

1

Paper 5001-2020

Make Your DO Loop More Efficient

G Liu

ABSTRACT

In certain cases, a DO loop does not need to run all of its iterations in order to obtain the

correct result. This paper will examine three examples to illustrate when we can or cannot

make the DO loop more efficient with no loss of accuracy, through the use of the LEAVE

statement.

INTRODUCTION

Time is money. An efficient SAS® code not only helps us obtain the result faster, increases

our bottom line, and gives us an edge over our competitors, it also utilizes less computing

resources thus saves the environment. By using the LEAVE statement in certain DO loops,

the same accurate result can be achieved efficiently.

In cases where an indicator flag (or indicator variable) with a value of either 1 or 0 is

determined based on multiple variables through the use of a DO loop, the DO loop may not

need to run all its iterations to obtain the correct 1 or 0 value. As soon as the indicator flag

has been assigned the desired value at certain iteration, the remaining iterations can be

skipped by properly adding the LEAVE statement to the DO loop, thus eliminating

unnecessary processing and shortening runtime.

Consider the following equivalent idea in the more familiar form of an OR statement:

if brain_cancer=1 or lung_cancer=1 or skin_cancer=1 then cancer=1;

Or in the form of IF-ELSE IF statements:

if brain_cancer=1 then cancer=1;

else if lung_cancer=1 then cancer=1;

else if skin_cancer=1 then cancer=1;

As long as the brain_cancer variable has a value of 1, the indicator flag cancer will be

assigned the value of 1 as well, regardless of the values in the variables lung_cancer and

skin_cancer. Through the use of the OR or the ELSE IF statements, SAS does not need to

process the two latter parts of the logic in order to obtain the correct value of 1 for the

cancer variable.

When the “parent” variables (e.g. brain_cancer, lung_cancer etc.) are placed in an ARRAY, a

DO loop processing is necessary to loop through all of them. The SAS code in the form of an

ARRAY and DO loop:

array cancer_type(*) brain_cancer lung_cancer skin_cancer;

do i=1 to dim(cancer_type);

 if cancer_type(i)=1 then cancer=1;

end;

However, notice that this DO loop will always iterate three times, once for each of the

cancer types, regardless of the values in the “parent” variables. This is essentially three

separate IF statements rather than the more efficient IF-ELSE IF version. By adding the

LEAVE statement inside the DO loop, unnecessary iterations can be skipped. The following

2

three case studies detail whether the LEAVE statement can be used to improve efficiency

while maintaining the accuracy of the result.

CASE STUDY 1

A hospital administrator is interested in finding out the number of cancer patients the

hospital has treated. The cancer diagnosis can be coded in one or more of the 25 diagnosis

code variables (dx1 - dx25) in the data. In order to identify the cancer patients, the SAS

code needs to loop through all 25 variables, and as long as any of them has a cancer

diagnosis, that patient is to be counted. (Cancer diagnosis codes start with „C00‟ to „D49‟.)

The less efficient version of the code:

array dx(*) dx1-dx25;

do i=1 to dim(dx);

 if ‘C00’ le substr(dx(i),1,3) le ‘D49’ then cancer=1;

end;

Table 1 shows the resulting dataset, with variable i showing the value of 26 for all three

observations. This means that each observation has been iterated 25 times through the DO

loop, and when variable i is incremented to the value 26, the DO loop logic no longer applies

and the DO loop stops after 25 iterations. The shaded values are the cancer diagnosis

codes.

dx1 dx2 dx3 … i cancer

A35.1 C30.24 … 26 1

Y02.353E Z02.119 … 26 .

D21.12 D22.10 E32.19 … 26 1

Table 1. Dataset after the less efficient coding is run

The more efficient version of the code:

array dx(*) dx1-dx25;

do i=1 to dim(dx);

 if cancer=1 then leave;

 if ‘C00’ le substr(dx(i),1,3) le ‘D49’ then cancer=1;

end;

By adding the LEAVE statement right after the DO statement to check whether the cancer

variable already has a value of 1, as soon as cancer is set to 1, any subsequent iterations

are skipped, and the processing leaves the DO loop. Whether or not there are more cancer

diagnoses in the later diagnosis codes are irrelevant, and the cancer value of 1 can no

longer be changed.

Table 2 shows the resulting dataset after running the more efficient version of the code with

the LEAVE statement added to the DO loop.

dx1 dx2 dx3 … i cancer

A35.1 C30.24 … 3 1

Y02.353E Z02.119 … 26 .

D21.12 D22.10 E32.19 … 2 1

Table 2. Dataset after the more efficient coding is run

3

Note that the variable i has much smaller values for the two observations with cancer

diagnosis. On the first observation, since dx2 is a cancer diagnosis, cancer is set to 1 after

the second iteration. At the beginning of the third iteration (i=3), the LEAVE statement

applies and the remaining iterations are not executed. On the other hand, the second

observation has no cancer diagnosis, hence all 25 iterations are performed and the LEAVE

statement is never applied.

ADDITIONAL EFFICIENCY GAIN WITH DOMAIN KNOWLEDGE

Healthcare data experts understand that as soon as a blank value is encountered on a

diagnosis code (e.g. dx3), the remaining diagnosis codes (dx4 – dx25) all have blank values

as well. All those iterations checking on blank values can be skipped as well, further

improving the efficiency of the code.

The best code accounting for blank values:

array dx(*) dx1-dx25;

do i=1 to dim(dx);

 if cancer=1 or dx(i)=’’ then leave;

 if ‘C00’ le substr(dx(i),1,3) le ‘D49’ then cancer=1;

end;

CASE STUDY 2

Similar to Case Study 1, if the hospital administrator is interested in identifying digestive

and bone cancer patients separately, the LEAVE statement will need to check both indicator

flags before leaving the DO loop.

The efficient code:

array dx(*) dx1-dx25;

do i=1 to dim(dx);

 if digestive=1 and bone=1 or dx(i)=’’ then leave;

 if ‘C15’ le substr(dx(i),1,3) le ‘C26’ then digestive=1;

 if ‘C40’ le substr(dx(i),1,3) le ‘C41’ then bone=1;

end;

Note that the reason the LEAVE statement ought to check for both flags is because if only

one of the flags has a value of 1, the DO loop needs to continue checking the remaining

diagnosis codes to see if the other flag needs to be set to 1 as well. However, as soon as

both flags are set to 1, there is no longer any need to check the remaining diagnosis codes

because the values of both flags will no longer change.

CASE STUDY 3

The hospital administrator is interested in finding patients with knee replacement surgery

but without a revision surgery at a later date. The surgery data consist of 40 procedure

code variables (px1 – px40) sorted in ascending order of procedure date, i.e. procedure in

px2 is performed after px1, px3 performed after px2, and so on. Assume that we use the

value „OSP‟ and „OSW‟ to identify knee replacement and revision respectively.

4

The SAS code to find these patients:

array px(*) px1-px40;

do i=1 to dim(px);

 if surgery=1 then leave;

 if substr(px(i),1,3)=’OSP’ then surgery=1;

 else if substr(px(i),1,3)=’OSW’ then surgery=0;

end;

Notice that in this case the LEAVE statement cannot be added to the DO loop. Even after the

surgery flag has been set to 1 when a knee replacement surgery is found, SAS still needs to

check all the remaining procedure codes to make sure that a knee revision surgery is not

found after the knee replacement.

CONCLUSION

The LEAVE statement is a useful tool for controlling whether certain iterations of the DO

loop can be skipped. In cases where the value of an indicator flag is set, and any

subsequent iterations can no longer change this value, then completing all iterations of the

DO loop is unnecessary. By adding the LEAVE statement and checking for the proper

condition to leave the DO loop, fewer iterations are needed to obtain the same result, thus

achieving efficiency and reducing runtime.

REFERENCES

Nistor, A., Chang, P., Radoi, C., Lu, S. 2015. “CARAMEL: Detecting and Fixing Performance

Problems That Have Non-Intrusive Fixes.” Proceedings of the 37th International Conference

on Software Engineering – Volume 1, 902–912.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

G Liu

omnibus.g.liu@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

