#SASGF

Paper 4978-2020
Optimal Use of Extended Data Types, Memory Mapping in SAS® Viya® 3.3

Saurabh Tripathi, Pranay Barua, Ayush Tiwari, Core Compete

ABSTRACT

The major challenges for business users these days, are optimally ingesting data in terms
of size, time and performance. This paper focuses on optimal use of SAS® Cloud Analytic
Services (CAS), and how SAS® Viya® users will be benefitted using a set of rules to
achieve the goals in the most efficient manner. We developed a cognitive approach of data
ingestion in SAS® Viya®, which can handle the data bloating and load time that in effect
improves the performance of SAS® Visual Analytics on SAS® Viya®. Have you ever
encountered problems such as data bloating while loading to CAS or experienced that the
loading time was more than what was expected or encountered a problem while accessing
reports in SAS® Viya® Visual Analytics? To overcome these problems, we have leveraged
capabilities of SAS® Viya® like powerful new table indexing, block mapping, memory
mapping, extended data types, native data formats capabilities that have the potential to
significantly improve performance for data handling and analytics actions submitted to
CAS. This paper argues for performance benefits obtained using mentioned approaches
example data get compressed from 170 GB to 60 GB, CPU and elapsed time reductions
reported by measuring report performances, the CPU times could be up to three orders of
magnitude greater than without mapping, which in effect reduces the operational cost.

The following examples are included:

Optimal use of extended data types

Optimal use of hdat conversion

Memory -mapping and block mapping

Indexing of appropriate variables while loading data into CAS
Indexing in SAS® Viya® v/s SAS 9.4

Handling special character’s in the data

Performance comparisons

Keywords: Memory mapping, block mapping, indexing, SAS Viya performance optimization

INTRODUCTION

SAS® Cloud Analytic Services (CAS) provides high performance with its multi process
power introduced in SAS Viya architecture.

The following major topics are discussed:

Extended data types and its optimal use to utilize the memory efficiently.

Hdat file format to achieve memory and block mapping.

SAS® Cloud Analytic Services (CAS) table indexing to improve report performance.
Performance comparisons

EXTENDED DATA TYPES

Default encoding in SAS® Cloud Analytic Services (CAS) is UTF-8. UTF-8 is a variable
width encoding system. When source data is not encoded as UTF-8, the data may require
more space in CAS as compared to source system. In order to overcome the expansion of
data size, CAS offers the NCHARMULTIPLIER parameters to define how much to expand
character fields to avoid truncation.

NCHARMULTIPLIER=n where0 <n<4

Character field in a SAS® Cloud Analytic Services (CAS) varies and it could be 4 times as
big as the length in the source data. Example, a 20 GB table having character variables
may become 80 GB after loading it to SAS® Cloud Analytic Services (CAS).

SAS® Cloud Analytic Services (CAS) comes with multiple data types unlike BASE SAS
where we have only character or numeric as data type. Varchar not only help to save
storage it also improves the performance by reducing the size of record being processed.

Apart from extended data types, SAS® Cloud Analytic Services (CAS) also supports User
defined formats (UDFs) , it servs the purpose of display formatting on raw feeds. This also
plays a role in reducing the size of records and as a result reducing the data size. Extended
data types and User defined formats (UDFs) lead to performance gains.

Varchar Field length structure

Fixed Length Field |pointer{16Bytes) |Fixed Length Field |pointer{16Bytes)

Figure 1: Varchar Variable Description

Varchar is a wise choice for character columns in order to reduce data size, but it should
be a careful decision otherwise we will end up in increasing the data size. It's highly
recommended that VARCHAR should be used on characters with more lengths associated
with it and could vary in length, e.g. description. If VARCHAR is used wisely will result in
saving lot of space. We need to analyze the length and accordingly should choose which
should be taken as VARCHAR. It assigns the length in the following way. Hence it is
recommended to use mix of CHAR-VARCHAR.

The best way is to have Char-Varchar definition using the below conditions:

o If the length of column exceeds 30, we should go for Varchar data type. The reason
being the length of VARCHAR variables is determined based on the number of
characters the string contains. The length of CHAR variables is determined based
on the number of bytes the characters in the string requires

e If the length of column is smaller better go with Char datatype. The reason being
for smaller length we will pay addition penalty of 16 BYTES for Varchar pointer

e If you directly import a file, it will have all character variables defined as Varchar

Constraints

Char-varchar can only be applied with import files or data prepared in SAS® Cloud Analytic
Services (CAS).

The VARCHAR data type is not supported by the SAS V9 engine. Therefore, you must use
a CAS engine libref on the output table when creating a VARCHAR.

Importing data with Char-Varchar definition
options cashost="server name" casport=XXXX;
cas;y;

cas mySession sessopts=(caslib=libname timeout=1800 locale="en US");

libname tmp 'Path';

libname tmp cas;

proc casutil;
load casdata="XXX.csv" casout="XXxXX" /* 2 %/
importoptions=(filetype="csv" getnames="true" varChars="FALSE"

vars= (

(name="Columnl="CHAR", length=10),
(name="Column2" type="VARCHAR"),
(name="Column3" type="CHAR" length=10)
)) promote /* 5 %/

label="Fact table for User-to-Item Analysis"

quit;
Impact of Char-Varchar conversion

A. With Char definition

% SALES_AND_MARGIN 5y B
il Dezaits P Ssmple Dote 22 Profile
o Date prof
, B2
a Name Label Type Ra... Fo.E
Columns Rows
4 FLIR_ECP_LENSES char 2 r 106 36.3M
2 O FLIR_RX_STOCK cha 2 Sise
3 O FLIR_RX_LENSES_ char 2 170.2GB
4 & FLTR_LEDGER o3 9 2

{not avadlable

Figure 2: With Char Definition

B. With Char-Varchar definition

¥ SALES_VIYA y &
B ©ecs BB Semple Dots S Profie
fo
a Name Label Type Ra... L
Columwas Rows
& FLIR nNseq / ' 106 36.3M
6 FLIRLRX . Sz
A FLTR X 60.1 GB
: OH FLUIR E - Ry =3
= O FLYF '
OH Fixc od -defa ¥t

Figure 3: With Char- Varchar Definition

BLOCK AND MEMORY MAPPING

SAS® Cloud Analytic Services (CAS) table consists of physical data segments called Large
Blocks. These physical data segments are further divided into smaller blocks. Each Small
Block holds a contiguous which holds values of columns defined in the table. The varying-
length data values for any VARCHAR or VARBINARY column types occupy a separate area
following the rows. When varying-length column types are defined in the table, each row
contains corresponding references to its values in the varying-length data area.

CAS can run in Symmetric Multiprocessing SMP or Massively Parallel Processing MMP. In
either process CAS processes distributed data on multiple threads.

For SMP having single machine or for distributed server file source type doesn’t use
CAS_DISK_CACHE. In such cases memory mapping is already in place and hence keeping
a check on memory utilization.

Number of backup copies will depend on time period for which table is supposed to be
used. If a large output table is used for short period, in such cases programmers can set
copies option to zero.

But we need to be very careful while setting this option. If redundant blocks are not
available, there are high chances of no-fault tolerance.

sashdat is native data file type for CAS. Hence while loading a dataset it recommends
converting this to sashdat it may not have impact on data size, but it will save loading
time. Conversion script is given below:
proc casutil;

load casdata="dataset.sashdat"

importoptions=(filetype="hdat");

run;
FESITS TTOTT T OTE T OTE e T
Detail Information for SALES_AND_MARGIN_OPT in Caslib casdata.
HNumber
of | Active Fixed Variable Blocks | Memory Blocks Memory Blocks Memory | Index | Compressed Compression
HNode Blocks | Blocks Rows Data size Data size | Mapped | Mapped | Ur pped u pped | All d | Allocated Size Size Ratio
ALL §5353 | 65353 36918999 @ 6.85321E10 | 1.53687E10 a 0 65353 | 6.85323E10] 0 0] 0
Figure 4: Example dataset without memory and block mapping
REZUIE oM @hE e DEtans
Detail Information for SALES_IND1 in Caslib casdata.
Number
of | Active Fixed Variable | Blocks Memary Blocks Memory Blocks | Memory Index | Compressed | Compression
Node | Blocks | Blocks Rows Data size Data size | Mapped Mapped | Unmapped | Unmapped | Allocated | Allocated Size Size Ratio

ALL 85353 | 65353 | 360180080 | 6.85321E10 | 1.53687E10 | 65353 | 6.87472E10 0 0 0 0 | 208838112 0 0

Figure 5: Example dataset with memory and block mapping

INDEXING

An index on a CAS table can be created on multiple columns if required, however it's
important to choose a column on which we should create an index. In latest releases its
working on extended data types as well.

Now if we go into depth to understand how indexing improves performance it works as
the indexed column will have a range of values from MIN to MAX defined for a large block.
Once the user defines a subset over the data it will first look for the range in which the
desired value falls and it will pick large block ignoring the rest of the large blocks. We save
lot of time by following the approach of discarding the options to search for the smaller
blocks among number of large blocks. This results in decreasing the CPU and real time for
subsetting the data.

Unlike Base SAS where for each .sas7bdat dataset if an index is created then a separate
index file used to get stored as .sas7bndx, in CAS if an index is created on columns it will
not be written to a separate file instead these are already part of large blocks and written
to underlying storage to use the space efficiently.

Below is the illustrated example of how indexing in CAS improves the efficiency of sub
setting. Let’s say we have a column company_id. In the case of no indexing for anywhere
condition on company_id entire table needs table needs to be scanned as compared to
when an index is created on column company_id it will split it into number of large blocks
and smaller blocks within large blocks. When an indexing is available, for any sub setting
it will directly go to the bigger block matching its filter condition and same applies for
smaller blocks as well.

Without Indexing on company_id:

No indexing

With Indexing on company_id:

Large Block1...500
Small Block 1...100
Small Block 101...200
Small Block 201...300
Small Block 301...400
Small Block 401...500

Large Block 501...1000
Small Block 501...600
Small Block 601...700
Small Block 701...800
Small Block 801...900

Small Block 901...1000

Large Block 1001...1500

Small Block 1001...1100

Small Block 1101...1200

Small Block 1201...1300

Small Block 1301...1400

Small Block 1401...1500

Large Block n-500 n

Small Block n...n+100

Small Block n+101...n+200

Small Block n+201...n+300

Small Block n+301...n+400

Small Block n+401...n+500

A. Extracting table information
proc cas;

table.tableInfo / name="'SALES INDEX';

run;
62019 Resuts: Png ramsas
Results from fable tablelnfe
Table Information for Caslib casdata
Number
Mumber of
Number of | Indexed | NLS Promoted | Duplicated Source
Table Name of Rows | Columns | Columns | encoding | Created Last Modified Table Rows | View | Source Name Caslib | Compressed
SALES_INDEX | 30587258 50 0| utfd 201803 201903- fas Mo Mo sales indexsashdat | casdata No
06T05:06:14+00:00 = 06T05:06:24+00:00

Figure 6: Output table information

B. Column information

proc cas;

simple.distinct / table={name="SALES INDEX"};run;
C. Output: Distinct Counts

Extract different dimensions related to a table e.g. distinct value count, missing value
count etc.

Distinct Counts for SALES_INDEX Mumber of | Number of

Number of | Number of Distinct | Missing

Distinct Missing Column Values Values | Truncated
Column Values Values | Truncated Sales - Total 2224075 0 No
AR Brand 12 0 No Sales - Total VSP Adj 2226513 0 No
AR Sub Brand 237 0 Na Sales - Total exFrgt 2222503 0 No
Commission Category 3 18137035 No Ship Month End Dt 29 0 No
Fiscal Month 12 0 No Ship Wrk Days MTD 6 0 No
Fiscal Month Dt 28 0 No Cost ELOA - AR 4228 0 No
Fiscal Qtr Dt 10 0 No Cost ELOA - Brkg 102956 0 No
Fiscal Wrk Days MTD 6 0 No Cost ELOA - Design Fee 9192 0 No
Fiscal Yr 4 0 No Cost ELOA - Material 114830 0 No
FLTR_RX_STOCK_LENSES_ONLY 2 0 No Cost ELOA - Total 496778 0 No
Gmtry Brand 20 0 No Cost ELOA Lab - Processing 67672 0 No
Gmtry Sub Brand 739 0 No Lenses Count 4379 0 No
Gmtry Type 8 0 No Sales - Coat 51575 0 No
Job Count (Pairs) 2961 0 No Sales - Frames 13092 0 No
LAB CD 153 0 No Sales -Lens 2508588 0 No
LAB_NAME 153 0 No Figure 7.2: SAS Viya Output
Lab Pricing Dept [90490 No
LOC_GEOTAG_PMBG 103 168049 No
Matl Desc 29 466606 No
Matl Sub Type Desc 12 83 No
Payer Type 4 0 MNo
Photo Brand 7 17270 No
Polar Code 5 17262 MNo
Pricelist Assigned 380 10510808 MNo
Pricelist Used 661 o No
Regn Strat Alliance Cust Name 657 | 27780532 No
SAM 20 | 18137035 No
SAM Director 3 | 18137035 No
SAM Commission Flag 3 18137035 No
SHIP_TO_ADDR_STATE 100 488373 No
SHIP_TO_MBG_NAME 127 0 No
Sales Region Code 13 0 MNo
Sales District Code 7o 0 No
Sales Territory Code 373 0 MNo
STOCK_RX_CD 3 112573 MNo
YTD 23 o No

Figure 7.1: SAS Viya Output

D. Output: Indexing on LAB_NAME
Proc cas;

table.index/casout={indexVars={"LAB NAME"}, name="SALES INDEXED”}
table={name="SALES INDEX"}; - -

run;

E. Performance Test
o Without Index:

data testl;
set casdata.sales_ index;
where 'Regn Strat Alliance Cust Name'n="Norris & Kelly, PA dba Family Eyecare Center";

run;
Note: The data set WORK.TEST1 has 7184 observations and 50 variables.
Note: DATA statement used (Total process time):
real time 5.93 seconds

cpu time 0.83 seconds

o With Index:
data test2;
set casdata.IND2;
where 'Regn Strat Alliance Cust Name'n="Norris & Kelly, PA dba Family Eyecare Center";

run;
Note: The data set WORK.TEST2 has 7184 observations and 50 variables.
Note: DATA statement used (Total process time):
real time 0.64 seconds

cpu time 0.54 seconds

F. Multi-level performance testing

1. 'Gmtry Sub Brand'n

Gmtry Sub Brand Without Index With Index
Real Time 01:40.0 56.37 seconds
CPU Time 21.54 seconds 19.97 seconds

2. "LAB NAME" "Regn Strat Alliance Cust Name" "Gmtry Sub Brand" "Pricelist Used

"LAB_NAME" "Regn Strat
Alliance Cust Name"
"Gmtry Sub Brand" Without With
"Pricelist Used Index Index Filter
5.93 0.64
Real Time seconds | seconds
'Regn Strat Alliance Cust Name'n="Norris &
Kelly, PA dba Family Eyecare Center" and
0.83 0.54 'Gmtry Sub Brand'n
CPU Time seconds | seconds | in("BI/TRIFOCAL","CONTACTS"
CONCLUSIONS

This paper concludes the advantages of CAS table indexing, extended data types, memory
and block mapping supported in SAS Viya 3.3. The major objectives to document it are as
follows:

e Wise choice of extended datatypes to reduce data ballooning or data truncation
while loading it to CAS.

e Using the concept of memory and block mapping by having the data in the native
sashdat format.

e Using the indexing to improve subsetting of data and report performance.

e Measurable performance gains by reducing the time required to query or subset
the data with the help of indexes.

REFERENCES

https://documentation.sas.com/?docsetld=casfun&docsetTarget=n16gbskvOhwfglnlinrg
gq605p6sv.htm&docsetVersion=3.5&locale=en

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Saurabh, Core Compete
E-mail: saurabh.tripathi@corecompete.com
WWWw.corecompete.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

https://documentation.sas.com/?docsetId=casfun&docsetTarget=n16qbskv0hwfq1n1lnrqq605p6sv.htm&docsetVersion=3.5&locale=en
https://documentation.sas.com/?docsetId=casfun&docsetTarget=n16qbskv0hwfq1n1lnrqq605p6sv.htm&docsetVersion=3.5&locale=en
mailto:saurabh.tripathi@corecompete.com
http://www.corecompete.com/

