

SAS GLOBAL EORUN nnnn

MARCH 29 - APRIL 1 WASHINGTON, DC

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. [®] indicates USA registration. Other brand and product names are trademarks of their respective companies.

TAP TO GO BACK TO KIOSK MENU

Abstract

Introduction Methods Results 1 Results 2 Conclusion

Please use the headings above to navigate through the different sections of the poster

This study aims to examine the impact that voluntary participation in online discussion activities has on students' understanding of statistical concepts in an undergraduate statistics course. A study of 90 undergraduate students enrolled in an introductory statistics course was conducted. The Levels of Conceptual Understanding in Statistics (LOCUS) assessment was utilized to measure students' conceptual understanding in statistics. Form 1 of the 23 question Intermediate/Advanced online version of LOCUS was administered as a pre-test at the start of the 16-week course. Form 2 of the 23 question Intermediate/Advanced online version of LOCUS was utilized as the post-test after completion of the course. A statistical analysis of the difference between pre- and post-test data was completed in SAS® using propensity score matching techniques.

Examining the Impact of Discussion Activities on Student Understanding in Introductory Statistics

Rachael N. Becker

Southern Methodist University

Intro

Motivation:

- \bullet
- lacksquareare encouraged

Abstract Introduction

Methods

Results 1

Results 2

Conclusion

Please use the headings above to navigate through the different sections of the poster

Rachael N. Becker Southern Methodist University

Literature:

- Create an environment where questions
- Engage students in a large lecture class Focus on discussion boards in online statistics courses
 - Encouraging statistical writing and thinking through journals and discussions
 - Scaffolded discussions

Example Discussion

	7		
	:		
nean, median, range, etc.) are robust, and why?		You are told that a significance test is significant at the 5% level. From this information, can you determine whether or not It is significant at the 1% level? Explain?!	
	:	I'm confused on this homework question.	
uartile range) asurements; meaning they are much more resistant to outliers.	0		
eviation		No, you can't. Think about a p-value of 0.02. At the 5% significance level you would reject the null, but at the 1% significance level you would fail to reject the null.	
measurements; meaning they are much more easily affected by outliers.	•		
erquartile range?		How can you figure out if it is a two tailed test or one tailed test. Are there specific words you look for in the question to find this out?	
	: 0		
le range, or IOR, is calculated by doing O3-O1, and it's typically where the majority of you	ur	Two tailed is when the symbol used for Ha is \neq	
thin.		Left is <	
		KIGNUS >	

Does voluntary participation in discussion board activities increase learning gains for students in an introductory statistics course?

Abstract Introduction Methods Results 1 Results 2

Conclusion

Please use the headings above to navigate through the different sections of the poster

Data Collection

- Online LOCUS Assessments
- Class Activities
- Survey Results

- Grades for Exam 1 to Exam 4
- (dropped from model
- Grades for Lab 1 to Lab 14 (dropped from model)
- \bullet school)
- a survey)
- \bullet answer)
- Sophomore, Junior, and Senior)

Rachael N. Becker

Southern Methodist University

• n = 90 undergraduate students in introductory stats

Continuous Variables

Pretest score on LOCUS Assessment **Posttest score** on LOCUS Assessment • Grades for Homework 1 to Homework 10

Grades for Quiz 1 to Quiz 10 (dropped from

Categorical Variables

Academic Program (6 categories as defined by

• Gender (2 categories provided as free response to

Double Major (3 categories: No, Yes, and Did not

• Academic Level (4 categories: Freshman,

Question:

Researchers were interested in looking at air quality in different regions of the United States. The following dotplot represents the number of days in a certain month that the air quality was unhealthy for eighteen cities in the Midwest.

- Abstract Introduction Methods Results 1 Results 2 Conclusion
- Please use the headings above to navigate through the different sections of the poster

- Utilizes logistic regression •

Used the macro found in Fraeman's (2015) A General SAS® Macro to Implement Optimal N:1 Propensity Score Matching Within a Maximum Radius

Rachael N. Becker

Southern Methodist University

Using Propensity Scores to Match

Creating a comparable "control" group

• Matched based on probability of being in the discussion group

Logistic Model

 $\widehat{logit} = 6.1 - 0.05(PreLOCUS) + 0.03(Exam1) + 0.03(Exam2) + 0.02(Exam3)$

- -0.07(Exam4) 3.7(PreMajors) 17.4(Education) + 7.9(Arts)

Source of Macro Code and Calling Macro

```
pat idvar = ID,
pat psvar = PropensityScore,
cntl dsn = prop score no discussion,
cntl idvar = ID,
cntl psvar = PropensityScore,
match dsn = matched pairs1,
match ratio= 1,
score diff = 0.10
);
```


Examining the Equivalency Between the Groups

Before Matching

- **Categorical Variables**
 - Percentages are unequal
 - Female
 - major,
- **Continuous variables**
 - equivalent

Table 1 Frequencies and Means for Variables Before Matching

Variables Gender Female Male Academic Program Pre-Majors Education Arts Business Engineering Sciences and Humanities Double Major No Yes Did Not Answer Academic Level Freshman Sophomore Junior Senior

LOCUS Pretest

- Exam 1
- Exam 2
- Exam 3
- Exam 4

Abstract Introduction Methods Results 1 Results 2 Conclusion

Please use the headings above to navigate through the different sections of the poster

Rachael N. Becker

Southern Methodist University

A	Atter	Ν
•	Cate	ση

Continuous variables

Table 2

z unequal
es, Pre-Majors, Students with a single
and Sophomores are over represented

• Means between the two groups appear roughly

Jejt	Discussio	n Group	Non-Discuss	Non-Discussion Group		
	Frequency	Percent	Frequency	Percent		
	1 2		1 2			
	21	72.41	29	54.72		
	8	27.59	24	45.28		
	27	93.10	44	83.02		
	1	3.45	0	0		
	0	0	1	1.89		
	1	3.45	1	1.89		
	0	0	1	1.89		
	0	0	6	11.32		
	21	72.41	31	58.49		
	5	17.24	12	22.64		
	3	10.34	10	18.87		
	16	55.17	34	64.15		
	10	34.48	13	24.53		
	3	10.34	5	9.43		
	0	0	1	1.89		
	Mean (SD)	Median	Mean (SD)	Median		
	55.10	57	54.47	52		
	(13.30)	51	(15.67)	52		
	80.86	85	82.55	85		
	(14.58)	00	(11.95)	00		
	82.34	84	82.34	80		
	(9.83)		(10.85)			
	11.38	80	(14.02)	80		
	(10.73)		(14.93)			
	δ/.80 (10.21)	90	80.00	87		
	(10.21)		(9.04)			

	Discussio	n Group	Non-Discussion Group		
Variables	Frequency	Percent	Frequency	Percent	
Gender					
Female	14	70	12	60	
Male	6	30	8	40	
Academic Program					
Pre-Majors	19	95	18	90	
Education	0	0	0	0	
Arts	0	0	1	5	
Business	1	5	1	5	
Engineering	0	0	0	0	
Sciences and Humanities	0	0	0	0	
Double Major					
No	13	65	13	65	
Yes	4	20	5	25	
Did Not Answer	3	15	2	10	
Academic Level					
Freshman	14	70	12	60	
Sophomore	5	25	5	25	
Junior	1	5	3	15	
Senior	0	0	0	0	
	Mean (SD)	Median	Mean (SD)	Median	
LOCUS Pretest	54.65 (14.41)	57	54.10 (14.99)	50	
Exam 1	80.50 (13.95)	85	78.50 (13.09)	80	
Exam 2	83.00 (9.96)	84	81.80 (10.97)	80	
Exam 3	78.20 (16.68)	80	79.80 (13.22)	80	
Exam 4	87.00 (10.44)	86.5	87.65 (8.41)	87	

/latching

Categorical Variables

• Percentages are roughly equal

• A lot of categories and a small matched sample

• Means between the two groups appear roughly equivalent, smaller sample size might be an issue

Erranopoios and Maans for Variables After Matching

Abstract Introduction Methods Results 1 Results 2 Conclusion

Please use the headings above to navigate through the different sections of the poster

Dis2more N 20 20 Diff (1-2)

Dis2more	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
0		2.4500	- <mark>2.4831</mark>	7.3831	10.5405	8.0160	15.3952
1		7.3000	2.7877	11.8123	9.6415	7.3322	14.0821
Diff (1-2)	Pooled	-4.8500	-11.3164	1.6164	10.1010	8.2550	13.0180
Diff (1-2)	Satterthwaite	-4.8500	-11.3180	1.6180			

Rachael N. Becker

Southern Methodist University

PROC TTEST DATA = WORK.FINAL; CLASS Dis2more; VAR diffLOCUS;

RUN;

The TTEST Procedure

Variable: DiffLOCUS

Mean	Std Dev	Std Err	Minimum	Maximum
2.4500	10.5405	2.3569	-26.0000	17.0000
7.3000	9.6415	2.1559	-9.0000	26.0000
4.8500	10.1010	3.1942		

	Variances	DF	t Value	Pr > t
	Equal	38	-1.52	0.1372
vaite	Unequal	37.702	-1.52	0.1373

Equality of Variances						
d	Num DF Den DF FValue Pr > F					
1 F	19	19	1.20	0.7015		

PROC TTEST

- Hypotheses:
 - $H_0: \mu_{control} \mu_{discussion} = 0$
 - $H_1: \mu_{control} \mu_{discussion} \neq 0$
- Equality of Variances:
 - Fail to reject null that they are unequal
 - Use Pooled method
- T-value (*p*-value):
 - t = -1.52 (0.1372)
- Conclusion: Fail to reject the null, not a significant difference between groups.

Abstract Introduction Methods Results 1 Results 2 Conclusion

Please use the headings above to navigate through the different sections of the poster

- Small study
- Lack of demographic information

References

Everson, M. G, & Garfield, J. (2008). An Innovative Approach to Teaching Online Statistics Courses. *Technology Innovations in Statistics Education*, 2(1). Retrieved from https://escholarship.org/uc/item/2v6124xr

Fortson, K., Gleason, P., Kopa, E., & Verbitsky-Savitz, N. (2015). Horseshoes, hand grenades, and treatment effects? Reassessing whether nonexperimental estimators are biased. Economics of Education Review, 44, 100-113. https://doi.org/10.1016/j.econedurev.2014.11.001

Fraeman, K.H. (2015). A General SAS® Macro to Implement Optimal N:1 Propensity Score Matching Within a Maximum Radius [Paper presentation]. PharmaSUG 2015, Bethesda, MD, United States.

United States.

Sas, M., Bendixen, L. D., Crippen, K. J., & Saddler, S. (2017). Research and Teaching: Online Collaborative Misconception Mapping Strategy Enhanced Health Science Students' Discussion and Knowledge of Basic Statistical Concepts. *Journal of College Science Teaching*, 46(6), 88–99.

Shadish, W.R., Cook, T.D., & Campbell, D.T. (2001). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston: Cengage Learning.

Theoret, J. M., & Luna, A. (2009). Thinking Statistically in Writing: Journals and Discussion Boards in an Introductory Statistics Course. International Journal of *Teaching and Learning in Higher Education*, 21(1), 57–65.

Tudor, G. E. (2006). Teaching Introductory Statistics Online--Satisfying the Students. *Journal of Statistics Education*, 14(3).

The LOCUS assessments can be found at <u>https://locus.statisticseducation.org/</u>

Rachael N. Becker

Southern Methodist University

Limitations

• Hard to define participation threshold

Gant, T. & Crowland, K. (2017, April 2-5). A practical guide to getting started with propensity scores [Paper presentation]. SAS Global Forum 2017, Orlando, FL,

Voluntary participation in online discussion activities did not significantly increase student learning gains

SAS® GLOBAL **FORUM** 2020

USERS PROGRAM

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. [®] indicates USA registration. Other brand and product names are trademarks of their respective companies.

