
data set NAMES ... uppercase using _INFILE_

data set NAMES ... alter delimiter using _INFILE_

Paper 5103-2020

Some _FILE_ Magic
Mike Zdeb, FSL, University at Albany School of Public Health, Rensselaer, NY

ABSTRACT

The use of the SAS® automatic variable _INFILE_ has been the subject of several published papers.
However, discussion of possible uses of the automatic variable _FILE_ has been limited to postings on
the SAS-L listserv and on the SAS Support Communities web site. This paper shows several uses of
the variable _FILE_, including creating a new variable in a data set by concatenating the formatted
values of other variables and recoding variable values.

INTRODUCTION

When you use a data step with an INPUT statement, SAS creates an input buffer where it holds your
data prior to moving the values of variables into the program data vector. If your data step reads a
SAS data set with a SET statement and no INPUT statement is present, no input buffer is created. If
there is an input buffer, you can access the contents of that buffer using the variable name _INFILE_.
INFILE is an automatic variable whose value is accessible within a data step but is not output to
any data set being created in the data step. The use of _INFILE_ is shown in several papers cited in
the references (an explanation of how data step works including creation of the input buffer is found
on page 335 of the SAS documentation also cited in the references). The following examples show
some aspects of _INFILE_ and the input buffer.

In this first example, you want to read some data and
have all the character variables in uppercase. You can
use a $UPCASE informat, or you could move each record
into the input buffer and hold the record in the buffer
with a trailing @-sign â. The contents of the input buffer
is named _INFILE_ and you can use an UPCASE function
to convert the contents to uppercase ã. The next INPUT
statement moves variable values from the input buffer into the program data vector ä.

data names;
input @; â
infile = upcase(_infile_); ã
input name :$10. age city :$10. state :$2.; ä
datalines;
mike 25 albany ny
Sara 15 Washington DC
;

Someone gives you a data file in which two consecutive
have been used as a delimiter. Missing data are
indicated by four consecutive slashes. Admittedly it is a
somewhat contrived example, but it does show how you
can modify the input buffer in those instances where it
seems as if it would be difficult to read variable values
properly.

data names;
infile datalines dsd dlm='/'; â
input @; ã
infile = tranwrd(_infile_,'//','/'); ä
input name :$10. age city :$10. state :$2.; å
datalines;
MIKE//25////NY
SARA//15//WASHINGTON//DC
JESSICA/9////CA
;

1

data set MALES ... variable HTWT created using _FILE_

variable HTWT if second PUT statement not used

The DLM option is used on the INFILE statement to specify that a slash separates variable values â.
One consequence of a DSD option in an INFILE statement is that two consecutive delimiters are
treated as indicating a missing value. A record is placed in the _INPUT_ buffer and held there using a
trailing @-sign ã. The TRANWRD function is used to
convert tow slashes to one ä, then data are read
into the program data vector using list input å.

While it is easy to find papers and documentation
about _INFILE_ and the input buffer in a data step,
it is difficult to find much similar information about
FILE and the output buffer. Again, several
examples are used, but now to show aspects of
FILE and the output buffer.

proc format; â
value ag low-<13.5 = '0' other = '1';
value ht low-<64.15 = '0' other = '1';
value wt low-<107.25 = '0' other = '1';
run;

filename nosee dummy; ã

data males (drop=sex);
file nosee; ä
set sashelp.class (where=(sex eq 'M'));
put age ag. height ht. weight wt. @; å
htwt = _file_; æ
put; ç
run;

Formats are created that will be used in the subsequent
data step to check whether males in the data set
SASHELP.CLASS have age, height, and weight that are
below (0) or at/above (1) the median for each variable.
The FILENAME statement sets up a FILEREF named
NOSEE ã. The special physical file DUMMY specifies that
no actual file will be produced, but you can still write to
that file using the FILE statement ä and PUT statements
in the data step. The PUT statement writes formatted
values (0s and 1s) of the three variables to the output
buffer and the results are held there using a trailing @-
sign. Just as contents of the input buffer are available
using _INFILE_, contents of the output buffer can be
accessed using _FILE_. A new variable named HTWT is
createdf from the contents of the output buffer
(formatted values of age, height, and weight) æ. The
output buffer is cleared with a PUT statement ç. That
second PUT statement clears the output buffer by writing
its contents to the file DUMMY.

In the data set on the above right you can see the values
of age/height/weight that are below (0) or at/above the
median (1) by looking the variable HTWT. Without the second PUT statement, the presence of the
trailing @-sign on the first PUT statement would result in the formatted values of the age, height, and
weight for each observation to be added onto the end of a string of values from all the previous
observation(s), as shown on the right.

A single trailing @-sign on a PUT statement persists during multiple passes through the data step, not
like an INPUT statement where the INPUT buffer is cleared at each pass through the data step if there
is only one trailing @-sign (two, or @@, are needed to ensure that the contents of the input buffer
are not cleared).

2

data set ANSWERS ... find Y

data set DIAGNOSES ... find DIABETES

Data set MALES could also be produced with the following data step ...

data males (drop=sex);
set sashelp.class (where=(sex eq 'M'));
put @1 age ag. height ht. weight wt. @; â
htwt = _file_;
run;

Notice that there is no FILE statement within the data step. That would normally cause the results of
any PUT statement to be written to the LOG. But the trailing @-sign on the PUT statement causes
the results of the PUT statement to be held in the input buffer and not written to the LOG â. Also
notice the @1 in the PUT statement that causes the formatted values of age, height, and weight to
overwrite each other on every pass through the data step (rather than accumulating in one string as
shown on the previous page). Upon completion of the data step, the output buffer is emptied and
one line is written to the LOG.

What follows are a set of examples that show how a combination of PUT and _FILE in a data step can
be used for a number of different tasks, as alternatives to other methods you are possibly already
using.

COMPLEX SEARCHING FOR VARIABLE VALUES

There are a number of ways to determine if a collection of variables contain a specified value. Given
the data set ANSWERS, you want to create a new data set containing all observations where a
subject had at least one answer with a value of 'Y' for any of the ten questions (variables q1-q10).
There are many ways to create that data and among them are the following: the FIND and CATT
functions â; the WHICHC function ã; an
ARRAY and the IN operator ä.

data atleast1y;
set answers;
if find(catt(of q:),'Y'); â
run;

data atleatst1y;
set answers;
if whichc('Y', of q:); ã
run;

data atleats1y;
set answers;
array q(10);
if 'Y' in q; ä
run;

What if the task was a bit more complex? Given a data set with multiple diagnoses, find all the
observations where at least one diagnosis starts with the characters '250' (if you are familiar with
ICD-9-CM codes, any diagnosis that starts with
those characters indicates diabetes). One way to
find the diabetes cases is with an ARRAY and a
LOOP.

data diabetes (drop=j);
set diagnoses;
array dx(5);
do j=1 to 5 until (dx(j) eq: '250'); â
end;
if j lt 6; ã
run;

data diabetes;
set diagnoses;
array dx(5); â
if '250' in : dx; ã ä
run;

3

data set DIAGNOSES ... find TBI diagnoses

data set TBI ... created using PUT+ _FILE_ + FIND

If no diabetes diagnoses are found, the value of the INDEX variable J â will be 6 when the loop is
completed, so any value less than 6 ã indicates that a diabetes case was found. The combination of
a ARRAY â, IN operator ã, and COLON modifier ä give the same result with much less SAS code.

An even more complex task is finding if many variables contain many values. Referring back to the
previous example with an ARRAY and the IN operator, it is equivalent to asking if there is an operator
that allows the equivalent of ...

IF <many values> IN <many variables represented by an ARRAY>;

There is no such operator, but there is an alternative method that uses a PUT statement, the variable
FILE, and the FIND function. The new problem to solve is given a data set with multiple diagnoses,
find all the observations where a patient has traumatic brain injury (TBI). The task is more difficult
than the previous search for diabetes since the indication for TBI includes the following individual
diagnosis codes and code ranges: 800-80199, 803-80499 , 850-85419, 9501-95039, 95901,
99555. Thinking in terms of the IN operator and an ARRAY, the task for the first observation (ID=01)
is as follows.

IF <95901, 78039, 4280, 87342, 81612> IN <800-80199, 803-80499 , 850-85419,
9501-95039, 95901, 99555>;

Since there is no such search mechanism in SAS, here is a solution.

proc format; â
value $tbi
'800'-'80199', '803'-'80499' , '850'-'85419', '9501'-'95039',
'95901' , '99555' = '1' other = '0';
run;

data tbi;
set diagnoses;
put @1 (dx1-dx5) ($tbi.) @; ã
if find(_file_,'1'); ä
run;

The first step is to create a format that will convert
all TBI diagnosis codes to 1 and all non-TBI codes
to 0, and â. The diagnosis codes are read in a
data step and a PUT statement ã is used to write
the formatted values of the codes (1s and 0s) to
the output buffer where the results of the PUT
statement are held using the trailing @-sign
(otherwise the results would be written to the
LOG). The contents of the OUTPUT buffer are
available using the variable _FILE_ and a FIND ä
function checks for the presence of a 1 in that
variable (indicating the presence of TBI).

If you also wanted to create a variable that
pointed to the TBI diagnosis(es), you could use the
following and the TBI data set is shown on the
right. Each 1 in the variable TBI indicates a
traumatic brain injury diagnosis code was found.

4

data set TBI ... with new variable TBI showing the location of

traumatic brain injury diagnosis codes (95901 85301 80001)

proc format; â
value $tbi
'800'-'80199', '803'-'80499' ,
'850'-'85419', '9501'-'95039',
'95901' , '99555' = '1'
other = '0'
' ' = 'x';
run;

data tbi;
set diagnoses;
length tbi $5; ã
put @1 (dx1-dx5) ($tbi.) @;
if find(_file_,'1');
tbi = _file_; ä
run;

The $TBI format is modified to convert missing diagnoses to an x (notice that variable TBI in the data
set TBI has an x for missing diagnoses). The LENGTH statement ã is important since the length of
FILE is 32,767 and TBI is created from _FILE_ in a subsequent statement ä and would have the
same length as _FILE_. The variable TBI shows the diagnosis that led to selection of the
observation.

RECODING VARIABLE VALUES

We can use the last example in the previous section to show how the _FILE_ statement can be used
to recode variables. The last example produced a new variable named TBI that showed with 1s and
the 0s the presence or absence of a traumatic brain diagnosis code. Rather than have one variable
(TBI) with all the 1s and 0s, what if you wanted to convert the five diagnosis codes (variables DX1-
DX5) to a series of binary variables (TBI1-TBI5) with the value of either 1 or 0. One way to create
the new binary variables would be with an ARRAY and a LOOP in a data step.

proc format; â
value $tbi
'800'-'80199', '803'-'80499' , '850'-'85419', '9501'-'95039',
'95901' , '99555' = '1' other = '0' ' ' = ' ';
run;

data tbi (drop=j);
set diagnoses;
array dx(5);
array tbi(5);
do j=1 to 5;
 tbi(j) = input(put(dx(j),$tbi.),1.); ã
end;
run;

The $TBI format is modified â so missing diagnosis codes will produce a missing value for the
variables TBI1 through TBI5. A loop is used within a data step to first apply the format to the
diagnosis codes with a PUT statement ã. Since that produces a character value, the INPUT function
is used to produce numeric variables TBI1-TBI5. The following shows how the same task can be done
with PUT and _FILE combined with INPUT and _INFILE_ (using the same $TBI format as was used
with the ARRAY and LOOP).

5

data set TBI ... created using PUT + _FILE_ + _INFILE_ + INPUT

data set WITH_MISSING

data tbi;
if _n_ eq 1 then input @; â
set diagnoses;
put @1 (dx1-dx5) ($tbi.) @; ã
infile = _file_; ä
input @1 (tbi1-tbi5) (1.) @@; å
datalines;
*
;

An INPUT statement â is used to
establish an INPUT buffer and it will be
empty since no variable values are used (since an INPUT statement requires either a DATALINES or
external file to read, a single line DATALINES file is used and it does not matter what that line
contains). The task of establishing the input buffer need only be done once so the first INPUT
statement only executes on the first pass through the data step. Once again, a PUT statement writes
the formatted values of the diagnosis codes to the output buffer ã. The next statement moves the
contents of the output buffer to the input buffer ä and the data in the input buffer is read with an
INPUT statement å. Since we want to hold onto the INPUT buffer, a double @@ is used on the
INPUT statement to preserve the buffer for the next pass through the data step.

CONVERT MISSING NUMERIC DATA TO ZERO

Given a data set (on the right) with missing values for
some or all the numeric variables, you want to replace
the missing values with zeroes. However, you would also
like to keep track of the values that have been converted
so you can distinguish the new zeroes (converted from
missing) from those originally present in the data set.

One method would be to use an ARRAY, a LOOP, plus the
CATT function to create a variable that identifies variable
values that were originally missing.

data no_missing;
length missing $3; â
set with_missing;
array nm(*) _numeric_; ã
do _n_=1 to dim(nm); ä
 missing = catt(missing, nm(_n_) eq .); å
 nm(_n_) + 0; æ
end;
run;

A new character variable named MISSING is to be created using the CATT function. Since the default
length of such variables is 200, a LENGTH statement sets the length to 3 â (the number of numeric
variables in the data set). The LENGTH statement also establishes that MISSING is a character
variable. Otherwise when it is first used later in the data step in the CATT function, it would assumed
to be a numeric variable and result in a LOG message about numeric-to-character conversion. The
ARRAY statement sets up an array named NM ã. You need not specify the variable names since the
text _NUMERIC_ places all numeric variables in the array. A LOOP is used to cycle through the
numeric variables within each observation ä. The N=new variable MISSING will have a 1 for each
missing variable and a 0 for all others å. Missing values are converted to 0 using a SUM statement æ.

6

data set NO_MISSING ... created using a data step + PROC STDIZE

You can also use PROC STDIZE convert missing numeric values to zero, however you still need a data
step if you want to create the new variable MISSING to keep track of variables that were originally
missing and are now zero.

proc format; â
value fix low-high='0' other='1';
run;

data with_missing;
length missing $3; ã
set with_missing;
put @1 (_numeric_) (fix.) @; ä
missing = _file_; å
run;

proc stdize data=with_missing out=no_missing reponly missing=0; æ
run;

The format FIX is created â that will convert all non-missing values (LOW-HIGH) to 0 and missing
values (OTHER) to 1. The LENGTH statement ã is important since the length of _FILE_ is 32,767
and MISSING is created from _FILE_ in a subsequent statement. Formatted values of the numeric
variables are written to the output buffer ä and the contents of that buffer (_FILE_) are placed into
the variable MISSING å. PROC STDIZE æ is then used to replace (REPONLY) missing numeric values
with zeroes (MISSING=0). The data set on the above right shows the variable MISSING that
indicates with a 1 that WEIGHT was missing in the first observation and both HEIGHT and WEIGHT
were missing in the second observation. The WEIGHT of zero in the third observation was in the
original data. Note the "data step only" method shown first on this section produces the same
NO_MISSING data set.

REFERENCES

SAS® 9.4 Language Reference: Concepts, Sixth Edition
https://documentation.sas.com/api/docsets/lrcon/9.4/content/lrcon.pdf

Now _INFILE_ is an Automatic Variable ! So What?
https://www.lexjansen.com/nesug/nesug01/cc/cc4018bw.pdf

More _Infile_ Magic
https://support.sas.com/resources/papers/proceedings/proceedings/sugi28/086-28.pdf

Using _INFILE_, Substr, Translate and TranWrd to Manipulate Strings of Text Within the
Input Buffer
https://www.lexjansen.com/nesug/nesug02/cc/cc014.pdf

ACKNOWLEDGMENTS

Thanks to Howard Schreier who first made me aware of possible uses of the output buffer (the
variable _FILE_) in a SAS-L posting ...
http://listserv.uga.edu/cgi-bin/wa?A2=ind0811B&L=sas-l&P=R15431

Thanks also to Pierre Gagnon who gave me the idea of exchanging data between a variable and the
input buffer (the variable _INFILE_) in a SAS Support Communities posting ...
https://communities.sas.com/message/134104

CONTACT INFORMATION

The author can be contacted using e-mail... Mike Zdeb mike.zdeb@gmail.com

7

