

MARCH 29 - APRIL 1 WASHINGTON, DC

Abstract
 Introduction
 Methods
 Results 1
 Results 2
 Conclusion

This study aims to examine the impact that voluntary participation in online discussion activities has on students' understanding of statistical concepts in an undergraduate statistics course. A study of 90 undergraduate students enrolled in an introductory statistics course was conducted. The Levels of Conceptual Understanding in Statistics (LOCUS) assessment was utilized to measure students' conceptual understanding in statistics. Form 1 of the 23 question Intermediate/Advanced online version of LOCUS was administered as a pre-test at the start of the 16 -week course. Form 2 of the 23 question Intermediate/Advanced online version of LOCUS was utilized as the post-test after completion of the course. A statistical analysis of the difference between pre- and post-test data was completed in SAS® using propensity score matching techniques.

Please use the headings above to navigate through the different sections of the poster

Examining the Impact of Discussion Activities on Student Understanding in Introductory Statistics
Rachael N. Becker
Southern Methodist University

Intro

Motivation:

Literature:

- Focus on discussion boards in online statistics courses
- Encouraging statistical writing and thinking through journals and discussions
- Scaffolded discussions

Research Question

Does voluntary participation in discussion board activities increase learning gains for students in an introductory statistics course?

Example Discussion

- Engage students in a large lecture class
- Create an environment where questions are encouraged

Examining the Impact of Discussion Activities on Student Understanding in Introductory Statistics

Rachael N. Becker
 Southern Methodist University

Data Collection

- $n=90$ undergraduate students in introductory stats
- Online LOCUS Assessments
- Class Activities
- Survey Results

Continuous Variables

- Pretest score on LOCUS Assessment
- Posttest score on LOCUS Assessment
- Grades for Exam 1 to Exam 4
- Grades for Homework 1 to Homework 10 (dropped from model
- Grades for Lab 1 to Lab 14 (dropped from model)
- Grades for Quiz 1 to Quiz 10 (dropped from Categorical Variables
- Academic Program (6 categories as defined by school)
- Gender (2 categories provided as free response to a survey)
- Double Major (3 categories: No, Yes, and Did not answer)
- Academic Level (4 categories: Freshman, Sophomore, Junior, and Senior)

Examining the Impact of Discussion Activities on Student Understanding in Introductory Statistics

Rachael N. Becker
 Southern Methodist University

Using Propensity Scores to Match

- Creating a comparable "control" group
- Utilizes logistic regression
- Matched based on probability of being in the discussion group

```
Logistic Model
    \widehat { l o g i t ~ } = 6 . 1 - 0 . 0 5 ( \text { PreLOCUS } ) + 0 . 0 3 ( \text { Exam 1) +0.03(Exam2) +0.02(Exam3)}
    -0.07(Exam4) - 3.7(PreMajors) - 17.4(Education) + 7.9(Arts)
    - 3.5(Business) + 7.9(Engineering) - 0.7(Gender) - 0.6(SingleMajor)
    -0.1(DoubleMajor ) + 1.0(Freshman) -0.1(Sophomore) -0.8(Junior)
```

Please use the headings above to navigate through the different sections of the poster

Source of Macro Code and Calling Macro

Used the macro found in Fraeman's (2015) A General SAS® Macro to Implement Optimal N:1 Propensity Score Matching Within a Maximum Radius
spsmatch_multi(pat_dsn = prop_score_discussion, pat idvar = ID, pat_psvar $=$ PropensityScore, cnt1_dsn = prop_score_no_discussion, cntl_idvar $=$ ID, cntl psvar = PropensityScore, match_dsn = matched_pairs1 match_ratio= 1 ,
score_diff $=0.10$
);

Examining the Impact of Discussion Activities on Student Understanding in Introductory Statistics

Rachael N. Becker
 Southern Methodist University

Examining the Equivalency Between the Groups

Abstract

Introduction Methods
Results 1
Results 2
Conclusion

Please use the headings above to navigate through the different sections of the poster

Before Matching

- Categorical Variables
- Percentages are unequal
- Females, Pre-Majors, Students with a single major, and Sophomores are over represented
- Continuous variables
- Means between the two groups appear roughly equivalent

Table 1 Frequencies and Means for Variables Before Matching				
	Discussion Group		Non-Discussion Group	
Gender				
Female	21	72.41	29	54.72
Male	8	27.59	24	45.28
Academic Program				
Pre-Majors	27	93.10	44	83.02
Education	1	3.45	0	0
Arts	0	0	1	1.89
Business	1	3.45	1	1.89
Engineering	0	0	1	1.89
Sciences and Humanities	0	0	6	11.32
Double Major				
No	21	72.41	31	58.49
Yes	5	17.24	12	22.64
Did Not Answer	3	10.34	10	18.87
Academic Level				
Freshman	16	55.17	34	64.15
Sophomore	10	34.48	13	24.53
Junior	3	10.34	5	9.43
Senior	0	0	1	1.89
LOCUS Pretest	Mean (SD)	Median	Mean (SD)	Median
	$\begin{gathered} 55.10 \\ (13.30) \end{gathered}$	57	$\begin{gathered} 54.47 \\ (15.67) \end{gathered}$	52
Exam 1	80.86	85	82.55	85
	(14.58)	85	(11.95)	8
Exam 2	$\begin{aligned} & 82.34 \\ & 0.822 \end{aligned}$	84	$\begin{gathered} 82.34 \\ (10.85) \end{gathered}$	80
Exam 3	77.38	80	77.36	80
	(16.73)	so	(14.93)	80
Exam 4	87.86	90	86.06	87
	(10.21)		(9.84)	

After Matching

- Categorical Variables
- Percentages are roughly equal
- A lot of categories and a small matched sample
- Continuous variables
- Means between the two groups appear roughly equivalent, smaller sample size might be an issue

Frequencies and Means for Variables After Matching				
Variables	Discussion Group		Non-Discussion Group	
	Frequency	Percent	Frequency	Percent
Gender				
Female	14	70	12	60
Male	6	30	8	40
Academic Program				
Pre-Majors	19	95	18	90
Education	0	0	0	0
Arts	0	0	1	5
Business	1	5	1	5
Engineering	0	0	0	0
Sciences and Humanities	0	0	0	0
Double Major				
No	13	65	13	65
Yes	4	20	5	25
Did Not Answer	3	15	2	10
Academic Level				
Freshman	14	70	12	60
Sophomore	,	25	5	25
Junior	1	5	3	15
Senior	0	0	0	0
	Mean (SD)	Median	Mean (SD)	Median
LOCUS Pretest	$\begin{aligned} & 54.65 \\ & (14.41) \end{aligned}$	57	$\begin{aligned} & 54.10 \\ & (14.99) \end{aligned}$	50
Exam 1	$\begin{aligned} & 80.50 \\ & (13.95) \end{aligned}$	85	$\begin{aligned} & 78.50 \\ & (13.09) \end{aligned}$	80
Exam 2	$\begin{aligned} & 83.00 \\ & (9.96) \end{aligned}$	84	$\begin{gathered} 81.80 \\ (10.97) \end{gathered}$	80
Exam 3	$\begin{gathered} 78.20 \\ (16.68) \end{gathered}$	80	$\begin{gathered} 79.80 \\ (13.22) \end{gathered}$	80
Exam 4	$\begin{aligned} & 87.00 \\ & (10.44) \end{aligned}$	86.5	$\begin{aligned} & 87.65 \\ & (8.41) \\ & \hline \end{aligned}$	87

Examining the Impact of Discussion Activities on Student Understanding in Introductory Statistics

PROC TTEST

- Hypotheses:
$H_{0}: \mu_{\text {control }}-\mu_{\text {discussion }}=0$
$H_{1}: \mu_{\text {control }}-\mu_{\text {discussion }} \neq 0$
- Equality of Variances:
- Fail to reject null that they are unequal
- Use Pooled method
- T-value (p-value):

$$
t=-1.52(0.1372)
$$

- Conclusion: Fail to reject the null, not a significant difference between groups.

Issues

Rachael N. Becker
 Southern Methodist University

Abstract Introduction Methods Results 1
 Results 2
 Conclusion

Please use the

 headings above to navigate through the different sections of the poster
Limitations

- Small study
- Lack of demographic information
- Hard to define participation threshold

Conclusions

- Voluntary participation in online discussion activities did not significantly increase student learning gains

References

Everson, M. G, \& Garfield, J. (2008). An Innovative Approach to Teaching Online Statistics Courses. Technology Innovations in Statistics Education, 2(1). Retrieved from https://escholarship.org/uc/item/2v6124xr

Fortson, K., Gleason, P., Kopa, E., \& Verbitsky-Savitz, N. (2015). Horseshoes, hand grenades, and treatment effects? Reassessing whether nonexperimental estimators are biased. Economics of Education Review, 44, 100-113. https://doi.org/10.1016/j.econedurev.2014.11.001

Fraeman, K.H. (2015). A General SAS® Macro to Implement Optimal N: 1 Propensity Score Matching Within a Maximum Radius [Paper presentation]. PharmaSUG 2015, Bethesda, MD, United States.

Gant, T. \& Crowland, K. (2017, April 2-5). A practical guide to getting started with propensity scores [Paper presentation]. SAS Global Forum 2017, Orlando, FL, United States.

Sas, M., Bendixen, L. D., Crippen, K. J., \& Saddler, S. (2017). Research and Teaching: Online Collaborative Misconception Mapping Strategy Enhanced Health Science Students' Discussion and Knowledge of Basic Statistical Concepts. Journal of College Science Teaching, 46(6), 88-99.

Shadish, W.R., Cook, T.D., \& Campbell, D.T. (2001). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston: Cengage Learning
Theoret, J. M., \& Luna, A. (2009). Thinking Statistically in Writing: Journals and Discussion Boards in an Introductory Statistics Course. International Journal of Teaching and Learning in Higher Education, 21(1), 57-65.

Tudor, G. E. (2006). Teaching Introductory Statistics Online--Satisfying the Students. Journal of Statistics Education, 14(3)
The LOCUS assessments can be found at https://locus.statisticseducation.org/

SAS
 GLOBAL FORUM
 2020
 USERS PROGRAM

