X-commands.

All macro code (including additional functional macros which are not discussed in this paper)
can be found in the appendix.

1. UNIX DIRECTORY AND FILE OPERATIONS

The below macros have been designed to support certain file operations which are
unavailable/less robust/difficult to perform without using X-commands. We will explain
some of the base functions used within the code, what to expect for outputs and also
discuss optional parameters which may be useful.

Not included, although existing in all macros, is the option parameter put=Y/put=N. By
default this parameter is a Y which provides a slightly more verbose output. Where this
parameter is passed as an N, limited output is provided.

Restricted - External

1.1 ©%SYS_DELETE

The sys_delete macro is used to delete any single file or empty directory. One path
parameter is passed to the macro, with the return code and return message passed back to
SAS.

Syntax:
%sys_delete(path=/c/production/datasasb);

Output 1 shows a failure message within the log.

INFO: The macro return code is 20047
ERROR: /c/production/dataZa/b is not empty and cannot be deleted.

Output 1. Failure log output from sys_delete

Output 2 shows a success message within the log.

INFO: The macro return code is O

Output 2. Success log output from sys_delete

The function and corresponding return values used in this macro can be called in a dataset
in the following manner:

1) Assign a filename to the file or directory to delete
filename _in_ "%superq(path)’;

2) Within a data step, call the function fdelete to delete the file or empty directory and
capture the return code within the variable macro_rc and the return message within
the variable macro_msg.

macro_rc = fdelete("_in_");

macro_msg = sysmsg();

1.2 9%SYS_DIR_CREATE

The sys_dir_create macro is used to create recursive directories for any given path. One
path parameter is passed to the macro to create the missing directories along the directory
structure.

Syntax:
%sys_dir_create(path=/c/production/data/a/b/c/d/e)

Output 3 shows a successful messages within the log.

Directory already exists: /c

Directory already exists: /c/production

Directory already exists: /c/production/data

Directory does not exist. Creating now: /c/production/data/a
Directory does not exist. Creating now: /c/production/data/a/b
Directory does not exist. Creating now: /c/production/data/a/b/c
Directory does not exist. Creating now: /c/production/dataZasb/c/d
Directory does not exist. Creating now: /c/production/data/asb/c/d/e

Output 3. Log output from sys_dir_create

2

Restricted - External

The function used to create these directories is dcreate. Within a data step this can be
called using the line:

new_path = dcreate(dir, parent_path);

1.3 9%SYS_MOVE

The sys_move macro is used to move any single file or directory and requires two
parameters to pass. The parameter path is used to specify the full source filename with the
parameter newpath being used to specify the full target filename.

Syntax:
%sys_move(path=/c/production/data, newpath=/c/production/data?2);

On success the macro return code will be O.

The function used to perform the move is rename. Within a data step this can be called
using the line:

macro_rc = rename(''/c/production/data', ''/c/production/data2", "file");

1.4 ©%SYS_FILE_COPY

The sys_file_copy macro is used to copy any single file and requires two parameters to
pass. The parameter path is used to specify the full source filename with the parameter
newpath being used to specify the full target filename. The advantage with this macro is
that any file extension can be copied and not just SAS file extensions.

Syntax:
%sys_File_copy(path=/c/production/economic.xls,
newpath=/c/production/economic_data.xls, put=Y);

On success the macro return code will be O.

To perform the copy the input file is read in a byte at a time in binary mode and written out
to the new location.

Assign the input and output filenames:

filename _in_ ""/c/production/economic.xls";
filename _out_ "/c/production/economic_data.xlIs";

Open the input and output files in input/output modes respectively:
filein = fopen("_in_","17,1,"B");
fileout = fopen("_out _*,"0",1,"B");

Loop through the file and write out each byte one at a time:

rec = "20"x;
do while(fread(filein)=0);

3

Restricted - External

macro_rc = fget(filein,rec,1);

macro_rc = fput(fileout,rec);

macro_rc = fwrite(fileout);
end;

Close the input and output files:

macro_rc = fclose(filein);

macro_rc = fclose(fileout);

1.5 9%6SYS LS

The sys_Is macro produces an output as close as possible to a Unix file listing command,
usually run as Is -I. The one required parameter is Is_path which refers to the directory
being listed.

Syntax:

%sys_Is(ls_path=/c/production/data);

By default the output will be given in dataset format. This will provide all pieces of data
available for each directory and file directly within the directory being queried. To do this
the source directory needs to be opened as an object and then the individual objects
targeted to extract the information in the following steps:

1)

2)

3)

4)

5)

Assign a file reference to the primary directory noted as the variable
FileSpecification:

rcl = Filename(pref, FileSpecification);

If the file reference is assigned without error then open the directory using the
function dopen. Assign a directory identifier value pid when opening the directory:

pid = dopen(pref);

Get the parent directory information using the pid

Count the number of child members within the parent directory using
dnum = dnum(pid);

Loop through each object child object and assign MemberName as the object name.

a. If the object is a directory then we will need to follow steps 2 and 3 above to
retrieve the information. This will then have a new directory identifier and the
information can be queried using the function dinfo

b. If the object is a file then the parent pid can be used to open this specific file
and assign a file identifier value labelled fid to it:
fid = mopen(pid, MemberName, "1%);

The function finfo can retrieve the necessary information.

4

Restricted - External

Key columns are shown below and how they are derived. Three columns are derived from
the location of the file. These are:

a) FileSpecification: Full filename which is parent directory plus member name
b) ParentDirectory: Parent directory passed within Is_path parameter

¢) ShortFilename: Member name

Other information is gained by querying the member object directly using the finfo function
against the specific file identifier value assigned to the member object.

d) OwnerName = finfo(fid,"Owner Name");
e) GroupName = finfo(fid,"Group Name");
f) AccessPermission = finfo(fid,'Access Permission");
Within the output this is translated into a column which shows octal permissions
g) FileSize = input(finfo(fid,'File Size (bytes)"),32.);
h) LastModified = finfo(fid,'Last Modified");

This is returned in a combined date and time format. Within the macro these are
split out into fields named LastModifiedDate and LastModifiedTime.

Lastly there are fields which specify extra pieces of information:
i) Type: This is set to 'f’ for files and ‘d’ for directories
j) Readable: This is set to ‘Y’ if the child object can be read or else ‘N’

k) Sysmsg: Any value in this field would indicate an error returned on querying the
child member

When querying directories in a similar manner the finfo function should be replaced with
dinfo and fid value should be replaced with that of the open directory. File size is not able
to be retrieved for directories.

Other optional parameters on the macro are:
a) Format=

By default this is assign a value of L to return all information. If this is set to any
other value, then all information listed in labels d to h above are not returned.

b) Out_ref=

By default the output dataset is named work. Is_output_ but this can be overridden
with any user defined value

%sys_Is output where output format is shortened. i.e. format ~="L’

@ RleSpecification @ Parent Directory @ Short FleMame @ Type @ Readable @ SyzMszg
1 |/c/Production/Data Je/Production data d Y
2 | /c/Production/Data file 1 ba /c/Production/Data [file1 bt [Y

Figure 1. Limited output for sys_Is

5

Restricted - External

%sys_ls output where output format is full. i.e. format = 'L’

K e | 3 w3 Ot D

0 (F1Fam and bort B Durey it W ihwre | Dn = Dgsrke = fomph = Searbge + | |

T v tww B P At e Ovar Nvwme L Trve o A — OauPwmancn (4 Fwase | LasMottetOms | LaaSodl vel T N b e,
| = wadeowtes et s Tt r T s s

7 =aduendea e stodcknitms Wi phan o0

Figure 2. Full output for sys_Is

1.6 ©%0SYS_FIND

The sys_find macro produces an output as close as possible to a Unix find command which
produces a file listing output, usually run as find . -Is. The difference between this and a
Unix Is - command is the ability to traverse directories multiple levels deep. The one
required parameter is find_path which refers to the directory being listed.

Syntax:
%sys_fFind(find_path=/c/production/data);

This macro uses all the sys_Is macro logic as a base and builds on this by storing any
directories found whilst querying and adding them to a list to then query further. The
additional parameter which can be passed in this macro is max_depth=. By default this is
limitless and all items under a particular directory can be found. You can limit the number
of directories deep the query should go by using this option. The field depth will show how
many levels down each file was located in reference to the source directory passed within
the find_path parameter.

By default the out_ref parameter outputs the final dataset to work._find_output_.

2) CHECK GROUPS AND PERMISSIONS
2.1 20SYS_CHECK_PERMISSIONS

The security model within an environment can, on occasions, be complex to fit the
requirements of the business model being applied. With no easy method on how to
replicate access of a fellow user or query permissions on directories for access, the macro
provided will allow a user with existing access to retrieve the permissions and Unix groups
needed for read or write access to given areas.

Running this macro requires a single parameter which will be the directory which needs to
be accessed.

Syntax:
%sys_check permissions(path=/c/production/data/mortgages/model);

6

Restricted - External

Assuming access is already granted to the user running the code, the output will be shown
in output 4 and will show the individual read and write groups needed:

FILESPECIFICATION: | OWNER: | GROUP: | PERMISSIONS:
——————————————————————————————————— e Bvensl D ——
/c | admuser | SASData | drwxr-x---
/c/production | prduser | ProdData | drwxr-x---
/c/production/data/ | prduser | ProdData | drwxr-xr-x
/c/production/data/mortgages | prduser | ProdData | drwxr-xr-x
/c/production/data/mortgages/model | prduser | ModelData | drwxr-x---
|

INFO: To Read from "/c/production/data/mortgages/model’™ you need the
following groups:

SASData

ProdData

ModelData

INFO: Unable to WRITE to ''/c/production/data/mortgages/model™
INFO: Please contact the owner *prduser™ regarding permissions "drwxr-x---"

Output 4. Log output from sys_check_ permissions

The primary step in retrieving the permissions is using the macro %esys_Is as explained
under file utilities earlier in this document. This will loop through each directory within the
directory structure within the path parameter passed. This appends the results together for
further analysis.

The parameters kept by the %sys_Is call are:

FileSpecification — Full directory path

ShortFileName - Name of the directory being queried this loop
OwnerName - Unix owner name

GroupName - Unix group name

AccessPermission — Unix permissions

With minor modifications, it is possible to remove the %sys_|Is call and replace this with a
table with all possible directories within an environment, ensuring it contains all the
necessary columns and sets a variable type = 'd’. It would then allow all users to query
directory permissions regardless of access.

7

Restricted - External

3. ZIPPING FILES IN SAS

There are a few methods of zipping files such as gz, bzip and bzip2 which are available on
Unix systems, however without X-commands these are hard to access. A common format
used on Windows and Unix is the .zip extension and SAS has in-built functionality to enable
files to be zipped, viewed and unzipped through the filename method. These have been
built into the macros below as well as several layers of checks/outputs to supports users
when zipping.

For example purposes, our working directory will be defined as &_path which will resolve to
the location /c/production/data.

3.1 9%SYS_ZIP_MEMBER_ADD

In order to create a new zip file or add files to an existing zip file the same method can
apply. Using the sys_zip_member_add macro it is possible to pass across a series of
parameters and write a file into a zip archive.

Syntax:
%sys_zip_member_add(fs=& path/testfile.txt, zip_Ffs=& path/testzip.zip,
zip_mem=testmember.txt, overwrite=Y, delete=N);

In the above example we have passed 5 parameters into the macro:
a) fs: This is the FileSpecification (or full filename) of the file to add into the zip

b) zip_fs: This is the FileSpecification (or full filename) of the zip file which either already
exists or you would like to be created

¢) zip_mem: This will be the new name of the file once it is in the zip file. It does not have
to be the same as the original filename

d) overwrite: This determines on whether you would like to overwrite an existing zip
member of the same name. You can pass Y/N

e) delete: This determines on whether you would like to delete the original file you are
moving into the zip file. You can pass Y/N

Log output when running example above.

INFO: fs /c/production/data/testfile.txt

INFO: zip_fs /c/production/data/testzip.zip

INFO: zip_mem testmember . txt

INFO: overwrite Y

INFO: delete N

CHECK: The file does exist and the zip parent directory does exist.
CHECK: The overwrite option is set to Y which requires no further checks.

OUTCOME: Member has been added to zip file.

Output 5. Log output from sys_zip_member_add

The primary steps in adding files to a zip file are shown below. These involve assigning a
filename to the original file to be added, and then assigning a filename utilizing the zip type
and specifying the member where the file should be written to:

8

Restricted - External

Ffilename fs "& path/testfile.txt";
filename zip_mem zip "& path/testzip.zip

member=""testmember.txt";

data _null_;
infile fs recfm=n;
file zip_mem recfm=n;
input byte $charl. @;
put byte $charl. @;
run;

3.2 2% SYS_ZIP_MEMBER_CONTENTS

When needing to view the members of a zip file it is possible to get the listing and output
the names to 1 of 3 locations.

Syntax:
%sys_zip_contents(zip_fs=& path/testzip.zip, type=DATA,
out_ref=work. zip_contents_output);

In the above example we have passed 3 parameters into the macro:
a) zip_fs: This is the FileSpecification (or full filename) of the zip file which is being queried
b) type: Determines the output method which can be DATA, LOG or OUTPUT

c) out_ref: Determines the name of the dataset where the results can be written do

Output when type=OUTPUT:
t | €7 Resuts - HTML

Obs | memname
1 | testmember txt

2 | testmember? txt

Figure 3. HTML output of SYS_ ZIP_MEMBER_CONTENTS when type=0OUTPUT

Output when type=L0OG

INFO: fs = /c/production/data/testfile.txt
INFO: zip_TFs = /c/production/data/testzip.zip
INFO: zip_mem = testmember.txt

INFO: overwrite = Y

INFO: delete =N

CHECK: The file does exist and the zip parent directory does exist.
CHECK: The overwrite option is set to Y which requires no further checks.

OUTCOME: Member has been added to zip Ffile.

Output 6. LOG output of SYS_ZIP_MEMBER_CONTENTS when type=LOG

9

Restricted - External

Output when type=DATA

:ﬂ Program” | [Z] Log Ef4 Output Data

Gj %ﬁ_Filter and Sort %Q_uery Builder ?ﬂhere Data ~ Describe ~ Graph = Analyze - | Export = Send To -

@_mrnare

1 |testmember bt

2 |testmember] tet

Figure 4. Dataset view of output of SYS_ZIP_MEMBER_CONTENTS when
type=DATA

The primary steps in viewing the zip members are shown below. These involve assigning a
filename to the zip file and opening the file using the function dopen. By using dnum(fid) to
count the number of objects and then dread to extract the member name we can then
output this into its required form.

filename zip_mem zip "& path/testzip.zip";
data work. zip_contents_ (keep=memname);
length memname $512;
Ffid=dopen(*'zip_Fs");
if fid=0 then
stop;
memcount=dnum(fid);
do i=1 to memcount;
memname=dread(fid,i);
output;
end;
rc=dclose(fTid);
run;

3.3 %SYS ZIP_MEMBER_DELETE
On occasions it may be necessary to delete individual members from a zip file.

Syntax:
%sys_zip_member_delete(zip_Ffs=& path/testzip.zip, zip_mem=testmemberl.txt);

In the above example we have passed 2 parameters into the macro:
a) zip_fs: This is the FileSpecification (or full filename) of the zip file to delete from

b) zip_mem: This is the member to delete

Output note within log when successful:

INFO: zip_fs /c/production/data/testzip.zip

INFO: zip_mem testmemberl. txt

CHECK: The zip file exists.

CHECK: The zip member exists.

DELETE: Successfully deleted zip member testmemberl.txt.

Output 7. LOG output of SYS_ZIP_MEMBER_DELETE

10

Restricted - External

To delete a zip member a filename should be assigned to that particular member and then
the data step function fdelete used to remove the member.

Ffilename zip_mem ZIP '"/c/production/data/testzip.zip'" member="
testmemberl.txt";

data null_;
rc = fdelete("zip_mem®);
run;

3.4 9%SYS_ZIP_MEMBER_EXTRACT
When extracting an existing file from within a zip file we can do so by running the following:

Syntax:
%sys_zip_member_extract(fs=& path/testextract.txt, zip_fs=& path/testzip.zip,
zip_mem=testmember.txt, overwrite=N, delete=N);

In the above example we have passed 5 parameters into the macro:

a) fs: This is the FileSpecification (or full filename) of the file once it has been extracted
from the zip file.

b) zip_fs: This is the FileSpecification (or full filename) of the zip file which is to be
extracted from.

¢) zip_mem: This is the name of he zip member to be extracted.

d) overwrite: This determines whether an existing file on the drive should be overwritten if
it has the same name of the file being extracted. Y/N can be passed.

e) delete: This determines on whether to delete the zip member once it has been
extracted. Y/N can be passed.

Log output when running example above.

NFO: fs = /c/production/data/testextract.txt

INFO: zip_fs /c/production/data/testzip.zip

INFO: zip_mem testmember . txt

INFO: overwrite N

INFO: delete N

CHECK: The output Ffile directory does exist and the zip file does exist.
CHECK: The zip member does exist.

CHECK: The overwrite option is set to N which requires further checks.
CHECK: The output File does not already exist.

OUTCOME: Member has been successfully extracted to output Ffile.
DELETE: Delete flag is preventing deletion of testmember.txt.

Output 8. Log output from sys_zip _member_extract

The primary steps involved in extracting files from a zip file to an accessible drive are shown
below. These involve assigning a filename to the file on the drive and also a filename
utilizing the type zip and specifying the member which is to be extracted. The source file
can then be read from and written to the target.

11

Restricted - External

filename fs "& path/testextract.txt';
filename zip_mem zip "& path/testzip.zip"” member="testmember.txt";

data null_;
infile zip_mem lrecl=256 recfm=F length=length eof=eof unbuf;
file s lrecl=256 recftm=N;

input;
put _infile_ $varying256. length;

return;

eof:

stop;
run;;

CONCLUSION

As we can see from the examples provided, there are many substitutes for commands which
may not seem straight forward at first. By providing these as ready-made solutions, it can
help in many areas of development work, ensuring both users and admins alike are able to
run the same code. It has also become apparent that although simple SAS solutions aren’t
available for every task, there are ways to ensure users can still run certain OS commands
in the form of compiled C functions. While compiled functions are out of scope for this
paper, as access is limited to SAS administrator management, solutions are available and all
isn’t lost without your X!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Amit Patel Lewis Mitchell
Amit.xc.patel@gmail.com l.j.mitchell-O6 @hotmail.com
12

Restricted - External

mailto:Amit.xc.patel@gmail.com
mailto:l.j.mitchell-06@hotmail.com

APPENDIX A = SUPPORTING MACROS USED IN CODE

%macro sys_log print(in_ref=, in_keep=_all) /
des = "Print a dataset to the log in a readable format (max 256 characters)."

%*** Remember the current value of options prior to changing them. ;

%options_remember(options=linesize mlogic mprint notes pagesize symbolgen,
options_id=sys_log_print, put=N);

options linesize=256 nomlogic nomprint nonotes pagesize=1024 nosymbolgen;

%*** Define local macro variable(s). ;
%local y z;

%if %sysfunc(exist(&in_ref.)) = 1 %then %do;

%*** Get the contents for the specified columns ;
proc contents noprint

data = &in_ref. (keep=&in_keep.)

out = work._sys log _print_contents_
;run;

%*** Order by varnum. ;

proc sort
data = work._sys log print_contents_;
by varnum;

run;

%*** Count the number of columns. ;
proc sql noprint;

select count(*)

into :sys_log_count

from work._sys log_print_contents_
;quit;

%let sys_log_count = %sysfunc(strip(&sys_log_count.));
%if &sys log_count. > 0 %then %do;

%*** Read the name of the variables into a macro variable array. ;
proc sql noprint;
select
name,
type
into
:sys_log _name_1-:sys log name_é&sys log_count.,
:sys_log_type_1-:sys log_type_&sys log_count.
from work. sys log_print_contents

;quit;
%*** Determine the max utilised length for each variable. ;
proc sql;
create table work. sys log max_ as
select

%do y=1 %to &sys log count.;
%if &y. > 1 %then %do;

13

Restricted - External

%end;
%if &&sys_log_type &y.. = 1 %then %do;
max(lengthn(compress(put(&&sys _log name &y..,32.)))) as
sys _log len&y.

%end;
%else %if &&sys_log_type &y.. = 2 %then %do;
max(lengthn(&&sys_log_hame &y..)) as sys_log len&y.
%end;
%end;
from &in_ref. (keep=&in_keep.)
;quit;

%*** Determine the max length comparing the max utilised length and the
header. ;
proc sql noprint;
select
%do y=1 %to &sys log_count.;
%if &y. > 1 Y%then %do;

%end;

max(sys_log_len&y ., length(cats(upcase("'&&sys_log_name &y.."),":"))) as
sys_log_len&y.
%end;
into
%do y=1 %to &sys log count.;
%if &y. > 1 %then %do;

%end;
:sys_log_len&y.
%end;
from work._sys_log_max_
;quit;

%*** Strip out spaces in the length macro variables. ;
%do y=1 %to &sys log count.;

%let sys log len&y. = %sysfunc(strip(&&sys log len&y..));
%end;

%*** Calculate the overall line length for all output. ;
%let sys log row=0;
%do y=1 %to &sys log count.;
%let sys log row = %eval(&sys _log row. + &&sys log_len&y.. + 3);
%end;
%let sys log row = %sysfunc(strip(&sys log row.));

%*** Generate a string of dashes to match each variable. ;
%do y=1 %to &sys log count.;
%let sys log_dash&y.=;
%do z=1 %to &&sys log len&y..;
%let sys log dash&y.=8&&sys log dash&y..-;
%end;
%end;

%*** Create a dataset of dashes. ;
data work. sys log dashes_ (keep=_line);
length

14

Restricted - External

line $&sys log row.

%do y=1 %to &sys log count.;
&&sys_log_name_&y.. $&&sys_log_len&y. .

%end;

%do y=1 %to &sys log_count.;

&&sys log _name_&y.. = "&&sys log dash&y..";
%end;
line = cat(

%do y=1 %to &sys log count.;
%if &y. > 1 %then %do;
N

%end;
&&sys log name_&y..
%end;
);
run;

%*** Create a dataset of headers. ;
data work._sys log header_ (keep=_line);
length
line $&sys_log_row.
%do y=1 %to &sys log count.;
&&sys_log_name_&y.. $&&sys_log_len&y. .
%end;

%do y=1 %to &sys log_count.;

&&sys log _name_&y.. = upcase(''&&sys_log_name_ &y
%end;
line = cat(

%do y=1 %to &sys log_count.;
%if &y. > 1 %then %do;

%end;
&&sys_log _name_&y. .
%end;
)
run;

%*** Create a dataset of data. ;
data work._sys log data_ /*(keep=_line)*/;
length
line $&sys_log_row.
%do y=1 %to &sys log count.;
sys_temp_&y. $&&sys_log len&y. .
%end;

set &in_ref. (keep=&in_keep.);
%do y=1 %to &sys log count.;

%if &&sys_log_type &y.. = 1 %then %do;
sys_temp_&y. = compress(put(&&sys_log_name_ &y
%end;
%else %if &&sys log type &y.. = 2 %then %do;
sys_temp_&y. = &&sys_log_name_&y..;
%end;
%end;
line = cat(

%do y=1 %to &sys log count.;

15

Restricted - External

D

--532.));

%if &y. > 1 %then %do;
!'. I "!
%end;
sys_temp_&y.
%end;
);

run;
%put ;

%*** Print a row of dashes to the log. ;
data null_;

set work._sys log _dashes_;

put line_;
run;

%*** Print a row for the header to the log. ;
data _null_;

set work._sys log header_;

put line_;
run;

%*** Print a row of dashes to the log. ;
data _null_;

set work._sys log dashes_;

put _line_;
run;

%*** Print the data to the log. ;
data _null_;

set work. _sys log data_;

put _line_;
run;

%*** Print a row of dashes to the log. ;
data _null_;

set work._sys log dashes_;

put _line_;
run;

%put ;
%end;

%*** Delete the temp table(s). ;
proc datasets lib=work nolist;
delete
_sys_log_print_contents_
_sys_log_max_
_sys_log_dashes_
_sys_log header_
_sys _log data_
run;
quit;

%end;

16

Restricted - External

%options_reset(options=linesize mlogic mprint notes pagesize symbolgen,
options_id=sys _log print, put=N);

%mend sys_log_print;

%macro options_remember(options=, options_id=, put=Y) /
des = "Record the current value for any options passed.”;

%*** Set macro variables to be local to this macro to avoid conflicts. ;
%local _i_ _options_ num_options;

%*** Clean the input of any spurious spaces. ;
%let _options =%sysfunc(strip(%sysfunc(compbl(&options.))));

%*** Count how many options have been passed. ;

%let num_options=%sysfunc(countw(& options_.));

%*** 1Ff the put flag iIs used, then put information to the log.
%if %sysfunc(upcase(&put.)) =Y %then %do;
%put INFO: There have been %sysfunc(strip(&num_options.)) options
passed. ;
%put INFO: The options that will be remembered are & options_.".;
%end;

%*** Loop for each option. ;
%do _i1_=1 %to &num_options.;

%*** Set looped macro variables to be local to this macro to avoid
conflicts. ;
%local option& i . string& i . result& i .;

%*** Find the nth option in the string passed. ;

%let option& i_.=%sysfunc(scan(& _options_.,& i_.));

%*** String will be populated with the option name wrapped with
underscores. ;

%let stringé& i_.=%sysfunc(compress(_&&option& i_..));

%*** For each option, record the current value of the option. ;

%let result& i_._.=%sysfunc(getoption(&&option& i_..));

%*** 1Ff the value of the option is numeric then prefix the value with
option name and = ;

%if
%sysfunc(compress(%sysfunc(substr(%sysfunc(strip(&&resulté& i .)),1,1)), ,kd))
N= Y%then %do;

%let result& i_.=&&option& i_.=&&resulté& i_.;

%end;

%*** If the macro variable does not already exist then do...;
%if Y%symexist(&&string& i_..) = 0 %then %do;

%*** Use string to generate a global macro variable... ;
%global &&string& i1 . .;

%*** ___that will contain the current value of the option ;
%let &&string& i1_..=&&resulté& i _..;

17

Restricted - External

%*** Test whether the options id macro variable is populated. ;
%if Y%sysevalf(%superq(options_id)=,boolean) = 0 %then %do;

%*** Set additional looped macro variables to be local to this macro

to avoid conflicts. ;
%local string_id& i .;

%*** String id will be populated with the option name with " _id" as a

suffix... ;
%*** ___and the entire string wrapped with underscores. ;

%let string_id& i_.=%sysfunc(compress(&&option&_ i_.._id));
%*** Use string id to generate a global macro variable... ;
%global &&string id& i1 . .;

%*** ___that will contain the value of the options id ;
%let &&string_id& i_. _=%superq(options_id);

%end ;

%*** 1T the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) =Y %then %do;

%put INFO: Option "&&option& i_.." has been remembered as
“&&result& i_..". ;

%put %str() This value is stored in the global macro variable
"&&string& i_..". ;

%if %sysevalf(%superq(options_id)=,boolean) = 0 %then %do;

%put %str() This value is remembered with an options ID stored

in the global macro variable "&&string_id& i _..". ;

%end;

%end;
%end;

%else %do;

%*** If the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) = Y %then %do;

%put INFO: Option "&&option& i_.." has already been remembered with
initial value "&&&&&&string& i_...". ;

%put %str() This value is stored in the global macro variable
"&&string& i_..". ;

%put %str() To change the remembered value of '&&option& i1_..
the option must First be reset using
“wnrstr(%%)options_reset(&&option& i_..)". ;

%end;

%end;
%end;

%mend options_remember;

18

Restricted - External

%macro options_reset(options=, options_id=, put=Y) /
des = "Reset an option to the value that was retained by OPTIONS_ REMEMBER. " ;

%*** Set macro variables to be local to this macro to avoid conflicts. ;
%local _i1_ _options_ num _options;

%*** Clean the input of any spurious spaces. ;
%let _options_=%sysfunc(strip(%sysfunc(compbl(&options.))));

%*** Count how many options have been passed. ;
%let num_options=%sysfunc(countw(&_options_.));

%*** If the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) = Y %then %do;
%put INFO: There have been %sysfunc(strip(&num_options.)) options
passed. ;
%put INFO: The options that will be recalled are & options_."_;
%end;

%*** Loop for each option. ;
%do _i_=1 %to &num_options.;

%*** Set looped macro variables to be local to this macro to avoid
conflicts. ;
%local option& i1 _. string& i . result& i .;

%*** Find the nth option in the string passed. ;
%let option& i_.=Y%sysfunc(scan(& options_.,& i_.));

%*** String will be populated with the option name wrapped with
underscores. ;
%let string& i_.=%sysfunc(compress(_&&option& i_ ..));

%*** Test to see IT the string exists as a macro variable. ;
%let resulté& _i_.=%symexist(&&string& i_..);

%*** If the macro variable does exist then there are 5 possible outcomes.

%if &&result& i . .=1 %then %do;

%*** Set additional looped macro variables to be local to this macro to
avoid conflicts. ;

%local string_id& i . result_id& i .;

%*** String id will be populated with the option name with *
suffix... ;

%*** ___and the entire string wrapped with underscores. ;

%let string_id& i_.=%sysfunc(compress(&&option& i_.. id));

_1d" as a

%*** Test to see If the string id exists as a macro variable. ;
%let result_id& i_.=%symexist(&&string id& i _..);

%*** If the value is tagged with an ID then do... ;
%if &&result id& i ..=1 %then %do;

%*** Test whether the options id macro variable is populated. ;
%iT %sysevalf(%superq(options_id)=,boolean) = 0 %then %do;

19

Restricted - External

%*** Qutcome 1: The option is remembered with an ID and reset using

the same ID. ;
%if &&&&&&string_id& 1 ... = %superqg(options_id) %then %do;

%*** Reset the option to the original value. ;

options &&&&&&string& i .. .;

%*** If the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) = Y %then %do;

%put INFO: Option "&&option& i_.." has been reset to
"&&&&&E&SErINg& 0. ..
%end;

%*** Once the option has been reset, we clear the global macro

the option was stored in. ;
%symdel &&string& i_..;
%symdel &&string_id& i1 . _;

%end ;

%*** Outcome 2: The option is remembered with an ID and reset using

a different same ID. ;
%else %do;

%*** 1Ff the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) =Y %then %do;

%put INFO: Option '"&&option& i_.." has not been reset as the
option ids do not match.;
%end;
%end;

%end;

%*** Qutcome 3: The option is remembered with an ID and reset without

an ID. ;
%else %do;
%*** 1f the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) = Y %then %do;
%put INFO: Option "&&option& i_.." has not been reset as the
option ids do not match.;
%end;
%end;
%end;
%*** 1Ff the value is not tagged with an ID then do... ;

%else %do;

%*** Test whether the options id macro variable is populated. ;
%*** Qutcome 4: The option is NOT remembered with an ID but is reset

with an ID. ;
%if Y%sysevalf(%superqg(options_id)=,boolean) = 0 %then %do;

%*** If the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(&put.)) = Y %then %do;

20

Restricted - External

%put INFO: Option "&&option& i_.." has not been reset as the

option ids do not match.;
%end;

%end;
%*** Qutcome 5: The option is NOT remembered with an ID and is NOT

reset with an ID either.
%else %do;

%*** Reset the option to the original value. ;
options &&&&&&string& i .. .;
%*** 1Ff the put flag iIs used, then put information to the log.

%if %sysfunc(upcase(&put.)) = Y %then %do;
%put INFO: Option "&&option& i_.." has been reset to

"&&&&&ESEriINg& 1 ...
%end;
%*** Once the option has been reset, we clear the global macro the

option was stored in.
%symdel &&string& i1 . .;

%end;

%end ;

%end;

%else %do;
%*** 1T the put flag is used, then put information to the log.

%if %sysfunc(upcase(&put.)) =Y %then %do;
%put INFO: Option "&&option& i_.." does not have an associated macro
variable available for reset.;
%end;

%end;

%end ;

%mend options_reset;

21

Restricted - External

APPENDIX B = MACROS DISCUSSED IN THIS PAPER

%macro sys_check permissions(path=, out ref=work. check permissions_output)

/
des = "Use sys Is recursively to check the permissions of a file or

directory.";

%*** Remember the current value of options prior to changing them. ;
%options_remember(options=linesize mlogic mprint notes pagesize symbolgen,
options_id=sys check permissions, put=N);

options linesize=256 nomlogic nomprint nonotes pagesize=1024 nosymbolgen;

%*** Define local macro variable(s). ;
%local z pos path_part path_dir;

%*** Delete the temp table(s) that are appended to. ;
proc datasets lib=work nolist;
delete
_check_permissions_base_

run;
quit;

%do z = 1 %to %eval (%sysfunc(countw(&path.,/))-0);

%*** Find the positin of each 7/ ;

data _null_;
call scan("&path.",&z.,POS,LEN,"/");
call symputx(®pos*®,P0S-2);

run;

%let path_part=%substr(&path.,1,&pos.);
%let path_dir=%scan(&path.,&z.,/);

%if %sysfunc(Fileexist(&path part.))=1 %then %do;

%*** List out the current directory / file in the path we are looping

through. ;
%sys_Is(ls_path=&path part., out_ref=work._ check _permissions dir_);

%*** Only keep the relevant member. ;
data work._check permissions_line_;

set work._ check permissions_dir_;

where scan(FileSpecification,-1,"/")="&path_dir.";
run;

%*** Append to a datastore so that we have all rows found. ;
proc append

base = work._ check _permissions_base

data = work. check permissions_line_;
run;

%end;
%else %do;
%put INFO: File Specification %superq(path_part) does NOT exist. ;

22

Restricted - External

%goto leave;
%end;

%end;

%*** Give each row a number - this will be from 1 (first directory) to n
(last directory or the file). ;
data work._check permissions_n_;
set work. check permissions_base (keep=GroupName);
n=_n_;
run;

%*** Grouping by group name we can find the top folder in a path where a
group name is used. ;
proc sql;
create table work._ check permissions_list_ as
select
GroupName,
min(n) as n
from work._check_permissions_n_
group by GroupName
order by n
;quit;

%*** Count the unique groups. ;
proc sql noprint;

select count(®*)

into -group_count

from work._check_permissions_list_
;quit;

%let group_count = %sysfunc(strip(&group_count.));

%*** Read the groups into a macro variable array. ;
proc sql noprint;
select GroupName
into:group_namel-:group_name&group_count.
from work. check permissions_list_
;quit;

%*** Evaluate the effective permission for others by retaining groups from
one row to the next. ;
data work._ check permissions_rw_ (drop=GroupNamePrior OtherName
OtherNamePrior);
set work. check permissions_base_ (keep=FileSpecification ShortFileName
OwnerName GroupName Type AccessPermission);
by Type FileSpecification;
length
GroupNamePrior $32
OtherName $32
OtherNamePrior $32
%do z=1 %to &group count.;
&&group_name&z.. $2

%end;
Read $32

Write $32

retain GroupNamePrior OtherNamePrior;

23

Restricted - External

%*** Test iIf there are some read or write permission for "other" ;
if strip(compress(substr(AccessPermission,8,2),"-")) ~= "" then do;
%*** 1Ff the group name is the same for both rows and other has
permissions then other is equal too... ;
%*** ___but if the group name is different across two rows then this
implies other is the group from the row above. ;
if GroupName = GroupNamePrior then do;
OtherName = OtherNamePrior;
end;
else if GroupName 7= GroupNamePrior then do;
OtherName = GroupNamePrior;
end;
end;
else do;
OtherName = *7;
end;

%*** Each group will have its own column in the ordered they are
encountered in the path. ;

%*** The group column will contain any read or write permissions for the
current path. ;

%do z=1 %to &group_count.;

if GroupName = "&&group_name&z.." then &&group_name&z.. =
strip(compress(substr(AccessPermission,5,2),"-"));
else if OtherName = "&&group_name&z.." then &&group_name&z.. =
strip(compress(substr(AccessPermission,8,2),"-"));
%end;
GroupNamePrior = GroupName;
OtherNamePrior = OtherName;

%*** Determine which is the first column with read (not write) and write
(can be read too) permissions. ;
%do z=1 %to &group_count.;

if Read = "" then do;
if index(&&group_name&z..,"r") > 0 and index(&&group_name&z..,"w") =
0 then do;
Read = "&&group_name&z..";
end;
end;

if Write = *° then do;
if index(&&group _name&z..,"r") > 0 and index(&&group_name&z.., "w") >
0 then do;
Write = "&&group_name&z..";
end;
end;

%end;

%*** If we are not the last directory / file then we dont need write so
read is write until it actually matters. ;
if Write = " then do;
if not last.type then do;
Write = Read;
end;

24

Restricted - External

end;
run;

%*** Count how many of the folders have a permission route compatible with

read and write. ;
proc sql noprint;
select
count(*) as row_count,
count(read) as read_count,
count(write) as write _count
into
Zrow_count,
:read_count,
:write_count
from work. check permissions_rw_

;quit;
%*** Get the output names shorter for the sys log print macro call. ;
proc sql;
create table work._check_permissions_print_ as
select

FileSpecification,
OwnerName as Owner,
GroupName as Group,
AccessPermission as Permissions
from work._ check permissions_rw_
;quit;
%*** Store just the last row in a dataset. ;
data work._check permissions_last_;
set work._check_permissions_print_ nobs=nobs;
if _n_ = nobs then output;
run;

%*** Store certain fields in macro variables for outputting to the log when

there are issues. ;
proc sql noprint;

select
FileSpecification,
Owner,
Permissions
into
FileSpecification,
Owner,
:Permissions
from work. check permissions_last_
;quit;

%*** Print the output to the log in a way that is easily readable. ;
%sys_log_print(in_ref=work._check permissions_print_);

%*** 1T all rows have a read value then print the effective read path. ;
%if &row count. = &read count. %then %do;

proc sql;
create table work. check permissions_read_ (keep=Group) as
select distinct
b.GroupName as Group,

25

Restricted - External

b.n
from work._check_permissions_rw_ as a
inner join work._check permissions_list_ as b
on a.Read = b.GroupName
order by n
;quit;

%put INFO: To Read from "%sysfunc(strip(%superqg(FileSpecification)))" you
need the following groups: ;

%*** Print the output to the log in a way that is easily readable. ;
%sys_log_print(in_ref=work._check_permissions_read_);

%end;
%else %do;
%put INFO: Unable to READ from
"wsysfunc(strip(%superq(FileSpecification)))" ;
%put INFO: Please contact the owner "%sysfunc(strip(%superq(Owner)))"
regarding permissions "%sysfunc(strip(%superq(Permissions)))";

%put ;
%end;
%*** 1T all rows have a write value then print the effective write path. ;
%if &row_count. = &write_count. %then %do;

proc sql;

create table work. check permissions_write (keep=Group) as
select distinct
b.GroupName as Group,
b.n
from work. check permissions_rw_ as a
inner join work._check _permissions_list_as b
on a.Write = b.GroupName
order by n
;quit;

%put INFO: To WRITE to "%sysfunc(strip(%superq(FileSpecification)))" you
need the following groups: ;

%*** Print the output to the log in a way that is easily readable. ;
%sys_log_print(in_ref=work._check_permissions_write_);

%end;
%else %do;
%put INFO: Unable to WRITE to

"%sysfunc(strip(%superq(FileSpecification)))" ;
%put INFO: Please contact the owner "%sysfunc(strip(%superq(Owner)))"

regarding permissions "%sysfunc(strip(%superq(Permissions)))";
%put ;
%end;

%*** Create the output dataset related to out ref with appropriate columns
that wont confuse the users. ;

proc sql;
create table %superq(out_ref) as

select *

from work. check permissions_rw_ (drop=read write)
;quit;

26

Restricted - External

%leave:

%*** Delete the temp table(s). ;
proc datasets lib=work nolist;
delete
_check_permissions_base_
_check_permissions_dir_
_check _permissions_line_
_check _permissions_n_
_check_permissions_list_
_check_permissions_rw_
_check_permissions_print_
_check _permissions_last_
_check _permissions_max__
_check_permissions_read_
_check_permissions_write_
run;
quit;

%options_reset(options=linesize mlogic mprint notes pagesize symbolgen,
options_id=sys _check permissions, put=N);

%mend sys_check permission;

27

Restricted - External

%macro sys_dir_create(path=, put=Y) /
des = "Use the dcreate function to recursively create a directory on the
system. " ;

%*** Make the macro_msg macro variable available globally ;
%global macro_msg;

data null_;
length
new_path $512

%*** Count the number of occurrences of the directory break character ;
dirn = countw(""%superq(path)","/");

%*** Loop for each directory ;
do i=1 to dirn;
call scan('%superq(path)', i, POS, LEN, "/');
%*** Define the full path of the parent directory ;
if POS-2 > 0
then parent_path
else parent_path

= substr("%superq(path)", 1, P0S-2);

= I/I;

%*** Define the name of the child directory (without full path)
dir = scan("%superq(path)*, i, "/™);

%*** Define the full path of the child directory ;
if parent _path = */*
then child_path
else child_path

cats(parent_path,dir);
cats(parent_path, /" ,dir);

%*** Test whether the parent and child paths exist ;
parent_exist = Fileexist(parent_path);
child_exist = Fileexist(child_path);
%*** 1Ff the parent directory exists but the child directory does not
then do... ;
if parent_exist = 1 and child_exist = 1 then do;
if "%superq(put)" = "Y" then do;
put “Directory already exists: " child_path;
end;
end;
else if parent_exist = 1 and child_exist = 0 then do;
if "%superq(put)" = "Y" then do;
put “Directory does not exist. Creating now: ° child_path;
end;

%*** Step 1 : Perform command and get return code ;
new_path = dcreate(dir, parent_path);

%*** Step 2 : Get system message ;
macro_msg = sysmsg(Q);

%*** Step 3 : Put the return code and system message into macro
variables ;
call symput(“macro_msg®,strip(macro_msg));

end;
else if parent _exist = 0 then do;

28

Restricted - External

if "%superq(put)' = "Y" then do;
put “Parent directory does not exist. Cannot create:
end;
end;
end;
run;

parent_path;

%*** If the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(%superq(put))) = Y %then %do;

%put %superq(macro_msg) ;
%end;

%mend sys_dir_create;

29

Restricted - External

%macro sys_move(path=, newpath=, put=) /
des = "Use the rename function to rename or move a file on the system.";

%*** Make the macro_rc and macro_msg macro variables available globally ;
%global macro_rc macro_msg;

data null_;
%*** Step 1 : Perform command and get return code ;

macro_rc = rename("%superq(path)’, "%superq(newpath)", "file");

%*** Step 2 : Get system message ;
macro_msg sysmsg(Q);

%*** Step 3 : Put the return code and system message into macro variables

call symput("macro_rc”,strip(put(macro_rc,8.)));
call symput(“"macro_msg®,strip(macro_msg));
run;

%*** 1Ff the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(%superq(put))) = Y %then %do;
%put INFO: The macro return code is ¯o_rc. ;
%put %superq(macro_msg) ;
%end;

%mend sys_move;

30

Restricted - External

%macro sys_File_copy(path=, newpath=, put=Y) /
des = "Use the fread, fget, fput and fwrite functions to copy a file on the
system. " ;

%*** Make the macro_rc and macro_msg macro variables available globally ;
%global macro_rc macro_msg;

%*** Assign the source and target files ;
filename _in_ "%superq(path)’;
filename _out_ "%superqg(newpath)™;

%*** Copy the file byte-for-byte ;
data null_;
length filein 8 Fileout 8;

%*** Step 1 : Perform commands and get the return code ;
filein = fopen("_in_","17,1,"B");

fileout = fopen("_out_","0",1,"B");

rec = "20%x;

do while(fread(filein)=0);

macro_rc = fget(filein,rec,1l);
macro_rc = fput(Ffileout,rec);
macro_rc = fwrite(fileout);
end;
macro_rc fclose(filein);

macro_rc = fclose(fileout);
%*** Step 2 : Get system message ;
macro_msg = sysmsg();

%*** Step 3 : Put the return code and system message into macro variables

call symput("macro_rc",strip(put(macro_rc,8.)));
call symput(“macro_msg®,strip(macro_msg));
run;

%*** Clear the file assignments ;
Ffilename _in_ clear;
filename _out_clear;

%*** If the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(%superq(put))) = Y %then %do;

%put INFO: The macro return code is ¯o_rc. ;

%put %superq(macro_msg) ;
%end;

%mend sys_file_copy;

31

Restricted - External

%macro sys_delete(path=, put=Y) /
des = "Use the fdelete function to delete a file or dir on the system.";

%*** Make the macro_rc and macro_msg macro variables available globally ;
%global macro_rc macro_msg;

%*** Assign a file that you want to delete ;
filename _in_ "%superq(path)’;

data null_;
%*** Step 1 : Perform command and get return code ;
macro_rc = fdelete("_in_");
%*** Step 2 : Get system message ;
macro_msg = sysmsg(Q);

%*** Step 3 : Put the return code and system message into macro variables
call symput(“macro_rc”,strip(put(macro_rc,8.)));
call symput(“macro_msg®,strip(macro_msg));

run;

%*** Clear the file assignment ;
filename _in_ clear;
%*** 1T the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(%superq(put))) = Y %then %do;
%put INFO: The macro return code is ¯o_rc. ;
%put %superq(macro_msg) ;
%end;

%mend sys_delete;

32

Restricted - External

%macro sys_Find(Ffind_path=, max_depth=, format=L, out_ref=work._find_output_,
put=N) /

des = "Use various functions to mimic the recursive listing of a directory on
the system.";

%*** Remember the current value of options prior to changing them. ;
%options_remember(options=mlogic mprint notes symbolgen,
options_id=sys_find, put=N);

options nomlogic nomprint nosymbolgen nonotes;

%*** Define local macro variable(s). ;
%local dsopt where_max_depth dir_count loop_count directory depth ;

%*** Dataset options that allow the process to run faster. ;
%let dsopt = COMPRESS=NO;

%*** Determine and handle if the max _depth parameter is being used. ;
%iT %sysfunc(compress(%superq(max_depth), ,kd)) = %superq(max_depth)
and %syseval f(%superqg(max_depth)=,boolean) = 0 %then %do;

%let where _max_depth = where depth le %superq(max_depth);
%end;
%else %do;

%let where_max_depth = ;
%end;

%*** Clear down any pre-existing work tables that we append to. ;
proc datasets lib=work nolist;
delete
_FIND_CHECKED_
_FIND_LISTING_
_FIND_UNCHECKED _
run;
quit;

%*** Create the base unchecked table using the find path. ;
data WORK._FIND_UNCHECKED_ (&dsopt.);
length FileSpecification $512 Depth 8.;
if length(%superq(find_path)') = 1 or
substr('%superq(find_path)", length(""%superq(find_path)'),1) ~= *"/" then do;
FileSpecification = "%superq(find_path)";
end;
else do;
FileSpecification =
substr('%superq(find_path)",1, length(*"%superq(find_path)'")-1);
end;
Depth = 0;
run;

%*** Set a default value of the Directory Count to 1 (because we start with
1 directory). ;

%let dir_count = 1;

%let loop_count = O;

%*** 1.0.4 - IF the put flag is used, then put information to the log. ;
%if %sysfunc(upcase(%superq(put))) = Y %then %do;
%put ;

33

Restricted - External

%put Start of find loop...;
%put ;
%end;

%*** Continue to loop as long as there are additional directories to
explore. ;
%do %while (&dir_count. > 0);

%*** Define the first row as the next directory to examine. ;
%*** All other rows remain in the unchecked directory list (grows as
process loops). ;
data
WORK._FIND_NEXT_ (&dsopt.)

WORK . _FIND_UNCHECKED_ (&dsopt.)
set WORK. FIND_UNCHECKED ;

if n =1
then output _FIND_NEXT_;
else output _FIND_UNCHECKED_;
run;

%*** Put the values for the current directory into macro variables. ;
proc sql noprint;
select
FileSpecification,
Depth
into
:Directory,
:Depth
from WORK. FIND_NEXT
;quit;

%let Loop_Count = %eval(&loop_count. + 1);

%*** 1.0.4 - IT the put flag is used, then put information to the log.
%if %sysfunc(upcase(%superq(put))) = Y %then %do;

%put &loop count. : %superq(directory);
%end;

%*** Perform a listing on the current directory. ;
%sys_Is(ls_path=%superq(directory),
Fformat=%sysfunc(upcase(%superq(format))));

%*** Append the directory that was just checked into the checked list.
proc append

base = WORK. FIND_CHECKED

data = WORK. FIND NEXT_;
run;

%*** Define the depth for new items being added to the list of found
objects. ;
proc sql;
create table WORK. FIND NEW _LISTING as
select a.*
from

(

select *,

34

Restricted - External

case
when FileSpecification = "%superq(directory)”
then &depth.
else &depth. + 1
end as Depth
from WORK._LS OUTPUT_
) as a
%superg(where_max_depth)
;quit;

%*** Append the new objects to the overall list.
proc append

base = WORK._FIND_LISTING_

data = WORK._FIND_NEW_LISTING_;
run;

%*** Define the items which we need to add to the unchecked list.

proc sql;
create table WORK._ FIND_NEW_UNCHECKED_ as
select
a.FileSpecification,
a.Depth

from WORK. FIND_NEW_LISTING_ as a
left join WORK._FIND_CHECKED_ as b
on a.FileSpecification = b._FileSpecification
left join WORK._FIND_UNCHECKED_ as c
on a.FileSpecification = c.FileSpecification
where a.Type = "d*
and b.FileSpecification "
and c.FileSpecification "
;quit;

%*** Append the items to the unchecked list.
proc append
base = WORK._FIND_UNCHECKED_
data = WORK._FIND_NEW_UNCHECKED_;
run;

%*** Count how many directories are left to be checked.
proc sql noprint;

select count(*) into: Dir_Count

from WORK._ FIND_UNCHECKED
;quit;

%end ;

%*** 1.0.4 - IT the put flag is used, then put information to the log.
%if %sysfunc(upcase(%superq(put))) = Y %then %do;

%put ;

%put End of find loop...;

%put ;
%end;

%*** Create a final ordered output with distinct rows.
proc sql;
create table %superq(out_ref) as

select distinct *

from WORK. FIND_LISTING

35

Restricted - External

order by FileSpecification
;quit;

%*** Delete the temp table(s). ;
proc datasets lib=work nolist;
delete
_LS_OUTPUT_
_FIND_NEXT_
_FIND_CHECKED_
_FIND_NEW_LISTING_
_FIND_LISTING
_FIND_NEW_UNCHECKED_
_FIND_UNCHECKED_
run;
quit;
%*** Reset the options to their original stored values. ;
%options_reset(options=mlogic mprint notes symbolgen, options_id=sys_find,
put=N);

%mend sys_find;

36

Restricted - External

%macro sys_Is(ls_path, format=L, out_ref=work._ Is output) /
des = "Use various functions to mimic the listing of a directory on the
system. " ;

%*** Remember the current value of options prior to changing them. ;
%options_remember(options=mlogic mprint notes symbolgen, options_id=sys lIs,
put=N);

options nomlogic nomprint nonotes nosymbolgen;

%*** Define local macro variable(s). ;
%local keep dsopt;

%*** Dataset options that allow the process to run faster. ;
%let dsopt = COMPRESS=NO;

%*** Create the base transient table using the Is path. ;
data WORK._ LS NEXT_ (&dsopt.);
length FileSpecification $512;
if length(C'%superq(ls_path)'™) = 1 or
substr(*%superq(ls_path)", length(""%superq(ls_path)'),1) ~= */" then do;
FileSpecification = "%superq(ls_path)';
end;
else do;
FileSpecification =
substr('%superq(ls_path)",1, length('%superq(ls_path)")-1);
end;
run;

%*** In order to avoid Ffile-lock errors in log, route log to black hole.
proc printto log="/dev/null";
run;

%*** List all child files and child directories within a parent directory.

data
WORK._ LS LISTING_

(keep=
FileSpecification
MemberName
OwnerName
GroupName
AccessPermission
FileSize
LastModified
Readable
SysMsg

&dsopt.)

éet WORK._ LS _NEXT_ (keep=FileSpecification);

length
pref $8
cref $8
OwnerName $32
GroupName $32
AccessPermission $12
Filesize 8.

37

Restricted - External

LastModified $48
Readable $1
SysMsg $512

%*** Assign a file reference to the parent directory. ;
rcl = filename(pref, FileSpecification);

%*** 1IFf the file assignment was successful then try and open the parent
directory. ;
%*** (NO)TE: File assignments are often successful in undesirable
situations. ;
if rcl = 0 then do;
pid = dopen(pref);
%*** Store any system message i.e. ;
%*** (ER)ROR: Physical file does not exist, /.../.../... ;
%*** (ER)ROR: Insufficient authorization to access /.../.../... ;
SysMsg = sysmsg();
end;
else do;
pid = .;
end;

%*** Clear the file assignment as we are now using the pid variable. ;
rc2 = Filename(pref);

%*** If opening the parent directory was unsuccessful then output. ;
if pid <= 0 then do;

%***

%*** OUTPUT BLOCK 1 - Failed to read parent directory.

%***

OwnerName
GroupName "
AccessPermissi
FileSize = _;
LastModified = "*;
Readable = "N";

output;

O ut s

n =

end;

%*** 1Ff opening the parent directory was successful then gather
additional information. ;

else do;

OwnerName = dinfo(pid, "Owner Name®);

GroupName = dinfo(pid, "Group Name");
AccessPermission = dinfo(pid, "Access Permission®);
FileSize = _;

38

Restricted - External

LastModified = dinfo(pid, "Last Modified");
Readable = "Y";
output;

%*** Determine the number of child members in the parent directory. ;
dnum = dnum(pid);

%*** Loop for each child member of the parent directory. ;
do 1 = 1 to dnum;

%*** Determine the name of the current child member (file or
directory). ;
MemberName = dread(pid, i);

%*** Define the Tile specification using the parent directory and
child member name. ;

it dinfo(pid, "Directory®) = "/ then do;

FileSpecification = cats(dinfo(pid, "Directory”),MemberName) ;
end;
else do;

FileSpecification = cats(dinfo(pid, "Directory®), /" ,MemberName);
end;

%*** Ignore file locks. ;
if index(MemberName, " .lIck®) = 0 then do;

%*** Assign a file reference to the child directory. ;
rc3 = Filename(cref, FileSpecification);

%*** 1IFf the File assignment was successful then try and open the
child directory. ;
%*** (NO)TE: File assignments are often successful in undesirable
situations. ;
if rc3 = 0 then do;
cid = dopen(cref);
%*** Store any system message i.e. ;
%*** (ER)ROR: Physical file does not exist, /.../.../... ;
%*** (ER)ROR: Insufficient authorization to access /.../.../... ;
SysMsg = sysmsg();
end;
else do;
cid = _;
end;

%*** Clear the file assignment as we are now using the cid

variable. ;
rc4 = filename(cref);

%*** Override errors for trying to open a member as a directory
when it is not a directory. ;

if substr(SysMsg,1,length("ERROR: A component of")) = "ERROR: A
component of*

and substr(SysMsg, length(SysMsg)-length("is not a
directory.")+1,length("is not a directory.")) = "is not a directory." then
do;

SysMsg = *7;
end;

39

Restricted - External

then do th

%*** ITf opening the child directory was successful then output.

it cid
el

%***

> 0 then do;

%*** __
OwnerName = dinfo(cid, "Owner Name");
GroupName = dinfo(cid, "Group Name®);

AccessPermission = dinfo(cid, "Access Permission®);
FileSize = _;

LastModified = dinfo(cid, "Last Modified");
Readable = "Y*";

output;

end;

%*** Else try and handle the object as a file. ;

else if upcase("%superqg(format)™) = “L" then do;

%*** Attempt to open the child member as a file. ;

fid =

mopen(pid, MemberName, "1%);

%*** Store any system message. ;
SysMsg = sysmsg();

%***

is.

IT the child member is a file and it opened successfully

if fid > 0 then do;

%***

%*** QOUTPUT BLOCK 4 - Successfully read child file.

%*** __
| OwnerName = finfo(fid, "Owner Name®);
GroupName = Finfo(fid, "Group Name®);

AccessPermission = Finfo(fid, "Access Permission®);
FileSize = input(finfo(fid,"File Size (bytes)"),32.);
LastModified = finfo(fid, "Last Modified");

Readable = "Y";

output;

end;
else

if substr(SysMsg,1,length("ERROR: File is in use®)) =

"ERROR: File is in use” then do;

%***

%*** OUTPUT BLOCK 5 - Child member is in use and cant be read.

%***

OwnerName
GroupName
AccessPerm

ssion = "7;

40

Restricted - External

FileSize = _;
LastModified = "*;
Readable "X";
output;

end;
else do;

%*** __
OwnerName = **;

GroupName = "*;

AccessPermission = "°;

FileSize = _;

LastModified = "*;
Readable = "N-;
output;

end;

end;
else do;

%*** __
OwnerName = "*";

GroupName = "*;

AccessPermission = "°;

FileSize = _;

LastModified = "";
Readable = "Y~;
output;

end;

%*** Close the child directory. ;
rc5 = dclose(cid);

end;
end;

end;

%*** Close the parent directory. ;

rc6é = dclose(pid);
run;
%*** Get the log back. ;
proc printto 1og=LO0G;
run;

%*** Tidy up variables and define new ones where required.

41

Restricted - External

data WORK. LS CLEANSING ;
set WORK. LS LISTING_ ;
length
Type $1
OctalPermission 3
LastModifiedDate 8
LastModifiedTime 8

format
LastModifiedDate date9.
LastModifiedTime time8.

%*** Define the type based on the first substring of the access
permissions. ;
if substr(AccessPermission,1,1) = "-*
then Type = substr(AccessPermission,1,1);
else Type f;

%*** Define the octal representation of the access permissions. ;
OctalPermission = 0;
if AccessPermission = "" then do;
if substr(AccessPermission,2,1) ~= "-" then OctalPermission =
OctalPermission + 400;
if substr(AccessPermission,3,1) ~= "-" then OctalPermission =
OctalPermission + 200;
if substr(AccessPermission,4,1) ~= "-" then OctalPermission =
OctalPermission + 100;
if substr(AccessPermission,5,1) ~= "-" then OctalPermission =
OctalPermission + 40;
if substr(AccessPermission,6,1) ~= "-" then OctalPermission =
OctalPermission + 20;
if substr(AccessPermission,7,1) ~= "-" then OctalPermission =
OctalPermission + 10;
if substr(AccessPermission,8,1) ~= "-" then OctalPermission =
OctalPermission + 4;
if substr(AccessPermission,9,1) ~= "-" then OctalPermission =
OctalPermission + 2;
iT substr(AccessPermission,10,1) "=
OctalPermission + 1;
end;
else do;
OctalPermission = _;
end;

then OctalPermission =

%*** 1F¥ there is a last modified value then define the last modified date
and time. ;
if LastModified ~= "" then do;

LastModifiedDate = input(cats(scan(LastModified,1,"
") ,substr(scan(LastModified,2," "),1,3),scan(LastModified,3," ")),date9.);
LastModifiedTime = input(scan(LastModified,4," "),time8.);
end;
run;

%*** Define which variables we will keep based on the long or short
formats. ;
%if %sysfunc(upcase(%superq(format))) = L %then %do;
%let keep = OwnerName, GroupName, Type, AccessPermission,
OctalPermission, FileSize, LastModifiedDate, LastModifiedTime;

42

Restricted - External

%end;
%else %do;

%let keep = Type;
%end;

%*** Re-order the columns and order as desired. ;
proc sql;
create table %superq(out_ref) as
select
FileSpecification,
case
when FileSpecification = "/~
then **
when count(FileSpecification,"/") = 1
then */*
else substr(FileSpecification,1,length(FileSpecification)-
length(scan(FileSpecification,-1,"/"))-1)
end as ParentDirectory length=512,
case
when FileSpecification = */*
then **
else scan(FileSpecification,-1,"/")
end as ShortFileName length=128,
%superq(keep),
Readable,
SysMsg
from WORK. LS CLEANSING_
order by FileSpecification
;quit;

%*** Delete the temp table(s). ;
proc datasets lib=work nolist;
delete
_LS_NEXT_
_LS_LISTING_
_ LS _CLEANSING_
run;
quit;
%*** Remember the current value of options prior to changing them. ;
%options_reset(options=mlogic mprint notes symbolgen, options_id=sys ls,
put=N);

%mend sys_Is;

43

Restricted - External

%macro sys_zip_contents(zip_fs=, type=DATA,
out_ref=work._ zip_contents_output_);

%put ;

%put INFO: zip_fs
%put INFO: type
%put INFO: out_ref

Y%superq(zip_fs);

%superq(type);
%superq(out_ref);

%*** Assign the location of the zip file. ;
filename zip_fs zip "%superq(zip_fs)";

%*** Check la: The zip file exists. ;
%iT %sysfunc(fexist(zip_fFs)) = 1 %then %do;
%put CHECK: The zip file exists. ;

%*** If any of the correct types are passed then gather the contents
information. ;

%if %sysfunc(upcase(%superq(type))) = DATA or
%sysfunc(upcase(Usuperq(type))) = LOG or %sysfunc(upcase(%superq(type))) =
OUTPUT %then %do;

%*** Read the list of members from the zip file. ;
data work._ zip_contents_ (keep=memname);
length memname $512;
Ffid=dopen('zip_fFs"™);
if fid=0 then
stop;
memcount=dnum(Ffid);
do i=1 to memcount;
memname=dread(fid, 1);
output;
end;
rc=dclose(fid);
run;

%end;

*** |f the type is DATA then output to the specified output reference. ;
%if %sysfunc(upcase(%superq(type))) = DATA %then %do;
data %superq(out_ref);
set work._ zip_contents_;
run;
%end;

%*** 1Ff the type is LOG then print the information to the log. ;
%else %if %sysfunc(upcase(%superq(type))) = LOG %then %do;
data _null_;
set work._ zip_contents_;
put Call_)(=);
run;
%end;

%*** 1T the type is OUTPUT then print the information to the results /
output window. ;
%else %if %sysfunc(upcase(%superq(type))) = OUTPUT %then %do;
proc print
data = work._ zip_contents_;
var _all_;

44

Restricted - External

run;
%end;

%*** Otherwise put an (ER)ROR to the log. ;
%else %do;
%put %str(ER)ROR: The only valid values for 'type"™ are "DATA", "LOG"
and "OUTPUT";
%end;

%end;

%*** Check 1b: The zip file does NOT exist. ;
%else %do;

%put CHECK: The zip file does NOT exist. ;
%end;

%if %sysfunc(exist(work._zip_contents_)) %then %do;
%*** Delete the temp table(s). ;
proc datasets lib=work nolist;

delete
_zip_contents_

run;
quit;

%end;

%*** Clear the file assignments ;
filename zip_fs clear;

%mend sys_zip_contents;

45

Restricted - External

%macro sys_zip_member_add(fs=, zip_fs=, zip_mem=, overwrite=N, delete=N);

%put ;

%put INFO: fs

%put INFO: zip_fs
%put INFO: zip_mem
%put INFO: overwrite
%put INFO: delete

%superq(Ffs);
%superq(zip_fs);
%superqg(zip_mem);
%superg(overwrite);
%superq(delete);

%*** Set macro variables to be local to this macro to avoid conflicts. ;
%local exe _cmd zip_dir;

%*** Give execute command a default value of 1.
%let exe_cmd = 1;

%*** Define the parent directory where the zip folder is or will be
created. ;

%let zip_dir =
%sysfunc(substr(%superq(zip_fFs),1,%sysfunc(length(%superq(zip_fs)))-
%sysfunc(length(%sysfunc(scan(%superq(zip_Ffs),-1,"/"))))-1));

%*** Assign the current location of the file. ;
Ffilename fs "%superq(fs)";

%*** Assign the location of the parent directory where the zip folder is or
will be created. ;
filename zip_dir "%superq(zip_dir)";

%*** Assign the location of the zip file. ;
Ffilename zip_fs "%superq(zip_fFs)';

%*** Assign the location of the zip file and name of the member. ;

filename zip_mem zip "%superq(zip_Ts)" member="%superq(zip_mem)";
%*** Check la: The file does exist and the zip parent directory does exist.

%if %sysfunc(Fexist(fs)) = 1 and %sysfunc(fexist(zip_dir)) = 1 %then %do;
%put CHECK: The Ffile does exist and the zip parent directory does exist.

%*** Check 2a: The overwrite option is set to N which requires further
checks. ;
%if %sysfunc(upcase(%superq(overwrite))) = N %then %do;
%put CHECK: The overwrite option is set to N which requires further
checks. ;
%*** Check 3a: The zip file already exists which requires further
checks. ;
%if %sysfunc(Fexist(zip_fFs)) = 1 %then %do;
%put CHECK: The zip file already exists which requires further
checks. ;
%*** Check 4a: The zip member already exists and overwrite is
preventing replacement. ;
%if %sysfunc(Fexist(zip_mem)) = 1 %then %do;
%let exe_cmd = O;
%put CHECK: The zip member already exists and overwrite flag is
preventing replacement. ;
%end;
%*** Check 4b: The zip member does not already exist. ;
%else %do;

46

Restricted - External

%put CHECK: The zip member does not already exist. ;
%end;
%end;
%*** Check 3b: The zip file does not already exist. ;
%else %do;
%put CHECK: The zip file does not already exist.
%end;
%end;
%*** Check 2b: The overwrite option is set to Y which requires no further
checks. ;
%else %if %sysfunc(upcase(%superq(overwrite))) = Y %then %do;
%put CHECK: The overwrite option is set to Y which requires no further
checks. ;
%end;
%*** Check 2c: The overwrite option is not set to Y or N. ;
%else %do;
%let exe_cmd = 0O;
%put CHECK: The overwrite option is not set to Y or N. ;
%end;
%end;
%*** Check 1b: The file does not exist and the zip parent directory does
exist. ;
%else %if %sysfunc(fexist(fs)) = 0 and %sysfunc(Ffexist(zip_dir)) = 1 %then
%do;
%let exe_cmd = 0O;
%put CHECK: The Ffile does not exist and the zip parent directory does
exist. ;
%end;
%*** Check 1c: The file does exist and the zip parent directory does not
exist. ;
%else %if %sysfunc(fexist(fs)) = 1 and %sysfunc(Ffexist(zip_dir)) = 0 %then
%do;
%let exe_cmd = O;
%put CHECK: The Ffile does exist and the zip parent directory does not
exist. ;
%end;
%*** Check 1d: The file does not exist and the zip parent directory does
not exist. ;
%else wif %sysfunc(fexist(fs)) = 0 and %sysfunc(Fexist(zip_dir)) = 0 %then
%do;
%let exe_cmd = O;
%put CHECK: The Ffile does not exist and the zip parent directory does not
exist. ;
%end;

%*** Qutcome la: Command will execute. ;
%if %superq(exe_cmd) = 1 %then %do;

%*** Copy the file into the zip file member byte-by-byte ;
data _null_;

infile fs recfm=n;

file zip_mem recfm=n;

input byte $charl. @;

put byte $charl. @;
run;

%*** Qutcome 2a: Member has been successfully added to zip file. ;
%if %sysfunc(Fexist(zip_mem)) = 1 %then %do;

47

Restricted - External

%put OUTCOME: Member has been added to zip file. ;

%*** Only do the next section if the macro is set to delete the
original after adding the member. ;
%if %sysfunc(upcase(%superq(delete))) = Y %then %do;
data null_;
rc = fdelete("fs");
if rc=0 then do;
put "DELETE: Successfully deleted %superq(fs).";

end;
else do;
put "DELETE: Unable to delete %superq(fs).";
end;
run;
%end;

%else %do;

%put DELETE: Delete flag is preventing deletion of %superq(fs).;
end
hend ;

%end;
%*** Qutcome 2b: Member has NOT been successfully added to zip file. ;
%else %do;
%put OUTCOME: Member has NOT been successfully added to zip file. ;
%end;
%end;
%*** Qutcome 1lb: Command will NOT execute due to failed checks. ;
%else %do;
%put OUTCOME: Command will NOT execute due to failed checks. ;
%end;
%*** Clear the file assignments ;
Ffilename fs clear;
filename zip_dir clear;
Ffilename zip_fs clear;
Ffilename zip_mem clear;

%mend sys_zip_member_add;

48

Restricted - External

%macro sys_zip_member_delete(zip_fs=, zip_mem=);

%put ;
%put INFO: zip_fs
%put INFO: zip_mem

= Y%superq(zip_Fs);

= Y%superq(zip_mem);
%*** Assign the location of the zip file. ;
filename zip_TFs "%superq(zip_Ffs)";

%*** Specify the location of the zip file and name of the member. ;
filename zip_mem ZIP "%superq(zip_Ts)" member="%superq(zip_mem)";

%*** Check la: The zip file exists. ;

%if %sysfunc(fexist(zip_Ffs)) = 1 %then %do;
%put CHECK: The zip file exists. ;
%*** Check 2a: The zip member exists. ;

%iT %sysfunc(Ffexist(zip_mem)) = 1 %then %do;
%put CHECK: The zip member exists. ;

%*** Delete the zip member. ;
data null_;
rc = fdelete("zip_mem");
if rc=0 then do;
put "DELETE: Successfully deleted zip member %superq(zip_mem).";

end;
else do;
put "DELETE: Unable to delete zip member %superq(zip_mem).";
end;
run;
%end;

%*** Check 2b: The zip member does NOT exist.
%else %do;
%put CHECK: The zip member does NOT exist. ;
%end;
%end;
%*** Check 1b: The zip file does NOT exist. ;
%else %do;
%put CHECK: The zip file does NOT exist. ;
%end;

%*** Clear the file assignments ;
Ffilename zip_fs clear;
Ffilename zip_mem clear;

%mend sys_zip_member_delete;

49

Restricted - External

%macro sys_zip_member_extract(fs=, zip_fs=, zip_mem=, overwrite=N, delete=N);

%put ;

%put INFO: fs

%put INFO: zip_fs
%put INFO: zip_mem
%put INFO: overwrite
%put INFO: delete

%superq(Ffs);
%superq(zip_fs);
%superqg(zip_mem);
%superg(overwrite);
%superq(delete);

%*** Set macro variables to be local to this macro to avoid conflicts. ;
%local exe _cmd zip_dir;

%*** Give execute command a default value of 1.
%let exe_cmd = 1;

%*** Define the parent directory where the zip folder is or will be
Ccreated. ;

%let fs_dir = %sysfunc(substr(%superq(fs),l,%sysfunc(length(%superq(fs)))-
%sysfunc(length(%sysfunc(scan(%superq(fs),-1,"7/"))))-1));

%*** Assign the location of the output directory. ;
filename fs_dir "%superq(fs_dir)";

%*** Assign the location of the output file.
Ffilename fs "%superq(fs)';

%*** Assign the location of the zip Ffile. ;
Filename zip_fs "%superq(zip_fs)";

%*** Assign the location of the zip file and name of the member. ;

filename zip_mem zip "%superq(zip_Ts)" member="%superq(zip_mem)";

%*** Check la: The output file directory does exist and the zip file does
exist. ;
%if %sysfunc(fexist(fs_dir)) = 1 and %sysfunc(fexist(zip_fs)) = 1 %then
%do;
%put CHECK: The output file directory does exist and the zip file does
exist. ;
%*** Check 2a: The zip member does exist. ;
%if %sysfunc(fexist(zip_mem)) = 1 %then %do;
%put CHECK: The zip member does exist. ;
%*** Check 3a: The overwrite option is set to N which requires further
checks. ;
%if %sysfunc(upcase(%superg(overwrite))) = N %then %do;
%put CHECK: The overwrite option is set to N which requires further
checks. ;
%*** Check 4a: The output file already exists and overwrite is
preventing replacement. ;
%if %sysfunc(fexist(fs)) = 1 %then %do;
%let exe_cmd = O;
%put CHECK: The output file already exists and overwrite is
preventing replacement. ;
%end;
%*** Check 4b: The output file does not already exist.
%else %do;
%put CHECK: The output file does not already exist. ;
%end;
%end;

50

Restricted - External

%*** Check 3b: The overwrite option is set to Y which requires no
further checks. ;
%else %if %sysfunc(upcase(%superq(overwrite))) = Y %then %do;
%put CHECK: The overwrite option is set to Y which requires no
further checks. ;
%end;
%*** Check 3c: The overwrite option is not set to Y or N. ;
%else %do;
%let exe_cmd = O;
%put CHECK: The overwrite option is not set to Y or N. ;
%end;
%end;
%*** Check 2b: The zip member does not exist. ;
%else %do;
%let exe_cmd = O;
%put CHECK: The zip member does not exist.
%end;
%end;
%*** Check 1b: The output file directory does not exist and the zip file
does exist. ;
%else %if %sysfunc(fexist(fs_dir)) = 0 and %sysfunc(fexist(zip_fs)) = 1
%then %do;
%let exe_cmd = O;
%put CHECK: The output file directory does not exist and the zip file
does exist. ;
%end;
%*** Check 1c: The output file directory does exist and the zip file does
not exist. ;
%else Wif %sysfunc(fexist(fs_dir)) = 1 and %sysfunc(fexist(zip_fFfs)) = 0
%then %do;
%let exe_cmd = O;
%put CHECK: The output file directory does exist and the zip file does
not exist. ;
%end;
%*** Check 1d: The output file directory does not exist and the zip file
does not exist. ;
%else %if %sysfunc(Fexist(fs _dir)) = 0 and %sysfunc(fexist(zip_Ffs)) = 0
%then %do;
%let exe_cmd = 0O;
%put CHECK: The output Ffile directory does not exist and the zip file
does not exist. ;
%end;

%*** Qutcome la: Command will execute. ;
%if %superq(exe_cmd) = 1 %then %do;

%*** Copy the Ffile out of the zip Ffile in blocks. ;

data _null_;
infile zip_mem lrecl=256 recfm=F length=length eof=eof unbuf;
file fs lrecl=256 recfm=N;

input;
put _infile_ $varying256. length;

return;
eof:

stop;
run;

51

Restricted - External

%*** Qutcome 2a: Member has been successfully extracted to output file.
%if %sysfunc(fexist(fs)) = 1 %then %do;
%put OUTCOME: Member has been successfully extracted to output file. ;

%*** Only do the next section if the macro is set to delete the
original zip member after extracting it. ;
%if %sysfunc(upcase(%superqg(delete))) = Y %then %do;
%*** Delete the zip member. ;
data null_;
rc = fdelete("zip_mem™);
if rc=0 then do;
put "DELETE: Successfully deleted zip member %superq(zip_mem).";

end;
else do;
put "DELETE: Unable to delete zip member %superq(zip_mem).";
end;
run;
%end;

%else %do;
%put DELETE: Delete flag is preventing deletion of %superq(zip_mem).;
%end;

%end;
%*** Qutcome 2b: Member has NOT been successfully extracted to output
file. ;
%else %do;
%put OUTCOME: Member has NOT been successfully extracted to output
file. ;
%end;
%end;
%*** Qutcome 1lb: Command will NOT execute due to failed checks. ;
%else %do;
%put OUTCOME: Command will NOT execute due to failed checks. ;
%end;

%*** Clear the file assignments ;
Ffilename fs_dir clear;

filename fs clear;

Ffilename zip_fs clear;

Ffilename zip_mem clear;

%mend sys_zip_member_extract;

52

Restricted - External

