

1

Paper 5081-2020

Building an Internal Application Using the SAS® Stored Process
Web Application

Mara Werner, Department of Health and Human Services

ABSTRACT
Using the SAS Stored Process Web Application and SAS® prompts you can take existing SAS
code and modify it to accommodate different variations of your most common requests.
You can use a custom HTML front end to provide an intuitive, modern-looking user
interface, ODS PDF to present a summary of your results, ODS Excel for supporting data,
and you can deliver it all by email. Your customers will love getting results on-demand and
you’ll love that they can fish for themselves, freeing you from repetitive queries and
allowing you to focus on more interesting and productive work.

INTRODUCTION

This paper shows step-by-step how to
set up an internal web application that
can provide data on-demand to your
organization using SAS Enterprise
Guide, the SAS Stored Process Web
Application, and an SMTP Mail Server.

This paper will guide you as you build
an example web application called
“Population Trend by State”. When a
user selects a state, it gets passed to
SAS as a parameter and is used in
your code to filter data and make a
chart. The data is exported to Excel
and the chart is embedded into a PDF.
Both files are attached to an email and
delivered back to the user.

The dataset referenced in the sample code is SASHELP.US_DATA (available in SAS 9.4 and
higher). The screen shots are from SAS Enterprise Guide 8.2.

STEP 1: WRITE THE SAS CODE
The heart of the web application is SAS and SQL code to create a table of population counts
for a state, transpose the table from wide to long, and then make a trend chart.

For the final application you will use macro variables to parameterize the code so it will run
for any state in the United States. But first it is helpful to write everything out fully for an
example and confirm that it works as expected. Among other things, the dataset
SASHELP.US_DATA contains state names and population counts for several years. Select
these variables and filter for the District of Columbia:

2

PROC SQL;
 create table state_pop as
 select statename
 , population_1970
 , population_1980
 , population_1990
 , population_2000
 , population_2010
 from sashelp.us_data
 where Statename = 'District of Columbia'
 ;QUIT;

Figure 1. ‘State_pop’ Table for District of Columbia

To create a trend chart from the ‘state_pop’ data, the table needs to be long rather than
wide. Using the TRANSPOSE procedure allows you reshape the dataset:
 PROC TRANSPOSE data=state_pop out=state_pop_transpose;
 by statename;
 RUN;

Follow this up with a data step to clean up the variable names:
 DATA state_pop_transpose2;
 retain statename year population;
 set state_pop_transpose (rename=(col1=population));
 year=substr(_label_,1,4);
 drop _name_ _label_;
 RUN;

Figure 2. ‘State_pop_transpose2’ Table for the District of Columbia

STEP 2: SUBSTITUTE MACRO VARIABLE FOR TEXT

Now that the code works for a single state, you can substitute a macro variable for the state
reference. This adds the flexibility to run your code for any state a user is interested in.

3

 %let state = District of Columbia;

 PROC SQL;
 create table state_pop as
 select statename
 , population_1970
 , population_1980
 , population_1990
 , population_2000
 , population_2010
 from sashelp.us_data
 where statename = "&state"
 ;QUIT;

Update the rest of the code in the same way. Anywhere you see ‘District of Columbia’,
change it to ‘&state’.

Note the double quotes when the text contains a macro variable reference. Often in SAS
the double and single quotes are interchangeable, but here the double quotes are
necessary. SAS will not resolve a macro variable within single quotes.

It is also possible to derive the state name from two letter state postal code. You may like
this better because testing the code goes faster when you have less to type. In that case,
you would first define a macro variable (‘st’) to take the two-letter state code and then
transform it with the STNAMEL function to define the macro variable ‘state’:
 %let st = DC;

 %let state = %sysfunc(stnamel(&st));

STEP 3: OUTPUT RESULTS TO PDF
In this sample application, the dataset is small and you’ll get results in the browser within
moments. However, your real-world application may include computations that take longer
to run, and your users may prefer a portable copy of the results. For these reasons, you
may want to save your chart in a PDF document.

Figure 3. PDF Results for “Population Trend by State”

4

UPLOAD AN IMAGE
The header logo in this example is a screen shot from the SAS Global Forum 2020 website.
You can upload an image from your computer to a server location on SASEG using the ‘Copy
Files’ task. If your image isn’t the right size, the best practice is to adjust this outside of
SAS and then copy the file in again. It may require some trial and error. Some images
appear blurry in the PDF, if this happens to you consider opening a ticket with SAS Support.

Figure 4. Copy Files Task to Upload an Image.

CREATE A TEMPORARY FILE PATH
To create a PDF in SAS, you need to specify a location to save the file. If there is a network
location that is accessible from the SAS Web Application Server and your users can access
it, you can save your PDF there. If not, use the following code to create a temporary file.
Then save the file path to a macro variable so you can reference it later when you add this
file as an email attachment:

 /* create a temporary file for the PDF called ‘PDFtmp’ and save the
 path to the macro variable ‘PDFpath’ */
 filename pdftmp temp;
 %let pdfpath=%sysfunc(pathname(pdftmp));
 %put &=pdfpath;

WRITE TO PDF

ODS PDF is like many of the other ODS calls – there is an outer wrapper and then code
inside. The beginning of the wrapper defines the name of the PDF, a style, and a location to
save the file.

5

To use the temporary file path that you just created, reference the “pdftmp” fileref. In the
beginning of the ODS PDF wrapper you can also specify other parameters, like turning off
automatic bookmarks or printing the date and page numbers in the PDF header. You can
also define an ‘ODS escapechar’. Defining an escape character is necessary for PDFs that
will have a header logo or other text formatting. This example uses a caret (^) as the
escape character, but you can use any symbol that does not show up for other reasons in
your code. The last line is the end of the wrapper, closing the PDF:

 /*start a pdf document for the results*/
 ODS PDF (id=emailpdf)
 style=htmlblue
 file= pdftmp
 bookmarklist=none;

 options nodate nonumber;

 ods escapechar='^';

 … body code here…

 /*close pdf destination to finish document*/
 ODS PDF(emailpdf) close;

Inside the wrapper, you’ll put all the code that tells SAS what to include in your PDF
document. For this example, you’ll include a header logo, header text, a title, and a chart.

Header Logo

One simple way to insert a header logo is using the preimage style inside an ODS TEXT
statement. Use the escapechar (^) to indicate that you are about to give some instructions
and then ‘S’ to indicate that those instructions are style-related. The preimage style
attribute allows you to specify the file path for the logo image:
 /* Add a document header/banner */
 ODS text= "^S={preimage='/…filepath…/SGF20_logo.png'}";

Header Text

To write header text, use ODS TEXT again. Start each line with the escape character. This
time, instead of the preimage style, you can specify a font size and justification for the text.
The text is inside double quotes (instead of single quotes) so that the macro variables will
resolve.
 /* Add header notes */
 ODS TEXT = "^S={font_size=8PT Just=L} &State State Population";
 ODS TEXT = "^S={font_size=8PT Just=L} Report run on: &today";
 ODS TEXT = "^S={font_size=8PT Just=L} Page ^{thispage} of ^{lastpage}";

To include the run-date in the report, you can define a macro variable called ‘today’ using
the TODAY function in SAS. This macro definition goes at the top of your code so that it will
be available when you call it from the PDF. The TODAY function produces a date in the SAS
format – that is the number of days between January 1, 1960 and today. Before including it
in your report, you’ll want to choose a more readable format, like worddate:
 %let today = %sysfunc(today(), worddate);

If your report has multiple pages, you may want to include a page count in the header text.
ODS PDF will automatically generate variable references for each page of your document.
You can reference those using ^{thispage} and ^{lastpage}.

6

Title

To make a title for your graph, use ODS TEXT with a bigger font size and justified center:
 /* Write a Title */

ODS TEXT= "^S={font_size=18pt just=C font_weight=bold}^2n&State Population
by Year^2n";

You can use the escape character to insert line breaks before and after the title. ‘^n’ is the
code for one line break. ‘^2n’ means two line breaks.

Chart

To print the graph inside the PDF use the SGPLOT procedure. This will make a very large
square chart. If you prefer something smaller or with different dimensions, you can use the
ODS graphics options to specify width and height:
 ODS graphics on / width=5in height=3in;

 PROC SGPLOT data = state_pop_transpose2;
 title1 "&state Population by Year";
 footnote justify=left italic 'Source: SASHELP.US_DATA';
 vbar year / response=population;
 xaxis label = 'Year';
 yaxis display=(nolabel);
 RUN;

Once you have code for everything you want in your PDF, remember to close the PDF
destination to complete the document:
 /*close pdf destination to finish document*/
 ODS PDF(emailpdf) close;

STEP 4: OUTPUT RESULTS TO EXCEL
Printing a chart to PDF is great, but some people want the actual numbers. For the
numbers people, having the data in Excel will be easier. You can create an Excel workbook
using ODS EXCEL. You can even add an extra tab with methodology notes – like the
analysis date, analyst name, and the query code using the EXPORT procedure.

Figure 5. Excel Book with Two Sheets Containing Data and Notes

7

CREATE A TEMPORARY FILE PATH
Just like you did for the PDF, create a temporary file and save the file path to a macro
variable so that you can reference it later. Here the fileref is ‘exceltmp’ and the macro
variable containing the file path is ‘excelpath’:

 /* create a temporary file for the PDF called ‘Exceltmp’ and save
 the path to the macro variable ‘Excelpath’ */
 filename exceltmp temp;
 %let excelpath=%sysfunc(pathname(exceltmp));
 %put &=excelpath;

WRITE TO EXCEL

Before writing to ODS EXCEL, reset the title and footnote statements:
 title; footnote;

Like ODS PDF, ODS EXCEL uses a wrapper to open and close the destination. In the
opening statement, specify the temporary file location, a style, and name the first tab. The
body of the ODS EXCEL statement here is the PRINT procedure. Once you have finished
writing to Excel, remember to close the ODS EXCEL destination:
 /*send the data to excel in a way that keeps the formatting*/

 ODS EXCEL file="&excelpath..xlsx" style=statistical
 options(sheet_name="Trend");

 PROC PRINT data=state_pop_transpose2 noobs label;
 RUN; QUIT;

 ODS EXCEL CLOSE;

To create a simple notes tab, start by writing the text into a SAS dataset and then use the
EXPORT procedure to add that text as a new tab in the same Excel workbook you just
created. Here you are using the cards statement and defining ‘*’ as the delimiter for a new
row. Note that there are two variables, ‘notesprep’ and ‘notes’. Initially you write the raw
text to ‘notesprep’, then you create a new variable called ‘notes’ and use the RESOLVE
function to resolve the macro variables. Because the text contains special characters, use
the QUOTE and DEQUOTE functions around the RESOLVE function. Once you have created
‘notes’, you can drop ‘notesprep’:
 DATA Notes (drop=notesprep);
 infile cards delimiter='*';
 input notesprep :$100.;
 Notes=DEQUOTE(RESOLVE(QUOTE(Notesprep)));
 cards;
 Prepared for SAS Global Forum 2020: Population Trends for &state
 Prepared on: &today *
 Data Source: SASHELP.US_DATA *
 *
 Query: *
 create table state_pop as*
 select statename, population_1970, population_1980*
 , population_1990, population_2000, population_2010*
 from sashelp.us_data*
 where Statename = "&state"*
 ;RUN;

8

To add the notes tab to your Excel book, use PROC EXPORT to write the contents of the
notes dataset to your Excel workbook:
 PROC EXPORT data= notes
 outfile="&excelpath"
 dbms=xlsx
 replace;
 sheet = 'Notes'
 ;QUIT;

STEP 5: SEND RESULTS BY EMAIL
Some SAS installations include an SMTP mail server that is available to the SAS Web
Application Server. If yours does, you have the option to send the PDF and Excel workbook
directly to the user. For a web application that takes some time to run, this allows the user
to request a report and move on to other things. When the report is ready, it will show up
in their email inbox. If your installation does not include the mail server, but there is a
common storage location that all your users can access, you could have SAS save files there
instead of the temporary locations shown in this paper.

Figure 6. Email with PDF and Excel Attachments

When your application is running on the web, you can have users enter their own email
address. As a placeholder while you are testing your code, define a macro variable named
‘email’ with your email address:

 %let email = your_email@department.gov;

The code to send an email through SAS starts by defining a temporary file with a fileref
(‘em’) so that you can reference it later. Within this fileref definition, you can specify that
this will be an email, the to/from addresses, you can name any attachments and specify the
filepath and type, and you can write the subject line. As before, any text strings that
include macro variable references are in double quotes.

Here you are using the option to write in a ‘from’ address. This will make the email appear
to be from you instead of the actual sender which is a SAS server. While the deception may
give you pause, this does make it easier for users to find a contact if they have questions.
They can hit reply and their email will go to a monitored box rather than off into the ether.

Here is the filename statement for your email:

9

 /* Generate email*/
 filename em email
 to="&email"
 from="Admin <your_email@department.gov>"
 attach=("&pdfpath" name="trendchart"
 content_type="application/pdf" ext="pdf")
 attach=("&excelpath..xlsx" name="TrendData"
 content_type="application/excel" ext="xlsx")
 subject="State Population Trend for &state";

To trigger the email, call your fileref from a DATA _NULL_ statement. Here you can also
write body text for the email. In this example, you indicate that the State population trends
are attached:

 /* Call the temporary email file and add body text */
 DATA _null_;

 file em;

 put 'Your state population Trend is attached';

 put /;

 RUN;

STEP 6: CREATE THE MACRO VARIABLES AS PROMPTS IN
ENTERPRISE GUIDE
Creating prompts in SAS Enterprise Guide will allow you to test your code as a stored
process and to run it directly from the Stored Process Web Application without a custom
front end. If you do make a custom front end, you’ll use that to pass parameters back to
SAS instead of the prompting framework. To create prompts in Enterprise Guide, right-click
in the code window of the program, select “Properties”, select “Prompts”, “Prompt
Manager…”, and then “Add…”.

Figure 7. The Prompt Manager in Enterprise Guide

When you create your prompt, the name should be the same as the macro variable it is
replacing, in this example ‘state’. The displayed text is like a label, it does not need to
conform to SAS naming conventions. The description will appear under the name, this is an
opportunity to give the user more instructions about what to enter. Because the ‘state’
macro variable needs to be defined for your code to run, check the box saying that it
‘requires a non-blank value’.

10

Figure 8. The ‘Add New Prompt’ Wizard, First Tab

On the second tab of that same window, you can define the prompt type and values. For
this example a simple text input box would be sufficient, but it is also possible to help the
users out and provide all the state options in a drop-down menu. This is an example of
error prevention, reducing opportunities for someone to get unexpected results from, say,
mistyping a state name.

The prompt type defaults to text, leave this, and then specify that the user selects a single
value from a static list. On the bottom half of the screen, select ‘Get Values’ to import a list
of state names from the SASHELP.US_STATES dataset.

Figure 9. ‘Add New Prompt’ Wizard, Second Tab

In the ‘Get Values’ wizard, browse for SASHELP.US_DATA. On the bottom left, select the
‘Get values’ button to pull in a distinct list of states. The double blue arrow with the ‘+’ will

11

move all those state names into the ‘Selected values’ panel. Selecting ‘OK’ will save this
and close the wizard. Back in the ‘Add New Prompt’ window, select ‘OK’ to create your
prompt and close the window.

Figure 10. ‘Get Values’ Wizard

Add a second prompt to the code file for ‘email’.

Figure 11. 'Add New Prompt' Wizard for Email

Now that ‘state’ and ‘email’ are defined as prompts, add them to your code.

12

Figure 12. Prompt Manager

Figure 13. Add Prompts to Project

The values for the macro variables ‘state’ and ‘email’ will now be supplied by the user via
the prompts, so make sure to delete the hard coded %let statements from your code:
 %let state = District of Columbia;
 %let email = your_email@department.gov;

STEP 7: TURN THE CODE INTO A SAS STORED PROCESS
Turning the code into a stored process allows users who don’t have SAS installed on their
computer to access this code from the web. From Enterprise Guide, right-click on the code

1

2

3

13

node and select “Create Stored Process” to launch the wizard. If your SAS installation does
not include a Stored Process Server, this menu option may be grayed out.

Figure 14. The Right-Click Menu to Create a Stored Process

NAME AND DESCRIPTION

The first screen in the stored process wizard is ‘Name and Description’. In addition to the
name and description, you choose a folder location where you will save your stored process.
The location defaults to ‘My Folder’ which is convenient for testing and personal use. For a
wider audience, chose a server location that other users can also access. If you do not have
metadata permissions to save in a common folder you may need admin support. Note: in
some server environments, spaces in the stored process name can be a challenge, but SAS
itself does not impose any restrictions.

Figure 15. The ‘Name and Description’ Screen in the ‘Create New Stored Process’ Wizard

14

SAS CODE

The second screen shows your SAS code. Avoid the temptation to edit your code on this
screen as there is no version control. On the bottom there is a menu to ‘Include code for’,
make sure the first two options are checked.

Figure 16. The ‘SAS Code’ Screen in the ‘Create New Stored Process’ Wizard

EXECUTION OPTIONS

On the execution options screen, select a server from the dropdown menu. You have the
option to chose whether the stored process should run on the stored process server or the
workspace server. In most cases, the web application will run on the stored process server,
but choosing ‘Default server’ will allow it to run on either. For source code location, select
the first radio button to store the code in metadata. In result capabilities, make sure both
check boxes are marked. ‘Stream’ allows your trend chart to show in the browser window
and ‘package’ allows SAS to create the PDF and Excel workbook.

Figure 17. The ‘Execution Options’ Screen in the ‘Create New Stored Process’ Wizard

15

PROMPTS

On the prompt screen, make sure that both the ‘state’ and ‘email’ prompts are selected.

Figure 18. The ‘Prompts’ Screen in the ‘Create New Stored Process’ Wizard

There are a couple more screens in the wizard, but now the ‘Finish’ button is available you
can skip the rest of them. Click ‘Finish’ to create your stored process.

MODIFING A STORED PROCESS

While it is possible to modify the code in the ‘SAS Code’ screen of the stored process wizard,
it’s risky. There is no backup and no version control on stored processes. For this reason,
it is better practice to do all your editing in the SAS code node. After you make changes in
the code node, return to the process flow, right click the stored process icon, select ‘Modify’,
and then “Use EG Code”.

Figure 19. Right-Click Menu on a Stored Process and the ‘Compare SAS Code Files’ Window

STEP 8: USING THE SAS STORED PROCESS WEB APPLICATION
Once the stored process is created, if you have the server installation of SAS, it can be
accessed from the web using the SAS Stored Process Web Application. The default URL

16

is://yourserver.com:8080/SASStoredProcess/do; yours may look different. This will take
you to a log in screen, and then to a home page.

Figure 20. Login Screen, Welcome Page, and Folder Tree for the SAS Stored Process Web
Application

Clicking on the name of the stored process ‘Pop_Graph_By_State’ in the browser opens up a
new window with a form to fill in values for the ‘State’ and ‘Email’ prompts.

Figure 21. The Default Prompt Page for a Stored Process

STEP 9: DESIGN A CUSTOM FRONT END
The default prompt page is functional, but it’s not pretty. You can improve the user
experience of your web application with a custom html front end.

17

Figure 22. Example of a Custom Front End for a Stored Process

The custom front end shown is written with HTML and the Bootstrap CSS framework. The
main component is an HTML form which collects information and stores it as name-value
pairs. Using the ‘action’ attribute, you tell the webpage to send these name-value pairs to
your stored process, which will read them in as macro variables. I provide programs for this
example front end, but a discussion of the code is outside the scope of this paper. Suffice
to say that even without any background in web programming, it is still possible to make a
clean looking user interface for your application.

To take advantage of amenities like syntax highlighting, debugging, and auto-completion,
you may want to write the web code in an HTML editor rather than SAS. Once you have all
the web code written – import it into a SAS dataset (in this example, ‘frontend_code’) and
save the file in the same server location as your stored process.

To call your custom web code, make a second stored process. The second stored process
sends all the html code you saved in ‘frontend_code’ to the ‘_webout’ destination. The
browser will receive the web code from SAS and render your user interface:
 %stpbegin;
 %stpend;

 *ProcessBody;
 DATA _null_;
 set trend.frontend_code;
 file _webout;
 put line;
 RUN;

18

CONCLUSION
You have walked through all the steps to make a simple web application. Using this
process, you can give anyone in your organization access to summarized data or analytics
on-demand in a format that is easy to understand. You can take yourself out of the
business of mundane requests and use that time to keep your brain active with more
stimulating projects, or build more applications! I hope you find as I have, that this is a fun
and interesting challenge, and an opportunity to amplify the reach of your work using SAS.

ACKNOWLEDGMENTS
Many thanks to Scott Hutchison who built the first internal web application with SAS for our
organization and showed the rest of us the way. You can read his SGF paper here:
https://support.sas.com/resources/papers/proceedings14/1488-2014.pdf

RECOMMENDED READING
 SAS® 9.4 Stored Processes: Developers Guide, Third Edition

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Mara Werner
Department of Health and Human Services, Office of Inspector General
Mara.Werner@oig.hhs.gov

