

1

Paper 4958-2020

A Close Look at How DOSUBL Handles Macro Variable Scope

Quentin McMullen, Siemens Healthineers

ABSTRACT

The macro variable scoping rules of the SAS® macro language are complex, and well-

documented. The DOSUBL function, introduced in SAS 9.3M2, adds an additional layer of

complexity to these scoping rules, as the macro programmer needs to understand how code

executing in the DOSUBL side-session will create or update macro variables, and what

impact this will have on macro variables stored in the main session symbol tables.

Unfortunately, the current SAS documentation does not provide a clear definition of the

DOSUBL scoping rules. This paper presents a series of test cases designed to illustrate

DOSUBL’s handling of macro variable scopes, and infers a set of DOSUBL macro variable

scoping rules. The intended audience is experienced macro programmers interested in

learning how DOSUBL manages macro variable scopes.

INTRODUCTION

The DOSUBL function, introduced in SAS 9.3M2, brings exciting new possibilities to the

world of SAS programming. It changes many of the basic rules of SAS programming, such

as “you cannot execute a DATA step inside of another DATA step,” and “function-style

macros cannot execute SAS statements.” Not surprisingly, such power also brings with it

additional complexity. Even without DOSUBL, the macro language has important rules for

managing the scope of macro variables. DOSUBL introduces a new level of macro scopes,

and new scoping rules. Unfortunately, the current SAS documentation does not provide a

clear definition of the DOSUBL scoping rules. This paper presents a series of test cases

designed to illustrate DOSUBL’s handling of macro variable scopes, and infers a set of

DOSUBL macro variable scoping rules.

DISCLAIMER

Most SAS Global Forum papers are written by an expert who thoroughly understands the

subject matter at hand, and seeks to communicate that understanding to the reader by

illustrating and explaining known features. This is not one of those papers. I am not an

expert in DOSUBL, and I do not profess to have a complete understanding of how DOSUBL

works. This paper presents an investigation into the manner in which DOSUBL handles

issues of macro variable scope, with the hope of inferring DOSUBL macro scoping rules.

The reader is forewarned that some of my inferences may be incorrect. I hope this paper

will encourage others to explore DOSUBL, and share the results of their explorations with

the SAS community.

MOTIVATING EXAMPLE

Prior to the introduction of DOSUBL in SAS 9.3M2, there was a golden rule of writing

function-style macros: A function-style macro can contain only macro language statements;

it cannot contain complete SAS language statements.1 Function-style macros are designed

to be executed within a SAS statement, and thus cannot execute SAS statements. DOSUBL

1 This is not strictly accurate. Mike Rhoads (2012) presented an ingenious approach for writing function-style
macros that contain SAS statements in SAS 9.2, which used the FCMP procedure and RUN_MACRO function.

2

allows the creation of macros which contradict that rule. The seminal DOSUBL paper by Rick

Langston (2013) presents a function-style macro that returns a list of variables in a data

set.2 Below is a modified version of that macro:

%macro ExpandVarList(data=, var=_ALL_) ;

 %local rc temp_varnames ;

 %let rc = %sysfunc(dosubl(%nrstr(

 data __MyData ;

 set &data (obs=0) ;

 run ;

 proc transpose data=__MyData out=__ExpandVarList ;

 var &VAR ;

 run ;

 proc sql noprint ;

 select _name_ into :temp_varnames separated by ' '

 from __ExpandVarList

 ;

 drop table __ExpandVarList ;

 drop table __MyData ;

 quit ;

)));

&temp_varnames

%mend ExpandVarList;

Because it is a function-style macro, it can be called as part of a SAS statement, e.g.:

data want ;

 varlist="%ExpandVarList(data=sashelp.shoes,var=_Numeric_)" ;

 put varlist= ;

run ;

returns:

1 data want ;

2 varlist="%ExpandVarList(data=sashelp.shoes,var=_Numeric_)" ;

MPRINT(EXPANDVARLIST): "Stores Sales Inventory Returns"

3 put varlist= ;

4 run ;

varlist=Stores Sales Inventory Returns

As a function-style macro, the job of %ExpandVarList is to generate a list of variables and

return that list. The magic of %ExpandVarList lies in the fact that it generates the list by

somehow executing a DATA step and two PROC steps, while the DATA WANT step is in the

middle of compiling. Consider the timing of the DATA WANT step. While it is compiling the

assignment statement, the compiler sees the macro call. The macro processor executes

%ExpandVarList. Thanks to the magic of DOSUBL, SAS immediately executes the DATA

__MYDATA step, the PROC TRANSPOSE step, and PROC SQL step, all without interrupting

the compilation of the DATA WANT step. When the macro execution completes it returns

the list of variables, and the DATA WANT step completes compilation and executes.

When I first read Langston (2013) I was in shocked disbelief. How could DOSUBL, a

function, be capable of compiling and executing multiple steps of code while the step that

2 Interestingly, the DOSUBL ExpandVarList macro presented in Langston(2013) was inspired by the PROC FCMP
ExpandVarList macro presented in Rhoads (2012). The PROC TRANSPOSE approach used in both macros was
developed by John King (2012), and King (2017) presents a fully developed ExpandVarList macro that uses DOSUBL.

3

called the function is still compiling? The paper explained that it does this by submitting SAS

code to run ‘on the side.’ But what does that mean?

DOSUBL AND THE “SIDE SESSION”

Consider the simple example:

data Main ;

 rc=dosubl('data Side;run;') ;

run ;

When the code is submitted, the SAS session executes the DATA MAIN step. This paper will

refer to the usual SAS session as the ‘main session.’ When the DOSUBL function executes, I

believe it creates a ‘side session’ for the purpose of executing the code passed as an

argument to DOSUBL (i.e. the DATA SIDE step). I envision the side session as a separate,

almost independent SAS session. The side session has its own system options (some of

which are inherited from the main session), its own automatic macro variables (some of

which are inherited), and its own global symbol table for global macro variables.3 The side

session uses the same WORK library as the main session. Each time DOSUBL executes, it

creates a fresh side session and uses it to execute the code passed as an argument. Any

data sets created by the side session are written to the WORK library shared with the main

session. When DOSUBL completes execution, any global macro variables that were created

in the side session are returned to the main session.

Like the program data vector (PDV), the side session is a logical construct. Understanding

how the side session works is important to understanding how DOSUBL works, in the same

way that understanding the PDV is critical to understanding how the DATA step works. As a

SAS programmer, you do not need to know how the side-session in implemented in the

machine code behind DOSUBL (is it really a separate session?), but you do need a logical

model to understand how code executed in the side session behaves and interacts with the

main session, so that you can use DOSUBL effectively and safely.

The DOSUBL documentation does not use the terms “main session” or “side session,” but it

is consistent with these constructs. The documentation states simply:

The DOSUBL function enables the immediate execution of SAS code after a

text string is passed. Macro variables that are created or updated during the

execution of the submitted code are exported back to the calling

environment.

If macro variables that are created by the DOSUBL function are returned “back to the calling

environment” (i.e. “main session” which called DOSUBL), that suggests they were returned

from some other environment where DOSUBL created them in the first place. Langston

(2013) describes the DOSUBL function as being designed to “submit SAS code to run ‘on the

side’ while your DATA step is still running.” Thus, it seems reasonable to consider the

“calling environment” as (typically) the “main session”, and the environment where DOSUBL

code runs as the “side session.”4

3 Proving the assertion that the side session inherits some system options and some automatic macro variables
from the main session is outside the scope of this paper. The reader is encouraged to investigate by comparing the
results of submitting PROC OPTIONS and %PUT _AUTOMATIC_ in both the main session and as an argument to
DOSUBL.
4 Note that one benefit of the documentation’s use of the broader term “calling environment” and implied
“DOSUBL environment” is that it correctly suggests the calling environment is not always the main session. It is
possible to have a DATA step run in the main session, which calls DOSUBL, and the side session created by DOSUBL
can call DOSUBL. Thus there can be nested side sessions, i.e. a side session can also be a calling environment. This
paper will not address nested DOSUBL environments, thus “main session” and “side session” are clear terms.

4

A critical timing feature of DOSUBL is that the code passed as an argument is executed

immediately. This distinguishes DOSUBL from CALL EXECUTE, in which the generated code

cannot be executed until after that DATA step that invoked CALL EXECUTE has completed.

The following code uses DOSUBL to create several output data sets from a single data set.

SASHELP.PRDSALE has data for three countries (Canada, Germany, USA) and DOSUBL is

called three times, executing one DATA step for each country-specific data set:

data _null_ ;

 set sashelp.prdsale ;

 by country ;

 if first.country then do ;

 put _n_= ;

 rc = dosubl('

 data '|| compress(country,".") || ' ;

 set sashelp.prdsale ;

 where country="' || trim(country) ||'" ;

 run ;

 ') ;

 MadeData=cats(exist("work.canada")

 ,exist("work.germany")

 ,exist("work.usa")

) ;

 put MadeData= ;

 end ;

run ;

The log shows:

N=1

NOTE: There were 480 observations read from the data set SASHELP.PRDSALE.

 WHERE country='CANADA';

NOTE: The data set WORK.CANADA has 480 observations and 10 variables.

MadeData=100

N=481

NOTE: There were 480 observations read from the data set SASHELP.PRDSALE.

 WHERE country='GERMANY';

NOTE: The data set WORK.GERMANY has 480 observations and 10 variables.

MadeData=110

N=961

NOTE: There were 480 observations read from the data set SASHELP.PRDSALE.

 WHERE country='U.S.A.';

NOTE: The data set WORK.USA has 480 observations and 10 variables.

MadeData=111

NOTE: There were 1440 observations read from the data set SASHELP.PRDSALE.

The log shows that while the DATA _NULL_ step was executing in the main session, DOSUBL

executed three DATA steps in the side session. On the first iteration of the DATA _NULL_

step, it read the first record with country=’CANADA’, and the DOSUBL function created a

side session and executed the DATA CANADA step. On the 481st iteration of the DATA

NULL step, it read the first record with country=’GERMANY’, and the DOSUBL function

created a side session and executed the DATA GERMANY step. On the 961st iteration it read

5

the first record with country=’U.S.A.’, and the DOSUBL function created a side session and

executed the DATA USA step. On the 1441st iteration the DATA _NULL_ step completed.

When the same step is run using CALL EXECUTE instead of DOSUBL, the log shows that the

timing is very different. The DATA _NULL_ step completes execution before any of the

generated DATA steps have been executed (or even compiled).

N=1

MadeData=000

N=481

MadeData=000

N=961

MadeData=000

NOTE: There were 1440 observations read from the data set SASHELP.PRDSALE.

NOTE: CALL EXECUTE generated line.

1 + data CANADA ; set sashelp.prdsale ; where country="CANADA" ; run ;

NOTE: There were 480 observations read from the data set SASHELP.PRDSALE.

 WHERE country='CANADA';

NOTE: The data set WORK.CANADA has 480 observations and 10 variables.

2 + data GERMANY ; set sashelp.prdsale ; where country="GERMANY" ;run ;

NOTE: There were 480 observations read from the data set SASHELP.PRDSALE.

 WHERE country='GERMANY';

NOTE: The data set WORK.GERMANY has 480 observations and 10 variables.

3 + data USA ; set sashelp.prdsale ; where country="U.S.A." ;run ;

NOTE: There were 480 observations read from the data set SASHELP.PRDSALE.

 WHERE country='U.S.A.';

NOTE: The data set WORK.USA has 480 observations and 10 variables.

Look again at the definition of %ExpandVarList, and note that the code in bold is executed

within the side session:

%macro ExpandVarList(data=, var=_ALL_) ;

 %local rc temp_varnames ;

 %let rc = %sysfunc(dosubl(%nrstr(

 data __MyData ;

 set &data (obs=0) ;

 run ;

 proc transpose data=__MyData out=__ExpandVarList ;

 var &VAR ;

 run;

 proc sql noprint ;

 select _name_ into :temp_varnames separated by ' '

 from __ExpandVarList

 ;

 drop table __ExpandVarList ;

 drop table __MyData ;

 quit ;

)));

&temp_varnames

%mend ExpandVarList;

6

When the macro is invoked in the main session, local macro variables DATA, VAR, RC and

TEMP_VARNAMES are created. When the DOSUBL function executes, it creates a side

session which executes the code in bold. The side session code references the macro

variables DATA and VAR which exist in the main session. This means somehow, code

executing in the side session is able to resolve macro variables that exist in the main

session symbol tables. The side session code determines the list of variables and writes the

list to the macro variable TEMP_VARNAMES, which is later resolved in the main session.

This means code executing in the side session can update macro variables in the main

session. When the DOSUBL side session code references, updates, or creates macro

variables, it is critical to understand the scoping rules which determine how references

resolve in the side session, and how the main session symbol tables are updated.

OVERVIEW OF TEST CASES

The following test cases investigate DOSUBL handling of macro variable scope. Each code

block is designed to be run in a “clean” SAS session, with no preexisting user-created macro

variables. The test cases were run on SAS 9.4M4 (Windows) and 9.4M6 (Linux).

The examples call DOSUBL in a DATA step:

data _null_ ;

 rc=dosubl('/*side session code*/') ;

run ;

rather than calling DOSUBL via the %SYSFUNC macro function:

%let rc= %sysfunc(dosubl(%nrstr(/*side session code*/)));

The choice of how DOSUBL is called does not impact how the side session code is executed,

or the associated scoping rules. Note that when DOSUBL is called from a DATA step, the

side session code is nested in single quotes. This prevents any macro triggers from being

resolved prematurely, while the DATA step is compiling. When DOSUBL is called by

%SYSFUNC, the side session code is nested in the %NRSTR macro quoting function for the

same reason.

SIDE SESSION RESOLUTION OF MAIN SESSION MACRO

VARIABLES

Macro variables that exist in the main session symbol tables (global symbol table and any

local symbol tables that exist) will resolve in the DOSUBL side session code. Assuming

there were no macro variables created in the side session code, the resolution follows the

usual macro variable scoping rules. When the macro processor resolves a macro variable

reference it starts by looking in the inner most local symbol table that exists, and then looks

consecutively in outer scopes until the symbol is found.

The following code creates a global macro variable in the main session global symbol table,

and then in the side session code uses a %PUT statement to resolve the global macro

variable, and a %PUT _USER_ statement to show the user-created macro variables that the

side session can see:

%let x=1 ;

data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %put &=x ;

 %put _user_ ;

 ') ;

run ;

7

The log shows that X is resolved appropriately, and that %PUT _USER_ shows the content

of main session global symbol table:

--Side Session--

X=1

GLOBAL X 1 stored in main session global symbol table

The following code creates a global macro variable X in the main session global symbol

table, and then executes a macro which creates a local variable X, and calls DOSUBL to

execute the same %PUT statements in the side session:

%let x=global ;

%macro try() ;

 %local x ;

 %let x=local ;

 data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %put &=x ;

 %put _user_ ;

 ') ;

 run ;

%mend ;

%try()

If code executing in the side session follows the familiar macro resolution rules, the

reference to macro variable X should resolve to the value of the local macro variable X

defined in the macro TRY, and the %PUT _USER_ statement should see both the local

macro variable X and the global macro variable X. Happily, this is the case:

--Side Session--

X=local

TRY X local stored in main session local symbol table

GLOBAL X global stored in main session global symbol table

Inferred Rules

When there are no macro variables created in the side session, macro references are

resolved following the same familiar rules as the main session. The picture becomes more

complex when the side session code updates existing macro variables or creates new macro

variables, which will be discussed below.

SIDE SESSION CREATION OF MACRO VARIABLES

DOSUBL CALLED IN OPEN CODE

When DOSUBL is called in open code (i.e. outside of a macro), the side session code can

create new main session global macro variables, and can also update existing main session

global macro variables.

The following code creates a global macro variable in the side session global symbol table.

When DOSUBL completes, it returns the global macro variable to the main session global

symbol table.

8

data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %let x=1 ;

 %put &=x ;

 %put _user_ ;

 ') ;

run ;

%put --Main Session-- ;

%put &=x ;

%put _user_ ;

The log shows that the global macro variable X created in the side session exists in the main

session after DOSUBL() completes:

1 data _null_ ;

2 rc = dosubl('

3 %put --Side Session-- ;

4 %let x=1 ;

5 %put &=x ;

6 %put _user_ ;

7 ') ;

8 run ;

--Side Session--

X=1

GLOBAL X 1 stored in side session global symbol table

9

10 %put --Main Session-- ;

--Main Session--

11 %put &=x ;

X=1

12 %put _user_ ;

GLOBAL X 1 stored in main session global symbol table

The log above shows that the macro variable X created in the side session exists in the main

session after DOSUBL has completed. It does not, however, provide evidence of my claim

that there is a side session global symbol table, separate from the main session global

symbol table. I came to that conclusion when I noticed an oddity in the following results.

The following code creates two global macro variables A and B in the main session, and then

the side session creates a global macro variable C:

%let B=B_Main ;

%let A=A_Main ;

data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %let C=C_Side ;

 %put _user_ ;

 ') ;

run ;

%put --Main Session-- ;

%put _user_ ;

The log shows that the macro variable C is created in the side session global table. Within

the side session, the %PUT _USER_ statement shows all three macro variables are

9

available. When DOSUBL completes execution, the macro variable C is returned to the main

session global symbol table. The main session %PUT _USER_ also shows all three variables

are available:

1 %let B=B_Main ;

2 %let A=A_Main ;

3

4 data _null_ ;

5 rc = dosubl('

6 %put --Side Session-- ;

7 %let C=C_Side ;

8 %put _user_ ;

9 ') ;

10 run ;

--Side Session--

GLOBAL C C_Side stored in side session global symbol table

GLOBAL A A_Main stored in main session global symbol table

GLOBAL B B_Main stored in main session global symbol table

11

12 %put --Main Session-- ;

--Main Session--

13 %put _user_ ;

GLOBAL A A_Main stored in main session global symbol table

GLOBAL B B_Main stored in main session global symbol table

GLOBAL C C_Side stored in main session global symbol table

What evidence is there that the macro variable C was created in a side session global table

which is separate from the main session symbol table? Note that in the log from the side

session %PUT _USER_ statement, the three global macro variables are NOT listed in

alphabetical order. The %PUT _USER_ statement orders macro variables by scope (starting

with the inner most scope that exists), and within each scope orders macro variables

alphabetically. In the side session, the macro variable C is printed first because it is stored

in the side session global symbol table. The macro variables A and B are printed after C

because they are stored in a different scope, the main session global symbol table. After

DOSUBL completes, it returns macro variable C from the side session global symbol table to

the main session symbol table. When the main session %PUT _USER_ statement executes,

all three macro variables are stored in the same scope, and it orders them alphabetically.

This begs the question of what would happen if the side session assigned a value to macro

variable B when a main session macro variable B already exists. Would it be written to the

side session global symbol table or would it directly update the main session global symbol

table? It turns out that when the side session %LET executes, it writes directly to the main

session global symbol table:

1 %let B=B_Main ;

2 %let A=A_Main ;

3

4 data _null_ ;

5 rc = dosubl('

6 %put --Side Session-- ;

7 %let B=B_Side ;

8 %let C=C_Side ;

9 %put _user_ ;

10 ') ;

11 run ;

10

--Side Session--

GLOBAL C C_Side stored in side session global symbol table

GLOBAL A A_Main stored in main session global symbol table

GLOBAL B B_Side stored in main session global symbol table

12

13 %put --Main Session-- ;

--Main Session--

14 %put _user_ ;

GLOBAL A A_Main stored in main session global symbol table

GLOBAL B B_Side stored in main session global symbol table

GLOBAL C C_Side stored in main session global symbol table

Looking again at the order of macro variables listed in the side session %PUT _USER_

statement, the macro variable B is still listed after the macro variable C. This tells us that B

was written to the main session global symbol table. If B had been written to the side

session global table, we would have seen B listed before C. In fact, we would have seen B

listed twice, because it would have shown the macro variable B in the side session global

table and the separate macro variable B in main session global symbol table.

Automatic Macro Variables

While this section has showed that user-created global macro variables created in the side

session are returned to the main session, it is important to know that automatic macro

variables created in the side session are NOT returned to the main session. For example,

consider the automatic macro variable SYSCC, which stores a job condition code

(0=success). The following code uses DOSUBL to execute a DATA step which errors.

data _null_ ;

 rc = dosubl('

 data foo ;

 Invalid Code ;

 run ;

 %put --Side Session-- ;

 %put &=SYSCC ;

 %put ;

 ') ;

 put "Main Session DOSUBL return code: " rc= ;

run ;

%put --Main Session-- ;

%put &=SYSCC ;

The log shows an error message, and the value of SYSCC is appropriately set to non-zero in

the side session. But the value of the side session automatic variable SYSCC is not returned

to the main session automatic variable SYSCC. After DOSUBL completes, the main session

SYSCC remains as zero. Note also that the value returned by DOSUBL (stored in the data

step variable RC) is also zero. DOSUBL returns zero when it is able to execute code,

regardless of whether or not the code executes successfully:

ERROR 180-322: Statement is not valid or it is used out of proper order.

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.FOO may be incomplete. When this step was

stopped there were 0 observations and 0 variables.

--Side Session--

SYSCC=3000

Main Session DOSUBL return code: rc=0

11

13

14 %put --Main Session-- ;

--Main Session--

15 %put &=SYSCC ;

SYSCC=0

How can we capture a return code from DOSUBL? The above shows that the automatic

macro variable SYSCC is not returned from the side session to the main session. We have

already seen that user-created global macro variables in the side session are returned to

the main session. Thus, one way to capture a return code from DOSUBL is to create a

global macro variable in the side session, storing the value of SYSCC:

data _null_ ;

 rc = dosubl('

 data foo ;

 Invalid Code ;

 run ;

 %let MySYSCC=&SYSCC ;

 %put --Side Session-- ;

 %put &=MySYSCC ;

 %put ;

 ') ;

 put "Main Session DOSUBL return code: " rc= ;

run ;

%put --Main Session-- ;

%put &=MySYSCC ;

ERROR 180-322: Statement is not valid or it is used out of proper order.

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.FOO may be incomplete. When this step was

stopped there were 0 observations and 0 variables.

--Side Session--

MYSYSCC=3000

Main Session DOSUBL return code: rc=0

14

15 %put --Main Session-- ;

--Main Session--

16 &=MySYSCC ;

MYSYSCC=3000

Inferred Rules for DOSUBL Called In Open Code

When DOSUBL is called in open code and the side session assigns a value to a user-created

global macro variable, the following rules are applied:

1. If the main session global symbol table has a macro variable with the same name,

that macro variable is updated.

2. Otherwise, the macro variable is created in the side session global symbol table, and

is returned to the main session symbol table when DOSUBL completes.

12

DOSUBL CALLED INSIDE A MACRO

When DOSUBL is called inside a macro, the scoping rules are more complex, because the

side session code may return macro variables to the main session global symbol table or a

macro’s local symbol table. The DOSUBL practitioner must understand the rules that dictate

how macro variables are returned.

In the following code DOSUBL is called inside a macro. When DOSUBL is called, the main

session has macro variables A and B in the main session global symbol table, and macro

variable B in the local symbol table of the macro TRY. The DOSUBL side session code has

three %LET statements that assign values to A, B, and C.

%let A=A_Main ;

%let B=B_Main ;

%macro try() ;

 %local B ;

 data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %let A=A_Side ;

 %let B=B_Side ;

 %let C=C_Side ;

 %put _user_ ;

 %put ;

 %put In side session %nrstr(&)A resolves to: &A ;

 %put In side session %nrstr(&)B resolves to: &B ;

 ') ;

 run ;

 %put --Main Session-- ;

 %put _user_ ;

%mend try ;

%try()

The log shows:

21 %try()

--Side Session--

GLOBAL A A_Side stored in side session global symbol table

GLOBAL B B_Side stored in side session global symbol table

GLOBAL C C_Side stored in side session global symbol table

TRY B stored in main session local symbol table

GLOBAL A A_Main stored in main session global symbol table

GLOBAL B B_Main stored in main session global symbol table

In side session &A resolves to: A_Side

In side session &B resolves to: B_Side

--Main Session--

TRY B B_Side stored in main session local symbol table

GLOBAL A A_Side stored in main session global symbol table

GLOBAL B B_Main stored in main session global symbol table

GLOBAL C C_Side stored in main session global symbol table

Note then when the %LET statements execute in the side session, they create three new

global macro variables in the side session global symbol table. Even though A existed in the

13

main session global symbol table, and B existed in both the main session global symbol

table and the local symbol table of TRY, the %LET statement does NOT update them. The

side session %PUT _USER_ shows A, B, and C created in the side session global symbol

table, then B in the local symbol table of TRY, then A and B in the main session global

symbol table. References to A or B in the side session resolve to the value stored in the

side session global symbol table.

When DOSUBL completes it returns the three global macro variables created in the side

session to the main session. When returning a macro variable, DOSUBL looks at the

existing main session symbol tables to determine which scope to return it to. If the macro

variable exists in a local symbol table, it is returned to the inner most local symbol table. If

the macro variable does not exist in a local symbol table, it is returned to the global symbol

table. The log shows that when A is returned from the side session it updates the existing

macro variable A in the main session global symbol table. When B is returned it updates

the existing macro variable B in the local symbol table of TRY. When C is returned it creates

a new macro variable C in the global symbol table, because it did not exist in any scope

previously.

I had hoped that the rule might be that DOSUBL would return a macro variable to the inner

most scope where it exists, but that is not the rule. If the macro variable exists in any local

scope, it is returned to the inner most local scope. The below code has a macro OUTER

which creates a local macro variable A, and then invokes a macro INNER. INNER calls

DOSUBL which creates a global macro variable A in the side session:

%macro outer() ;

 %local A ;

 %let A=A_Main ;

 %inner()

%mend outer ;

%macro inner() ;

 data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %let A=A_Side ;

 %put _user_ ;

 ') ;

 run ;

 %put --Main Session-- ;

 %put _user_ ;

%mend inner ;

%outer()

I had hoped that when DOSUBL completed, it would return A to the local symbol table of

OUTER, because that is the first symbol table where A exists. In fact, the log shows that it

returned A to the local symbol table of INNER:

19 %outer()

--Side Session--

GLOBAL A A_Side stored in side session global symbol table

OUTER A A_Main stored in main session local symbol table

--Main Session--

INNER A A_Side stored in main session local symbol table

OUTER A A_Main stored in main session local symbol table

14

As shown above, when DOSUBL is called in a macro, the side session open %LET statement

will always create a global macro variable in the side session global symbol table.

Surprisingly, when CALL SYMPUTX is called with the “G” parameter, and there is a pre-

existing macro variable with the same name in the main session in any scope, CALL

SYMPUTX will write directly to the main session global symbol table. The below code

invokes a macro TRY with two local macro variables A and B. The DOSUBL side session

code uses %LET to create a macro variable A, and CALL SYMPUTX to create a macro

variable B, in hopes of having both macro variables returned to the local symbol table of

TRY:

%macro try() ;

 %local A B ;

 data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %let A=A_Side ;

 data _null_ ;

 call symputx("B","B_Side","G") ;

 run ;

 %put _user_ ;

 ') ;

 run ;

 %put --Main Session-- ;

 %put _user_ ;

%mend try ;

%try()

The log shows that the %LET statement writes A to the side session global symbol table,

and then DOSUBL returns A to the local scope of TRY, as expected. CALL SYMPUTX,

however, writes B directly to the main session global symbol table. After DOSUBL

completes, the local macro variable B is still null:

18 %try()

--Side Session--

GLOBAL A A_Side stored in side session global symbol table

TRY A stored in main session local symbol table

TRY B stored in main session local symbol table

GLOBAL B B_Side stored in main session global symbol table

--Main Session--

TRY A A_Side stored in main session local symbol table

TRY B stored in main session local symbol table

GLOBAL B B_Side stored in main session global symbol table

I find this behavior surprising. Happily, if the call to the SYMPUTX routine does not specify

the third parameter as “G”, the macro variable B will be written to the side session global

symbol table, and returned to the local symbo table of TRY.

Inferred Rules for DOSUBL Called Inside A Macro

When DOSUBL is called inside of a macro and the side session assigns a value to a user-

created global macro variable, the following rules are applied:

15

1. The macro variable is created in the side session global symbol table.5

2. When returning the side session macro variable to the main session, DOSUBL looks

at the existing main session symbol tables to determine which scope to return it to.

a. If the macro variable exists in any local symbol table, it is returned to the

inner most local symbol table.

b. If the macro variable does not exist in a local symbol table, it is returned to

the global symbol table.

DOSUBL INVOKING MACROS

DOSUBL can execute code which invokes a macro. The macro may create local macro

variables, and it may assign values to global macro variables. When a macro assigns a

value to a global macro variable, the “Inferred Rules” defined in the two previous sections

are applied. Only global macro variables are returned to the main session when DOSUBL

completes. Local macro variables created in the side session are not returned to the main

session, because the local macro variables are deleted when the macro completes

execution, before DOSUBL completes.

The below code creates global macro variables A and B in the main session, and then calls

DOSUBL to invoke the macro MakeVars in the side session. MakeVars assigns values to

global macro variable A, local macro variable B, and global macro variable C:

%let A=A_Main ;

%let B=B_Main ;

%macro MakeVars() ;

 %global A C ;

 %local B ;

 %let A=A_side ;

 %let B=B_side ;

 %let C=C_side ;

 %put _user_ ;

%mend ;

data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %MakeVars()

 ') ;

run ;

%put --Main Session-- ;

%put _user_ ;

The log shows that when the macro MakeVars executes in the side session, it updates the

existing main session global macro variable A, and creates a new side session global macro

variable C. It also creates a side session local macro variable B. After DOSUBL completes

execution, it returns the side session global macro variable C to the main session global

symbol table. That is consistent with the previously inferred rules for how DOSUBL handles

macro variable scope when it is called in open code:

5 The example of CALL SYMPUTX with the “G” argument and a preexisting macro variable in the main session is an
exception to this rule.

16

--Side Session--

MAKEVARS B B_side stored in side session local symbol table

GLOBAL C C_side stored in side session global symbol table

GLOBAL A A_side stored in main session global symbol table

GLOBAL B B_Main stored in main session global symbol table

19 %put --Main Session-- ;

--Main Session--

20 %put _user_ ;

GLOBAL A A_side stored in main session global symbol table

GLOBAL B B_Main stored in main session global symbol table

GLOBAL C C_side stored in main session global symbol table

The above also demonstrates an important point: macros compiled in the main session can

be invoked in the side session (but the converse is not true).

The prior example showed that a macro invoked in the side session can create a global

macro variable and return it to the main session global symbol table. It should also be

possible to have a macro invoked in the side session create a global macro variable and

return it to a main session local symbol table. Below is my first attempt, but it fails. It

invokes a macro TRY which has a local macro variable A, and calls DOSUBL which invokes

the macro MakeVars in hopes of making a side session global macro variable A, which will

be returned to the local symbol table of TRY:

%let A=A_Main ;

%macro try() ;

 %local A ;

 data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %MakeVars()

 ') ;

 run ;

 %put --Main Session-- ;

 %put _user_ ;

%mend try ;

%macro MakeVars() ;

 %global A ;

 %local B ;

 %let A=A_side ;

 %let B=B_side ;

 %put _user_ ;

%mend ;

%try()

Unfortunately, the code errors. The log shows:

 ERROR: Attempt to %GLOBAL a name (A) which exists in a local environment.

When the %GLOBAL A; statement executed in the side session, it errored because when the

%GLOBAL statement executes, it checks to see if there are any local macro variables with

the same name. Unfortunately, even though this %GLOBAL statement is executed in the

side session, it apparenty still checks the main session local symbol tables, and throws an

error when it finds the macro variable A in the symbol table of TRY.

In order for DOSUBL to return the macro variable A to the local symbol table of TRY, it

needs to create a global macro variable A in the side session symbol table. But MakeVars

17

cannot use the %GLOBAL statement to create the side session global macro variable,

because it errors. One work-around for creating the global macro variable A in the side

session is to use an open %LET statement in the side session before calling MakeVars. The

%LET statement will create the global macro variable A in the side session, and then

MakeVars can update its value:

%let A=A_Main ;

%macro try() ;

 %local A ;

 data _null_ ;

 rc = dosubl('

 %put --Side Session-- ;

 %let A= ; %*Create global macro var A in side session ;

 %MakeVars2()

 ') ;

 run ;

 %put --Main Session-- ;

 %put _user_ ;

%mend try ;

%macro MakeVars2() ;

 %* Do not declare scope of A ;

 %local B ;

 %let A=A_side ;

 %let B=B_side ;

 %put _user_ ;

%mend ;

%try()

Note that the macro MakeVars2 does not declare the macro variable A as global (or local).

When the statement %let A=A_side ; executes it sees that A exists in the side session

global symbol table and updates the value there. When DOSUBL completes, it returns the

side session global macro variable A to the local symbol table of TRY. That is consistent with

the previously inferred rules for how DOSUBL handles macro variable scope when it is called

inside a macro:

24 %try()

--Side Session--

MAKEVARS2 B B_side stored in side session local symbol table

GLOBAL A A_side stored in side session global symbol table

TRY A stored in main session local symbol table

GLOBAL A A_Main stored in main session global symbol table

--Main Session--

TRY A A_side stored in main session local symbol table

GLOBAL A A_Main stored in main session global symbol table

Note that this is the first time that the side session %PUT _USER_ shows macro variables

from all four different scopes: The macro variable B is stored in the side session local

symbol table of MAKEVARS2. The macro variable A with the value A_Side is stored in the

side session global symbol table. The macro variable A with the value null is stored in the

main session local symbol table of TRY. The macro variable A with the value A_Main is

stored in the main session global symbol table.

18

Inferred Rules

When DOSUBL invokes a macro, the macro executing in the side session can create local

macro variables and it can assign values to global macro variables. When the macro

assigns a value to a global macro variable, it may update an existing main session global

macro variable, or create a new side session global macro variable, according to the

previously identified inferred rules. Only side-session global macro variables are returned to

the main session, using the previously identified inferred rules to determine the main

session macro variable scope. If the main session has a local macro variable defined and

DOSUBL executes a %GLOBAL statement which refers to a macro variable with the same

name, the %GLOBAL statement will error.

CONCLUSION

When DOSUBL executes, it creates a “side session” to execute code. Code executed in the

side session may directly update the main session global symbol table, or create macro

variables in side session symbol tables. When DOSUBL completes execution, any side

session global macro variables are returned to the main session. Following is a summary of

the rules DOSUBL seems to use for deciding the scope of macro variables.

When code executed by DOSUBL assigns a value to a user-created global macro variable:

1. IF (the macro variable exists in the main session global symbol table) AND (DOSUBL

was called in open code OR the macro variable was assigned a value by CALL

SYMPUTX specifying the G symbol table) THEN update the main session global macro

variable.

2. ELSE create a new side session global macro variable.

When code executed by DOSUBL references a macro variable, the macro processor searches

the symbol tables in the following order:

1. Side session local symbol tables (starting with the inner-most local symbol table then

moving outward)

2. Side session global symbol table

3. Main session local symbol tables (starting with the inner-most local symbol table

then moving outward)

4. Main session global symbol table

When DOSUBL completes execution, any side session user-created global macro variables

are returned to the main session:

1. IF a same-named macro variable exists in any main session local symbol table THEN

create (or update) the macro variable in the most local main session local symbol

table that exists.

2. ELSE create (or update) the macro variable in the main session global symbol table.

REFERENCES

Langston, Rick. 2013. “Submitting SAS Code On The Side”. SAS Global Forum 2013, San

Francisco, California. Available at

https://support.sas.com/resources/papers/proceedings13/032-2013.pdf.

King, John. 2012. “Atypical Applications of Proc Transpose”. PharmaSUG 2012, San

Francisco, California. Available at

http://www.lexjansen.com/pharmasug/2012/TF/PharmaSUG-2012-TF12.pdf.

https://support.sas.com/resources/papers/proceedings13/032-2013.pdf
http://www.lexjansen.com/pharmasug/2012/TF/PharmaSUG-2012-TF12.pdf

19

King, John. 2017. “DOSUBL and the Function Style Macro”. MidWest SAS Users Group 2017,

St. Louis, Missouri. Available at

https://www.mwsug.org/proceedings/2017/BB/MWSUG-2017-BB142.pdf.

Rhoads, Mike. 2012. “Use the Full Power of SAS in Your Function-Style Macros.” SAS Global

Forum 2012, Orlando, Florida. Available at

https://support.sas.com/resources/papers/proceedings12/004-2012.pdf.

ACKNOWLEDGMENTS

I am grateful for the input of several people kind enough to review a draft of this paper and

provide helpful feedback: Roger DeAngelis; Richard DeVenezia; Bartosz Jabłoński; Rick

Langston and Russ Tyndall. Countless others have contributed to my understanding of

DOSUBL by participating in online conversations on SAS-L (https://listserv.uga.edu/cgi-

bin/wa?A0=SAS-L) and communities.sas.com (https://communities.sas.com/). Any

remaining errors or misconceptions in this paper are of course my own.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Quentin McMullen

Siemens Healthineers

qmcmullen@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.mwsug.org/proceedings/2017/BB/MWSUG-2017-BB142.pdf
https://support.sas.com/resources/papers/proceedings12/004-2012.pdf
https://listserv.uga.edu/cgi-bin/wa?A0=SAS-L
https://listserv.uga.edu/cgi-bin/wa?A0=SAS-L
https://communities.sas.com/
mailto:qmcmullen@gmail.com

