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ABSTRACT  

The management of financial losses is crucial as banks are required to set aside regulatory 

capital to absorb unexpected losses. Banks also need to calculate economic capital to ensure 

solvency according to their own risk profile. The main financial risks faced by banks are 

market, credit, and operational risk. Operational risk, the focus here, includes fraud, 

improper business practices, and so on. Barings Bank’s loss of over USD1 billion due to 

rogue trading activities is an extreme example of such risk. In order to calculate capital to 

withstand this risk, the aggregate distribution of expected losses for the next year is 

determined. The extreme quantiles of this distribution are of specific interest. For instance, 

a bank should hold capital to survive a one-in-a-thousand-year aggregate operational loss 

(the 99.9% VaR of the distribution). Companies often have only limited internal data 

available to accurately model the distribution and therefore use external sources and 

scenario assessments to supplement their data. Combining the internal data of a given bank 

with external data is challenging, as such data is collected from differently sized institutions 

in various regions. This might impact the estimated loss distribution. In this paper, we use 

SAS® OpRisk Global Data to show how external and internal data can be integrated for use 

in the capital modeling process. We also suggest measures to challenge experts to adjust 

scenario assessments based on historical data. 

 

INTRODUCTION  

Financial institutions use statistical models to determine their required capital. If they are 

able to model or predict the amount of the total losses they could potentially suffer in the 

future, and assign a probability to these losses, they can determine the amount of capital to 

hold in order to ensure that they can withstand that loss at a certain confidence level. For 

operational risk capital, this is done by calculating the 99.9% Value-at-Risk (VaR) of the 

aggregate operational loss distribution. 

A popular method for constructing the annual aggregate loss distribution is the loss 

distribution approach (LDA). Companies and regulators alike rely heavily on the distribution 

function of expected losses, and it is therefore crucial that it is modeled as accurately as 

possible. The tail of the distribution is most important, as we are ultimately interested in the 

extreme quantiles of the distribution in order to calculate capital. When specifically dealing 

with operational losses, Basel II prescribes that a bank should hold sufficient capital to 

protect them against a one-in-a-thousand year aggregate loss, i.e. the 99.9% Value-at-Risk 

of the aggregate operational loss distribution. Ideally, should the bank have a thousand 

years of historical data, the bank can merely determine the largest loss it had experienced 

during this period of time to determine the capital requirement. However, in reality, most 

banks only have about ten years of available loss data.  To address this shortcoming, the 

Basel Committee on Banking Supervision (2011) suggests that loss data from external 

sources and scenario data can be used by banks in addition to their own internal loss data 

and controls. For example, external loss data can be compared with internal loss data or it 
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can be used to explore possible weaknesses in the control environment or consider 

previously unidentified risk exposures. However, the process of incorporating data from 

external sources requires due consideration because of biases in the external data. Wilson 

(2007) outline three types of biases inherent in external data, namely the reporting bias, 

control bias and scale bias. In this paper we address the reporting bias that occurs when 

institutions use different thresholds to report losses to an external database, and the scale 

bias that occurs when data is collected from institutions with a different size. Control bias 

refers to losses that come from institutions with different control mechanisms, and although 

not specifically addressed in this paper due to limited data on this aspect, it is an area that 

we have identified for potential further research. 

We propose the use of SAS® OpRisk Global Data (“SAS data” or “SAS dataset”) to inform 

the decisions of an individual bank in determining their own operational risk capital. The 

purpose of our study is to apply a scaling methodology using the SAS data to ensure it is 

appropriate to the bank when used in their capital modelling process. We show how the 

external data may potentially be used to challenge business experts to adjust their scenario 

assessments using the realism of the observed historical data. 

 

METHODOLOGY 

AGGREGATE LOSS DISTRIBUTION 

The loss distribution approach (LDA) is a popular method used by banks and other financial 

institutions to determine their operational risk capital. This approach is widely described in 

the literature (see for example Aue and Kalkbrener (2007), Benito and Lopez-Martin (2018), 

Lambrigger et al. (2007) and De Jongh et al. (2015)). Under this approach, an organization 

can estimate the probability distributions of both the severity and the one-year-event 

frequency using historical data. Having these two distributions, the organization can then 

compute the probability distribution of the aggregate operational losses (Benito & Lopez-

Martin, 2018). The methodology to construct the aggregate loss distribution is briefly 

described below. 

Typically the Poisson distribution is used to model the annual frequency or number of 
operational loss events over one year.  𝑁 is a random variable representing the annual 

number of loss events, i.e. 𝑁~𝑃𝑜𝑖(𝜆). The random variables 𝑥1, … , 𝑥𝑁 denote the loss 

severities of the loss events and we assume these loss severities are independently and 
identically distributed. The annual aggregate loss is then given by 𝐴 = ∑ 𝑥𝑛

𝑁
𝑛=1  and the 

distribution of 𝐴 is the aggregate loss distribution, which is a compound Poisson distribution 

that depends on 𝜆 and the true severity distribution of 𝑥1, … , 𝑥𝑁, denoted by 𝐹. In order to 

determine the aggregate distribution, estimates for 𝜆, the frequency, and 𝐹, the severity 

distribution are needed. We therefore have to decide on a suitable model for 𝐹, which can 

be a class of distributions 𝑓(𝑥, 𝜃). The parameters of 𝜆 and 𝜃 also needs to be estimated. As 

previously mentioned, the the 99.9% Value-at-Risk of the aggregate operational loss 

distribution is of interest for capital estimation, but in most cases it is difficult to do this 

analytically, and Monte Carlo simulation is often used.  

Other numerical methods can also be used. For our own risk capital estimations calculated 

in this paper, we make use of the single-loss approximation (SLA) method suggested by 
Böcker & Klüppelberg (2005), that we summarize as follows: if 𝐹 is the true underlying 

severity distribution function of the individual losses, and 𝜆 is the true annual frequency, 

then the 100(1 − 𝛾)% VaR of the compound loss distribution may be approximated by 𝐹−1(1 −
𝛾/𝜆).  

The focus of our paper is on the estimation of the severity distribution 𝑓(𝑥, 𝜃) using the 

internal data of an individual bank, but also using data from an external database. We 
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therefore do not expand on the benefits or limitations of the aggregation approaches 

mentioned above. 

 

SAS® OPRISK GLOBAL DATA  

It is practice in operational risk management to use different data sources for modelling 

future losses. Banks have typically been collecting their own loss data for a period of time.  

In addition, certain external loss databases exist, including publicly available data, insurance 

data and consortium data. The Basel Accord (2011) also suggests the use of scenario 

assessments to improve severity distribution estimation. 

For our investigation, we use SAS® OpRisk Global Data. The SAS® OpRisk Global Data is a 

comprehensive and accurate repository of information on publicly reported operational 

losses in excess of USD100 000, containing more than 32 000 events across all industries 

worldwide. For each publicly available operational loss, the SAS dataset provides the loss 

amount together with some other information about the company where the loss occurred. 

This include, among other, a description of the loss event, as well as the region, the size of 

assets and other information associated with each loss.  

In our study we have only included losses incurred in the financial industry as it is aimed at 

decision-making at a bank. We have also only included losses above USD 1 million and we 

therefore had 10,935 available data points. We discuss the distribution of the data in more 

detail under the heading “Explanatory variables”. 

 

ALLOWING FOR REPORTING BIAS 

The SAS® OpRisk Global Data contains information obtained from several online 

information providers and other publications. A team of seasoned SAS operational risk 

research analysts maintain the database in accordance with strict data quality standards 

and review it periodically in order to update it and to ensure accuracy and completeness. 

Ganegoda & Evans (2012) argues that most external databases, but especially those 

maintained by vendors collecting publicly reported losses, suffer from reporting bias. Wilson 

(2007) explains that larger losses (and also those associated with larger firms) are more 

likely to be reported in the media due to factors such as the size and nature of the loss. This 

is due to the fact that not all operational losses are reported on public platforms and this is 

especially true for smaller losses. As a result, public databases may contain a 

disproportionately high number of large losses, and one should make allowance for this bias 

in fitting a statistical model, or else the tail of the distribution will be overestimated. 

Ganegoda & Evans (2012) draws on a method first introduced by De Fontnouvelle et al. 

(2006) to assign a weight to each loss in the external database. This means that smaller 

losses will carry a greater weight and large losses will carry a smaller weight. We briefly 

explain their methodology below. 

They firstly assume that a (log) loss 𝑦𝑖 is only reported in the public domain if it exceeds a 

certain truncation or observation point, 𝑡𝑖. This truncation point 𝑡𝑖 is a stochastic variable 

and should not be confused with the threshold at which losses are captured in the database, 

being USD100 000 in the case of the SAS database. To explain this, if a loss is greater than 

the unobserved truncation point, but lower than the USD100 000 threshold, the research 

analyst responsible for compiling the database will observe the loss, but not include it in the 

database. On the other hand, if the unobserved truncation point is higher than the log 

USD100 000 threshold, the analyst will not know about the loss, and it will for this reason 

not be included in the database. Therefore, only losses greater than both 𝑡𝑖  and USD100 000 

will be included in the database. 
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Because they assume that the loss amount, 𝑦𝑖 and truncation point, 𝑡𝑖 are independent, the 

distribution of losses in the database is given by: 

𝑓(𝑦𝑖|𝑦𝑖 > 𝑡𝑖) =
𝑓(𝑦𝑖)𝐺(𝑦𝑖)

∫ 𝑓(𝑦)𝐺(𝑦)
 

ℝ
𝑑𝑦

. 

They recommend using a Logistic distribution for 𝐺(. ), which is given by 

𝐺(𝑡𝑖; 𝜏, 𝑎) =
1

1+exp [
−(𝑡𝑖−𝜏)

𝑎
]
, 

where 𝜏 is the location parameter which indicates the log loss with a 50% probability of 

being reported in the database and 𝑎 is the scale parameter which dictates the rate at which 

the probability of being reported increases with the size of the loss. 

𝑧𝑖 =  𝑦𝑖 − 𝑢 is defined as the excess log loss over a high enough threshold 𝑢, and it is shown 

that 𝑧𝑖 can be approximated using an exponential distribution. They obtain the following 

likelihood equation 

𝐿(𝑏, 𝜏, 𝑎) = ∏
ℎ(𝑧𝑖;𝑏)𝐺(𝑧𝑖;𝜏∗,𝑎)

∫ ℎ(𝑧;𝑏)𝐺(𝑧;𝜏∗,𝑎)𝑑𝑧
 

ℝ

𝑛
𝑖=1 , 

where ℎ(𝑧𝑖; 𝑏) =
1

𝑏
exp (−

𝑧𝑖

𝑏
) and 𝜏∗ = (𝜏 − 𝑢). The parameters 𝑏,  𝜏∗ and 𝑎 are estimated by 

maximising the likelihood function and finally the normalized weights to be assigned to each 

loss is calculated as  

𝑤𝑖
′ =

𝑛𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

, 

where: 

𝑤𝑖 =
1

𝐺(𝑦𝑖|𝜏,𝑎)
. 

In order to confirm the existence of reporting bias in the SAS dataset, we carried out 

likelihood ratio tests of the restriction that the reporting probabilities are constant across all 

losses for each threshold level (i.e. that there is no reporting bias in the data). The p-values 

of the likelihood ratio tests for all the threshold values were less than 0.01, confirming the 

existence of reporting bias. 

We estimated the parameters 𝑏,  𝜏∗ and 𝑎 for different choices of the threshold 𝑢 and found 

that the parameter values for 𝑏  and 𝑎 stabilized after the USD6 million threshold. We 

therefore used the associated estimates 𝑎̂ = 1.08941 and 𝑡̂ = (3.59446 + log(6)) to calculate 

corresponding weights for all the losses reported in the SAS database. 

 

ALLOWING FOR SCALING BIAS 

The scaling methodology we apply to the external SAS data in order to model the severity 

distribution of operational losses will correct for the scale bias alluded to earlier in this 

paper.  

We use the method introduced by Ganegoda and Evans (2012) using regression analysis 

based on the Generalized Additive Models for Location Scale and Shape (GAMLSS) 

framework to model the scaling properties of operational losses. They explain that the 

GAMLSS framework has the ability to model all the distributional parameters and therefore 

offers flexibility in estimating the scaling properties of a model. 

In their paper, Ganegoda and Evans (2012) argue that a good scaling model should also be 

able to make allowance for the variation of model parameters for different business lines 

and event types. The discussion below provides the technical background to their approach.  
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We consider log losses denoted by 𝒚 = (𝑦1 , … , 𝑦𝑛)𝑇, a random sample of independent 

observations. We assume that these log losses follow some parametric distribution 𝑓(𝑦𝑖 ; 𝜗𝑖) 
with parameter vector ϑi. For the sake of simplicity and in line with Ganegoda and Evans’ 

(2012) notation, we assume that 𝜗𝑖 = (𝑢𝑖 ,  𝜎𝑖)
𝑇
 is a vector of only two distributional 

parameters.  

A set of link functions are defined that specifies the relationship between the linear predictor 

and the distributional parameters of each distribution component distribution as: 

 𝑔1(𝑢𝑖) = 𝜂𝑖1 = exp (𝛽11 + 𝛽12𝑋𝑖12 + ⋯ + 𝛽1𝑝𝑋𝑖1𝑝), 

𝑔2(𝜎𝑖) = 𝜂𝑖2 = exp (𝛽21 + 𝛽22𝑋𝑖22 + ⋯ + 𝛽2𝑝𝑋𝑖2𝑝), 
 (1) 

for 𝑖 = 1, … , 𝑛, where 𝑋𝑖𝑗𝑝 is the value of the 𝑝th explanatory variable relating to the 

observation 𝑦𝑖 in the 𝑗th distributional parameter, and 𝛽𝑗𝑝 is the parameter corresponding to 

𝑋𝑖𝑗𝑝.  The set of equations are simplified with the help of matrix notation as follows: 

𝑔1(𝑢𝑖) = 𝑿𝟏𝜷𝟏, 

𝑔2(𝜎𝑖) = 𝑿𝟐𝜷𝟐, 

where, 𝑿𝒋 are the matrix of the 𝑗th distributional parameter, and 𝜷𝒋 are the corresponding 

parameter vectors. The maximum likelihood estimates of 𝜷𝟏 and 𝜷𝟐 are then obtained by 

solving: 

𝑚𝑎𝑥
𝜷𝟏,𝜷𝟐

∑ 𝑤𝑖
′ 𝑙𝑜𝑔 𝑓(𝑦𝑖; 𝜷𝟏, 𝜷𝟐)

𝑛

𝑖=1

. 

In order to solve the above equation, we used the PROC NLP function in SAS Enterprise 

Guide.  

 

EXPLANATORY VARIABLES 

The literature suggests that the extent of operational risk losses can be impacted by a 

number of factors associated with the firm where the loss occurs. These are included as the 

explanatory variables in the scaling model explained above, and are discussed in more 

detail under this section. 

Numerous studies have suggested that there may be some relationship between the size of 

a firm and the operational loss amount (for examples, refer to Shih et al. (2000), Dahen 

and Dionne (2010) and Cope and Labbi (2008)). The SAS data include a number of 

variables that could potentially be indicative of the size of the firm, including revenue, net 

income, asset value, shareholder equity and the number of employees for the fiscal year in 

which it experienced the loss. It is reasonable to assume that there is a positive correlation 

between these variables, and therefore we have only selected a single variable to represent 

the size of the firm, namely the assets of the firm, as an explanatory variable. 

Ganegoda and Evans (2012) also suggest that the equity ratio, being the proportion of 

equity used to finance the company’s assets, can give an indication of the risk taking 

tendency of management. It provides a measure of leverage used and given that both the 

assets and shareholder equity are provided in the SAS data, this ratio could easily be 

computed. It was used as the second explanatory variable in our scaling model. 

The third explanatory variable included in our model was the geographic region in which the 

firm operates, being Africa, Asia, Europe, North America, Other Americas or Other. Wilson 

(2007) explains that all operational losses arise as a result of a specific set of circumstances 

due to a lack of, or failure in controls. The reason for including region as an explanatory 

variable is based on the assumption that the circumstances should be similar in different 
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geographic regions and should therefore impact on the size of operational losses. Cope and 

Labbi (2008) showed differences in the loss distributions for banks of various sizes and 

operating in different geographies. Table 1 provides summary statistics about the losses in 

the different regions.  

 

Table 1: Summary Statistics per Geographical Region 

 Log-losses (USD Million) 

Region Number of 

losses 

% of 

losses 

50th 

percentile 

90th 

percentile 

99th 

percentile 

Africa 120 1,1% 1,49 5,08 6,14 

Asia 1 429 13,1% 2,10 5,03 7,18 

Europe 2 752 25,2% 2,43 5,69 7,91 

North 

America 

6 210 56,8% 1,98 4,76 7,21 

Other 306 2,8% 1,83 4,60 6,59 

Other 

Americas 

118 1,1% 2,89 5,59 7,45 

  10 935 100%    

 

Note: Given the relatively small number of losses reported in Africa, Other and Other 

Americas, we have grouped these losses together. 

 

The Basel Committee on Banking Supervision (2005) specifies that a bank’s activities should 

be categorized into a number of business lines, and a comprehensive set of non-overlapping 

operational event types should be defined and applied across the various business lines.  

Some business lines are considered more risky than others and may potentially suffer 

higher losses, and hence the severity distribution will be impacted by the business line, 

being our fourth explanatory variable. 

Our final explanatory variable was event type, as it is found that different types of loss 

events are associated with higher losses. A list of the categories of business lines and event 

types used in our analysis is provided in Table 2 and Table 3. 

 

Table 2: Summary Statistics per Business Line 

 Log-losses (USD Million) 

Business line Number 

of losses 

% of 

losses 

50th 

percentile 

90th 

percentile 

99th 

percentile 

Agency Services 171 1,6% 3,14 5,61 7,77 

Asset Management 502 4,6% 2,61 5,01 7,51 

Commercial 

Banking 

1 990 18,2% 2,21 4,88 7,20 

Corporate Finance 574 5,2% 2,90 5,66 8,18 

Insurance 1 881 17,2% 2,19 4,80 7,01 

Payment and 

Settlement 

219 2,0% 2,40 5,83 7,67 

Retail Banking 3 561 32,6% 1,59 4,58 7,56 

Retail Brokerage 788 7,2% 1,48 3,79 6,37 

Trading & Sales 1 249 11,4% 3,18 6,08 8,40 

  10 935 100%    
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Note: Given the relatively small number of losses reported under Agency Services, Asset 

Management and Payment and Settlement, we have grouped the losses in these categories 

together. We will refer to this category later in the paper as AS, AM and PS. 

 

Table 3: Summary Statistics per Event Type 

 Log-losses (USD Million) 

Event type Number 

of losses 

% of 

losses 

50th 

percentile 

90th 

percentile 

99th 

percentile 

Business Disruption 

and System Failures 

60 0,5% 3,03 5,24 6,24 

Clients, Products & 

Business Practices 

5 660 51,8% 2,63 5,55 7,91 

Damage to Physical 

Assets 

76 0,7% 1,95 5,04 7,28 

Employment 

Practices and 

Workplace Safety 

349 3,2% 1,84 4,23 6,55 

Execution, Delivery 

& Process 

Management 

489 4,5% 1,47 4,15 6,88 

External Fraud 2 229 20,4% 1,46 3,91 6,36 

Internal Fraud 2 072 18,9% 1,61 4,57 7,03 

  10 935 100%    

 

Note: Given the relatively small number of losses reported under Business Disruption and 

System Failures, Damage to Physical Assets and Employment Practices and Workplace 

Safety, we have grouped the losses in these categories together. We will refer to this 

category later in the paper as SF, D and EP. 

 

MODEL APPLICATION 

The first step in our model selection process was to find a base model that closely follows 

our data, but without taking into account any of the explanatory variables set out above. In 

other words, we first selected an appropriate probability distribution assumption to be used 

in our subsequent model fitting. For this purpose we used the SEVERITY procedure in SAS. 

We consider six different parametric models, of which we have included the density 

functions in Appendix B.  

In order to select the best base model, we considered three goodness of fit tests. These 

are twice the negative log-likelihood (-2LogLikelihood), the Akaike's Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC). Both the AIC and BIC are 

based on the -2LogLikelihood, and smaller values of all these criteria indicate a better 

model. Both the AIC and BIC penalize models with more parameters, but the BIC even more 

so, and we therefore used the BIC as our main determining factor in selecting our best-fit 

model. The BIC is defined as: 

𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘𝑙𝑛(𝑛), 

where 𝑘 is the number of estimated parameters in the model and 𝑛 is the number of 

observations used in the model. 
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Our results showed that the Burr distribution had the lowest BIC value, but the fact that it 

has three parameters introduced potential complications for our scaling model. For this 

reason we decided to use the Gamma distribution that ranked second among our potential 

models, and because it was also the severity distribution used by Ganegoda and Evans 

(2012). The Gamma model only has two parameters, being the location and scale 

parameters that was estimated to be 𝛼̂ = 1.084527 and 𝜃̂ = 0.88478. 

Based on the fact that the Gamma distribution was identified as the most appropriate 

distribution function for our data, we assumed that the Gamma model was also appropriate 

as our base to continue the modelling process.  

The Gamma distribution was fitted to the data again, this time allowing for the explanatory 

variables introduced in the previous section. We carried out a step-wise selection of these 

variables in order to determine the parameters 𝜃 and 𝛼 of the Gamma distribution using the 

link functions introduced in Equation 1. The first step involved a forward selection of 
variables only for 𝜃, followed by a forward selection of variables for 𝛼 given the model we 

had obtained for 𝜃. Thereafter we followed a backward elimination of variables for 𝜃, given 

the selected model for 𝜃 and 𝛼 and a backward elimination of variables for 𝛼. 

Based on the step-wise selection method described above, we found that Log-assets and  

seven other business line and event type explanatory variables were significant to the scale 

parameter 𝜃. None of the region variables were found to be significant for 𝜃. For the shape 

parameter 𝛼, Log-assets, the region variable Asia, Retail Brokerage and Execution, Delivery 

& Process Management were found to be significant explanatory variables. The parameter 

estimates of the final model given by the step-wise selection method are shown in Table 4. 

 

Table 4: Estimated Parameter Values for our Final Model 

Explanatory 

variable 

𝜽 𝜶 

Estimate Std. Error Estimate Std. Error 

Intercept -0,446390 0,084198 0,411743 0,080968 

Log-assets 0,029426 0,006454 -0,02159 0,007091 

Equity ratio - - - - 

Africa, Other 

Americas, Other - - - - 

Asia - - -0,0892 0,037367 

Europe - - - - 

Corporate finance 0,189131 0,049063 - - 

AS, AM & PS 0,129315 0,040584 - - 

Commercial 

Banking 0,258638 0,031836 - - 

Insurance - - - - 

Retail Banking -0,08911 0,024295 - - 

Retail Brokerage - - -0,20123 0,044886 

Clients, Products & 

Business Practices 0,100373 0,042772 - - 

Execution, 

Delivery & Process 

Management - - -0,27172 0,070796 

External Fraud -0,31829 0,046103 - - 

Internal Fraud -0,18629 0,046095 - - 
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Note: The model was fitted using North America, Trading and Sales and SF, D and EP as the 

baseline categories for geographical region, business line and event type respectively. 

 

MODEL DIAGNOSTICS AND RESULTS 

Ganegoda & Evans (2012) uses normalized quantile residuals, 𝑟̂𝑖, to verify the adequacy of 

the fitted GAMLSS models. For a response variable 𝑌 with a continuous cumulative 

distribution function 𝐹(𝑦𝑖 ; 𝜃̂𝑖), the normalized quantile residuals are defined as 𝑟̂𝑖 =

Φ−1[𝐹(𝑦𝑖 ; 𝜃̂𝑖)], where Φ−1 is the inverse cumulative distribution function of the standard 

Normal distribution. According to Rigby & Stasinopoulos (2005), the error 𝑟̂𝑖 should be 

standard Normally distributed if the model is adequate. We show the QQ plot of estimated 

residuals against the theoretical quantiles of the standard Normal distribution in Figure 1 

graphically indicating the normality of the estimated residuals. 

 

 

Figure 1: Normalized Quantile Residual Plot 

 

As a further validation of our model, we have simulated 1 000 000 losses and tested the 

goodness-of-fit by comparing the quantiles of the simulated losses with the observed losses 

using a QQ plot. The QQ plot is shown in Figure 2. 
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Figure 2: QQ Plot of Simulated Losses vs. Observed Losses 

 

SCENARIO ANALYSIS 

We previously noted that the purpose of our model is to assist banks with their scenario 

analysis process, and this may be specifically helpful for banks with limited internal data. In 

order to show how our model can be used to determine quantiles of our aggregate 

distribution, we first consider an approach for banks to obtain scenarios that could be used 

in risk capital models. 

De Jongh et al. (2015) describe one such approach to scenario analysis, and refer to this as 

the 1-in-c years method. They explain that the scenario makers are asked the following 

question: “What loss level 𝑞𝑐 is expected to be exceeded only once every 𝑐 years”. They 

suggest popular choices for 𝑐 to be 7, 20 and 100 years and motivate their first choice of 7 

as the number of years of historical data available to a bank. 

In order to determine the quantiles of our aggregate distribution that correspond to our 1-

in-c year losses as suggested above, we draw on the work done by De Jongh et al. (2015) 

to combine historical data and scenarios.  They explain that if the annual loss frequency is 
Poisson distributed with parameter 𝜆, and the underlying severity distribution is 𝐹, and if 

scenario makers know the exact values of 𝜆 and 𝐹, then the scenario assessments provided 

for 𝑞𝑐, being the loss only exceeded once in 𝑐 years, should be: 

 𝑞𝑐 = 𝐹−1(1 −
1

𝑐𝜆
). (2) 

 

They construct a spliced distribution function, using backward-looking historical information 

for the “expected” (or “body”) part of the distribution and forward-looking scenario 
information for the “unexpected” (or “tail”) part. They select a number 𝑏 with corresponding 

quantile 𝑞𝑏 and denote 𝐹𝑒(𝑥) as the conditional distribution function of a random loss 𝑋~𝐹, 
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given that 𝑋 ≤ 𝑞𝑏, and 𝐹𝑢(𝑥) as the conditional distribution function, given that 𝑋 > 𝑞𝑏. The 

distribution function for 𝐹𝑢(𝑥) is then given by:   

 𝐹𝑢(𝑞𝑐) =
[𝐹(𝑞𝑐)−𝐹(𝑞𝑏)]

[1−𝐹(𝑞𝑏)]
 𝑓𝑜𝑟 𝑞𝑐 > 𝑞𝑏. (3) 

Because we only model losses greater than USD1 million, we effectively only model the 

unexpected part of the severity distribution as explained above and we therefore need to 

make allowance for the expected part of our distribution if we intend to use the model to 

determine capital estimates in the tail of the distribution. If we do not make allowance for 

losses below USD1 million, we will under-estimate our required risk capital. To explain this 
further using the notation set out above, our 𝑞𝑏 is equal to USD1 million, although this is a 

pre-determined amount and not specifically related to the loss amount only exceeded every 

𝑏 years. We therefore do not know the probability that losses would exceed USD1 million, 

i.e 𝑃(𝑋 > 1) = 1 −  𝐹(1), and for comparative purposes we assume that 𝐹(1) is between 0,95 

or 0,98. Although not exact, these assumptions are based on data from the Loss Data 

Collection Exercise done by Basel in 2008. What this means is that we will adjust our 

quantiles using Equation 2 to make allowance for the fact that we are conditionally 

modelling above USD1 million. Table 5 shows the adjusted probabilities for different values 
of 𝐹(1), i.e. the cumulative probability that losses would be less than USD1 million. The 

probabilities are calculated using Equations 1 and 2 and assuming an annual frequency of 

6.58627. The reason for selecting this value for our annual frequency, will be explained in 

the following section. 

    

Table 5: Adjusted probabilities for different values of 𝑭(𝟏) 

Scenario 

point 

Cumulative 

prob. on 

𝑭(. )   

Cumulative prob. on 𝑭𝒖(. ) for values of 𝑭(𝟏) 

0.95 0.96 0.97 0.98 

1-in-10 year 0,984746 0,696338 0,620423 0,493897 0,240845 

1-in-20 year 0,992373 0,848169 0,810211 0,746948 0,620423 

1-in-100 year 0,998475 0,969634 0,962042 0,949390 0,924085 

99.9% VaR 0,999848 0,996963 0,996204 0,994939 0,992408 

      

RESULTS FOR AN INDIVIDUAL BANK 

In this section we show how the model we have built on SAS data, can be utilized by an 

individual bank. We assume that we have the internal loss data for the bank, and for this 

purpose we have extracted the loss data for the Bank of America Corporation from the SAS 

data. In the remainder of this paper we refer to Bank of America Corporation as our 

individual bank. Table 6 provides a summary of the number of operational losses above 

USD1 million for our indivdiual bank, and reported in the SAS database. It should be noted 

that it is expected that the bank itself would have a significant higher amount of data, given 

that the internal data would not suffer from reporting bias. In addition, it is expected that 

the internal data would include information on losses below USD1 million. This information 

could be used to model the body of our severity distribution, although in using our model 

we do adjust our quantiles to allow for this fact. 
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Table 6: Bank of America Corporation Loss Data Points per Business Line and 

Event Type 

 Business line  

Event type 

Clients, 
Products 

& 
Business 
Practices 

Employment 
Practices 

and 
Workplace 
Safety 

Execution, 
Delivery & 

Process 
Management 

External 
Fraud 

 

Internal 
Fraud 

Total  

Agency Services 2 - - - - 2 

Asset Management 10 - 1 - - 11 

Commercial 
Banking 1 - - 3 1 5 

Corporate Finance 10 1 - - - 11 

Insurance 1 - - - - 1 

Payment and 

Settlement - - 1 - - 1 

Retail Banking 26 2 1 21 7 57 

Retail Brokerage 28 9 6 - 7 50 

Trading & Sales 34 1 5 1 3 44 

 

We run our model again, but this time excluding the loss data of our individual bank. The 

results of our new model is shown in Table 7. 
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Table 7: Re-estimated Parameter Values for our Model, Excluding the Individual 

Bank’s Data 

Explanatory 

variable 

𝜽 𝜶 

Estimate Std. Error Estimate Std. Error 

Intercept -0,41268 0,085442 0,402985 0,08192 

Log-assets 0,027787 0,006581 -0,02033 0,007212 

Equity ratio - - - - 

Africa, Other 

Americas, Other - - - - 

Asia   -0,08989 0,037436 

Europe - - - - 

AS, AM & PS 0,137837 0,040684 - - 

Commercial 

Banking 0,250548 0,031946 - - 

Corporate Finance 0,193883 0,04964   

Insurance - - - - 

Retail Banking -0,09341 0,024465 - - 

Retail Brokerage - - -0,21234 0,046812 

Clients, Products & 

Business Practices 0,082871 0,043878 - - 

Execution, 

Delivery & Process 

Management - - -0,28332 0,072153 

External Fraud -0,33385 0,04706 - - 

Internal Fraud -0,20375 0,047088 - - 

 

Using the results of our new model, we simulate 1 000 000 losses for each of two business 

lines, namely retail banking and retail brokerage. Ideally we would want to simulate losses 

only for one event type within a business line (for example, external fraud in retail 

banking), but given the limited number of data points per individual bank, we have grouped 

all losses over event type within a single business line, i.e. assuming that event types are 

independent.  

In order to obtain estimates for a 1-in-10 year, 1-in-20 year and 1-in-100 year loss per 
business line, we need to make an assumption for 𝜆, the annual loss frequency of losses. 

For this, we again refer to Ganegoda & Evans (2012), and they approximated that a bank 

with USD1 billion assets would experience 0.00823 losses per year, based on data from a 

Loss Data Collection Exercise done by Basel in 2008. They further show that the total 

number of losses per year can be weighted to obtain a frequency for each business line and 

event type within the bank. We used a similar approach and assumed that our individual 

bank has assets of USD2 trillion (based on the SAS data), in order to estimate frequencies 

for our two business lines. The estimated annual frequencies for retail banking was 
therefore 6,586 and 1.485 for retail brokerage.  

In Table 8, for our two business lines, we show the model estimates for our scenario points 

for a 1-in-10 year, 1-in-20 year and 1-in-100 year loss, corresponding to the quantiles for 

the adjusted probabilities of our fitted distribution as shown in Table 5. Note that we only 
show the scenario point estimates for the assumption that 𝐹(1) = 0.98, i.e. the probability 

that losses are above USD1 million, is 0.02.  We also show the 1-in-1000 year estimate, 

given that this would be the amount corresponding to the 99.9% Value-at-Risk and 
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therefore the regulatory capital required for the business line. In addition to the point 

estimates, we show the distribution free 90% confidence intervals for these quantiles. 

Given that we have loss data specific to our individual bank, also referred to as “internal 

loss data”, we could use this data in isolation to fit a model specific to our individual bank. 

The concern with this approach is that the data, and especially when working within a 

specific business line and event type, is fairly limited as shown in Table 6. 

We are only working with publicly available data for the individual bank, but even if one had 

access to all the bank’s collected data, it tends to be limited and even more so for higher 

losses. This point also illustrates the need for banks to augment their own internal data with 

data from external sources. For the same two business lines under consideration, we fit a 

Gamma-distribution only to the internal data points. We compare the same quantiles 

estimated from these models to the estimates from our GAMLSS model described under the 

Methodology section. Table 8 provides a summary of the results obtained from the two 

models for the two business lines. 

 

Table 8: Estimated Scenario Points per Business Line for Different Models 

     Retail banking Retail brokerage 

 Individual 

bank’s data 

Model Individual 

bank’s data 

Model 

1-in-10 year 0.139162 
0.265663 

(0.265;0.266) 
- 

- 

(-) 

1-in-20 year 0.684096 
0.877871 

(0.876;0.879) 
- 

- 

(-) 

1-in-100 year 2.179431 
2.296219 

(2.292;2.300) 
0.901160 

0.845764 

( 0,844; 0,847) 

1-in-1000 

year 
4.469461 

4.404938 

(4.392;4.419) 
2.518588 

2.917611 

(2,911;2,924) 

 

Table 8 shows that for the retail banking business line, the estimated scenario points are 

similar for both models, where the first model is based on internal data and the second 

model on external data, but tailored for the unique explanatory variables specific to the 

individual bank. For the retail brokerage business line, where the internal data is even more 

scarce, the difference between the estimates of the two models is greater.  

The estimated scenario points for 1-in-10 years and 1-in-20 years are zero for the retail 

brokerage business line. This is due to the fact that the estimated annual frequency of 

losses in this business line is only 1.485. As a result, our individual bank is not expected to 

observe losses higher than USD 1 million in this business line in 10 or even 20 years’ time. 
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DISCUSSION  

In operational risk management, banks use different data sources for modelling future 

losses. Given that most banks only have limited internal data, they often subscribe to 

external data consortiums or make use of other external data sources to augment their own 

data. In addition, many organizations use expert scenario assessments to inform the 

magnitude of extreme losses, that is, the tail of the loss distribution.  

The Basel Accords suggest ways that banks can use scenario assessments to improve the 

estimation of the loss distribution. The Basel Committee on Banking Supervision (2011b) 

emphasizes that the scenario process is qualitative by nature and that outputs from such a 

process would contain significant uncertainties. Therefore, the purpose of our study is to 

show how external data, and specifically SAS® OpRisk Global Data, can be used to inform 

or challenge these more subjective scenario assessments.  

We showed how the SAS data can be used to estimate the severity distribution of losses. 

Given the explanatory variables for a specific bank, the distribution 𝑓(𝑦; 𝜷̂𝒊) may be used to 

determine quantiles of the aggregate loss distribution, and these in turn can be compared to 

the scenario assessments of the experts. We assumed that experts or scenario makers are 

asked to answer the following question: ‘What aggregate loss level is expected to be 

exceeded once in c years?’. Once we have selected an appropriate distribution function, the 

quantiles can be determined that relate to the scenario assessments provided by the 

experts. For example, the 1-in-100 year loss predicted by our expert should be in line with 

the 99% quantile of our aggregate loss distribution. Therefore, if the loss scenario points 

provided by the experts deviate too far from the quantiles of the loss distribution that was 

estimated by the data, one can revert back to the expert and request them to justify the 

difference. Using internal and external data, and specifically for units of measure where 

adequate historical data is available, one should be able to model future expected losses 

fairly well. However, the more significant benefit of our scaling model is for banks where 

very limited or no internal within a business line is available. In such a case the bank may 

use the model based on external data and use it’s own characteristics to infer values 

expected future losses.  

 

CONCLUDING REMARKS 

In this paper we have showed how SAS® OpRisk Global Data can be used by a bank, when 

they do not have their own internal loss data, to build statistical capital models. We have 

also provided ways in which a bank can use a model only based on external data to inform 

or challenge the scenario assessments provided by experts. Scenario assessments are often 

used as a significant component of operational risk management, but given the subjective 

nature of these assessments, it is important to have an objective measure to check whether 

the expert’s opinion is not biased or completely unrealistic. Although experts may not 

change their views based on the results of statistical models, they may be required to justify 

why their assessments deviate from the data. Our suggested model take into account the 

reporting bias included in any external database, but also shows that operational losses are 

dependent on certain factors specific to a bank, for example size and region, but also the 

business line and event type associated with operational losses. 
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APPENDIX A: PROBABILITY DENSITY AND DISTRIBUTION 
FUNCTIONS 

 

Table A1 provides a summary of the parametric models that were fitted to our data in order 

to determine the base model. 

 

Table A1: Probability Density and Distribution Functions 

Distribution Par 1 Par 2 Par 3 Probability density 

function 

Probability 

distribution function 

Burr 𝜃 > 0 𝛼 > 0  𝛾 > 0 𝑓(𝑥) = 𝛼𝛾𝑧𝛾 
𝐹(𝑥) = 1 − (

1

1 + 𝑧𝛾
)

𝛼

 

Gamma 𝜃 > 0 𝛼 > 0  
𝑓(𝑥) =

𝑧𝛼 exp(−𝑧)

𝑥Γ(α)
 𝐹(𝑥) =

𝛾(𝛼, 𝑧)

Γ(𝛼)

 

 

Generalized 

Pareto 

𝜃 > 0 𝜉 > 0   
𝑓(𝑥) =

1

𝜃
(1 + ξ𝑧)

−1−
1
ξ 𝐹(𝑥) = 1 − (1 + ξ𝑧)

−
1
ξ 

Inverse 

Gaussian 

(Wald) 

𝜃 > 0 𝛼 > 0  
𝑓(𝑥) =

1

𝜃
√

𝛼

2𝜋𝑧3
exp (−

𝛼(𝑧 − 1)2

2𝑧
) 

𝐹(𝑥)

= Φ ((𝑧 − 1)√
𝛼

𝑧
)

+ Φ((−(𝑧

+ 1)√
𝛼

𝑧
) exp (2𝛼) 

Lognormal −∞ ≤

𝜇 ≤ ∞  

𝜎 > 0  𝑓(𝑥)

=
1

𝑥𝜎√2𝜋
exp (−

1

2
(

𝑙𝑛 𝑥 − 𝑢)

𝜎
)

2

) 

𝐹(𝑥) = Φ (
𝑙𝑛 𝑥 − 𝑢)

𝜎
) 

Pareto 𝜃 > 0 𝛼 > 0  
𝑓(𝑥) =

𝛼𝜃𝛼

(𝑥 + 𝜃)𝛼+1 
 𝐹(𝑥) = 1 + (

𝜃

𝑥 + 𝜃
)

𝛼

 

 

Notes: 

 𝑧 =
𝑥

𝜃
  

 𝜃 denotes the scale parameter for all the distributions. 

 𝛾(𝑎, 𝑏) = ∫ 𝑡𝛼−1 exp(−𝑡) 𝑑𝑡
𝑏

0
, the lower incomplete gamma function. 

 Φ(𝑦) =
1

2
(1 + erf (

𝑦

√2
)), the standard normal cumulative density function. 

 The function 𝑎(𝑥, 𝜙) does not have an analytical expression and is evaluated using 

series expansion methods. 
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