

1

Paper 4936-2020

Upgrading Clinical Trial Reports from ODS LISTING to ODS

TAGSETS.RTF

Christopher J. Smith, Cytel; Joshua M. Horstman, Nested Loop Consulting

ABSTRACT

Several pharmaceutical and biotechnology companies are still using ODS LISTING as the

primary method for producing outputs. While there is nothing inherently wrong with this

approach, using either ODS RTF or ODS TAGSETS.RTF can provide more aesthetically

pleasing outputs in the same font as the main clinical study report. In addition, it can

provide a more harmonized approach between tables, listings and figures by having a file

format compatible with graphics procedures. Lastly, it lays the foundation to have a more

robust validation process by having the option to read the actual RTF file back into a SAS®

data set. This paper provides examples of typical clinical tables and listings and how to

create them in the TAGSETS.RTF destination. Several commonly used options found within

the REPORT procedure such as HEADLINE, HEADSKIP, SPLIT=, SKIP, and many others are

only available in the LISTING destination. We will provide alternative approaches including

STYLE override options, inline formatting, and COMPUTE BLOCK statements when upgrading

to using the TAGSETS.RTF destination. We will also touch on STYLE template basics in the

TEMPLATE procedure to avoid lengthy PROC REPORT procedures. After covering these

topics, the programmer will be equipped to produce any table or listing typically needed for

a clinical trial report. SAS 9.4 M6 was used in the examples presented. The intended

audience for this paper is beginner to intermediate SAS users with basic knowledge of Base

SAS and PROC REPORT.

INTRODUCTION

In the beginning, SAS® produced simple text output using a monospace font. Today, this is

known as the ODS LISTING destination as it is just one of many destinations available

through the Output Delivery System (ODS). One of the most frequently used destinations is

the ODS RTF destination, which was released with SAS version 8.1 and marks its 20-year

anniversary this year.

Despite the popularity of ODS RTF, it has several shortcomings, particularly related to

pagination. In SAS version 9.2, released in 2008, SAS addressed some of the deficiencies

of ODS RTF through addition of the TAGSETS.RTF destination. TAGSETS.RTF better

manages titles and footnotes of multi-page reports by attempting to vertically measure

where page breaks should occur.

Despite these RTF destinations having been around for decades, many pharmaceutical and

biotechnology companies have yet to upgrade their processes to producing RTF output. The

RTF destinations offer many benefits such as including proportional fonts and other rich text

elements, having a single destination for all outputs (i.e. tables, listings, and figures), and

laying the foundation for a more robust validation process.

This paper addresses new techniques statistical programmers will need to know when

producing RTF outputs. We will use the TAGSETS.RTF destination throughout this paper

due to its improved vertical measurement capabilities and expanded reporting options

compared to the standard RTF destination. Techniques discussed include ODS ESCAPECHAR

2

functions for inline formatting along with COMPUTE BLOCK statements, CALL DEFINE

statements, and STYLE override options within the REPORT procedure.

REPORT PROCEDURE BASICS

Before we get started, we would like to cover some basics on how the pharmaceutical and

biotechnology industries utilize the REPORT procedure. While PROC REPORT can perform

summarization and analysis of variables, all calculations and derivations are performed prior

to invoking PROC REPORT in most clinical trial report programs. This allows ultimate

flexibility over the formatting and structure of the report. The calculations can be

performed using the SUMMARY or FREQ procedures, or a company might have standard

macros to perform summary statistics or counts and percentages. Figure 1 shows an

example flow of a clinical trial program to create a simple demography summary. The main

takeaway is that all results are calculated before reaching PROC REPORT.

Figure 1. Example Flow of Clinical Trial Report Program

Since we are only using PROC REPORT as a glorified PRINT procedure, there are a few

housekeeping rules to remember regarding options used within PROC REPORT.

MISSING OPTION

On the PROC REPORT statement, there is a MISSING option that we want active for every

output:

proc report data=cars missing;

 <other REPORT statements>

run;

The reason we want MISSING on every PROC REPORT statement is so that no records are

excluded from the report. Otherwise, variables defined as ORDER variables that have

3

missing values will have the entire record suppressed. Table 1 shows a data set, CARS,

with a variable, MODEL, containing a missing value. MODEL will be used as an ORDER

variable.

Make Model Type MSRP

Acura MDX SUV $36,945

Acura Sedan $23,820

Acura TSX 4dr Sedan $26,990

Acura TL 4dr Sedan $33,195

Acura 3.5 RL 4dr Sedan $43,755

Acura NSX coupe 2dr manual S Sports $89,765

Table 1. Data Set with a Variable Containing a Missing Value

In clinical trial reporting, we want to provide all available information, even incomplete

records that have missing values. However, using the REPORT procedure below without the

MISSING option suppresses the second record in Table 1:

proc report data=cars;

 columns make model type;

 define make /order order=internal;

 define model/order order=internal;

run;

Note that the ORDER= option is different from the ORDER option. Defining a variable as an

ORDER variable causes the report to have one row for every observation in the data set,

and those rows will be sorted based on the values of the ORDER values. The ORDER=

option is used to specify how the values of an ORDER variable are used to order the report.

We can use the ORDER= option to order the rows based on the FORMATTED value of an

ORDER variable or the non-formatted (or INTERNAL) value, amongst a few others. In this

paper, we primarily use ORDER=INTERNAL.

Output 1 shows the report with no MISSING option.

Make Model Type

Acura 3.5 RL 4dr Sedan

 MDX SUV

 NSX coupe 2dr manual S Sports

 TL 4dr Sedan

 TSX 4dr Sedan

Output 1. PROC REPORT without MISSING Option

Notice the record having a missing value for MODEL is suppressed from the entire report.

Including the MISSING option on the PROC REPORT statement will avoid this issue. Moving

forward, we will use the unaltered SASHELP.CARS data set which does not contain any

missing values for MODEL.

ANALYSIS OPTION

By default, PROC REPORT treats numeric variables as ANALYSIS variables and calculates the

SUM statistic. Therefore, the following REPORT procedures will result in the same output:

proc report data=sashelp.cars missing;

 columns msrp;

 define msrp/analysis;

run;

4

proc report data=sashelp.cars missing;

 columns msrp;

run;

Output 2 shows the default behavior of numeric analysis variables.

 MSRP

 14027638

Output 2. DEFINE Statement Defaulting to ANALYSIS

This is behavior we do not want to see in our reports. We will analyze the data ourselves

before passing it to PROC REPORT. The use of the ORDER and DISPLAY options on the

DEFINE statement can prevent this analysis behavior of PROC REPORT.

GROUP OPTION

There is often some confusion between the GROUP and ORDER options on the DEFINE

statement. Some programmers use these options interchangeably, but the options have

very different behaviors. Defining a GROUP variable will attempt to combine rows with

common values and calculate a statistic for another variable defined as an ANALYSIS

variable. For example, the following report will calculate the sum of the values of MSRP

within each level of MAKE:

proc report data=sashelp.cars missing;

 columns make msrp;

 define make/group order=internal;

run;

Output 3 shows the summation results for each value of the GROUP variable.

 Make MSRP

 Acura $300,570

 Audi $822,850

 BMW $865,705

... continued ...

Output 3. Variable Defined as GROUP

Recall the ORDER= option simply controls how rows are ordered throughout the report. The

ORDER= option can be used in conjunction with either the GROUP or ORDER option. Since

we calculate results prior to the PROC REPORT step for clinical trial reporting, there is

usually no practical use for the GROUP option.

REMOVING THE RISK OF INCORRECT REPORTING

For reporting clinical trial data, especially for data listings, it is our intention to always

report all records. Therefore, within the pharmaceutical and biotechnology industries we try

to adhere to the following practices:

1. Do not DEFINE variables as GROUP variables.

2. Explicitly DEFINE every variable to be either an ORDER variable or a DISPLAY

variable. The DISPLAY option makes sure there is a row in the report for each

observation in the input data set.

The following code will produce one row in the report for every observation in the data set:

5

proc report data=sashelp.cars missing;

 columns make msrp;

 define make/order order=internal;

 define msrp/display;

run;

Output 4 shows that using ORDER and DISPLAY produces a report having the same number

of rows as observations in the input data set.

 Make MSRP

 Acura $36,945

 $23,820

 $26,990

 $33,195

 $43,755

... continued ...

Output 4. Using ORDER and DISPLAY on Each DEFINE

OPTIONS ONLY FOR THE ODS LISTING DESTINATION

There are several options available in PROC REPORT that apply only to the ODS LISTING

destination (i.e. text-based output). These include:

• HEADLINE (PROC REPORT statement)

• HEADSKIP (PROC REPORT statement)

• SPLIT= (PROC REPORT statement)

• SPACING= (PROC REPORT and DEFINE statement)

• FLOW (DEFINE statement)

• WIDTH= (DEFINE statement)

• SKIP (BREAK statement)

• @n placement (LINE statement)

• Repeat characters, like “__” or “--” for spanning headers

When using the RTF or TAGSETS.RTF destination, we avoid using these options. The one

exception is the SPLIT= option. In the RTF destinations, SPLIT= option will still be available

to force line breaks within column headers. However, split characters embedded within

data values are recognized only in ODS LISTING. Otherwise, the options listed above have

no utility and can confuse a less experienced programmer attempting to reuse or debug a

program. Furthermore, it is not a good programming practice to include code that does

nothing, also known as dead code.

ODS TAGSETS.RTF

Now that we’ve reviewed the basic use of PROC REPORT as it pertains to clinical trial

reporting, we turn our attention to the reporting techniques necessary to generate clinical

trial reports in the TAGSETS.RTF destination. We begin with a data set that already

contains all necessary derivations and calculations and is ready for display using PROC

REPORT. Display 1 shows the data set we will be reporting on throughout the paper, which

contains summarized demographics data. The underlying data came from the CDISC Pilot

Project, an example clinical trial provided by CDISC to demonstrate the use of the CDISC

data standards. It is available at https://www.cdisc.org/pilot-project-submission-package.

https://www.cdisc.org/pilot-project-submission-package

6

Display 1. Summarized Demographics Data Set

In order to make use of the TAGSETS.RTF destination, we close the LISTING output and

send the report to an RTF file using the following code:

ods listing close;

ods tagsets.rtf file="d:\drug\study\outputs\t-dm.rtf"; ❶

title j=l "Protocol: CDISCPILOT01"

 j=c "Population: Intent-to-Treat"

 j=r "PAGE_X_OF_Y"; ❷

title3 "Summary of Demographic and Baseline Characteristics";

footnote1 "[1] P-values are results of ANOVA treatment group comparisons

for continuous variables and Pearson’s chisquare test for categorical

variables.";

footnote2 "NOTE: Percentages are based on the number of non-missing

values.";

footnote3 j=l "Source: d:\t-dm-sgf.rtf"

 j=r "Date: &sysdate9.";

proc report data=comb split='|' missing nocenter;

 columns varord varlbl statord statlbl col: pvalue;

 *Order variables; ❸

 define varord /order order=internal noprint;

 define varlbl /order order=internal noprint;

 define statord /order order=internal noprint;

 *Reported columns; ❸

 define statlbl /display '';

 define col: /display;

 define pvalue /display;

7

 *Labels over statistics; ❹

 compute before varlbl;

 line varlbl $50.;

 endcomp;

run;

ods tagsets.rtf close;

ods listing;

❶ First, we close the ODS LISTING destination and open the TAGSETS.RTF destination.

While it is possible to write to both destinations simultaneously, we don’t want to

maintain code for two different destinations since the RTF file will be our final deliverable.

Since we did not explicitly specify a STYLE= option on the ODS TAGSETS.RTF statement,

the default style (STYLES.RTF) will be used.

❷ We use the string “PAGE_X_OF_Y” as a placeholder. Later in the paper we discuss post-

processing the RTF file to replace this text and derive the actual page numbers ourselves.

This approach generates page numbers as static text and facilitates incorporation of this

table into a larger document such as a clinical trial report. In situations where that is not

a concern, we could instead insert RTF field codes for page numbers by replacing this

placeholder text with ~{pageof} inside the double quotes. The “~” is an ODS escape

character, and we will elaborate on what this is later in the paper.

❸ Recall from our REPORT basics described earlier, it is advisable to DEFINE all our

variables as either ORDER or DISPLAY variables.

❹ Some programmers like to insert an extra row in the data for placing the variable label

text over the statistics in the report. This is not necessary. We can insert lines of text

into our report before each variable segment using the COMPUTE block.

The first two pages of the RTF output are shown in Output 5. There are some features of

the default RTF style that may not be desirable, such as italicized titles and footnotes, the

grey background of the column headers, and the default column widths. Later in this paper,

we illustrate how to modify style elements and attributes of the output via the STYLE=

option.

Although TAGSETS.RTF attempts to perform pagination based on how much vertical space

the table elements occupy, it does not always accurately determine how much can fit on a

page. In Output 5, we can see there are two footnotes on page 2 that should not have

been placed on their own page. The light grey line indicates the start of page 2. To correct

this, we can explicitly specify the column widths for every variable to avoid unexpected

word wrapping (e.g. see row for Male). We address this later in the paper.

8

Output 5. TAGSETS.RTF Output Using Default RTF Style

STYLE= AND ~S= OVERRIDE OPTIONS

Many of the techniques for manipulating the RTF report involve the STYLE option. PROC

REPORT styles are applied to a table based on named regions. The primary table regions

we utilize are:

• REPORT

• HEADER

• COLUMN

• LINES

The syntax for the style option is style(table-region)={style-attribute}. This option

can be used on the PROC REPORT, DEFINE, and/or COMPUTE statements as shown below:

proc report … style(table-region)={style-attribute};

 columns …;

 define … / style(table-region)={style-attribute};

 compute … / style(table-region)={style-attribute};

 …

 endcomp;

run;

9

All four regions are available in the PROC REPORT statement. The DEFINE statement

accepts only the COLUMN and HEADER regions. The STYLE option on the COMPUTE block

accepts just the LINES region. Style overrides given on the DEFINE and COMPUTE

statements take precedence over those on the PROC REPORT statement. This paper

includes many examples illustrating the use of STYLE= overrides. Display 2 shows the

regions of a PROC REPORT output.

Display 2. Annotations of Table Regions for Style= Override

The REPORT region refers to the overall appearance of the table, including properties such

as cell spacing, cell padding, and the borders between cells. The LINES region refers to

cells inserted via the COMPUTE block and LINE statements. The COLUMN region consists of

the body of the table while the HEADER region includes just the column headers.

There is also an in-line style override which allows us to alter the appearance of text in a

title, footnote, or table cell. To do so, we use an ODS escape character and place the style

override in-line with the data or statement containing text. The ODS escape character can

be defined using the ODS ESCAPECHAR= statement. It is used to provide inline formatting

such as bolding, superscript, subscript, font size, font color, insertion of Unicode characters,

and much more. Moving forward we will use an ODS escape character of “~”. To override

text styling in the TITLE statement, we could do the following:

ods escapechar = "~";

title3 "~S={fontsize=12pt fontstyle=roman}Summary of Demographic and

Baseline Characteristics";

This changes the font size to 12pt and removes the italic style by specifying roman. One

problem with this approach is that ODS does not account for the font size change in its

vertical measurements. A better approach would be to use the HEIGHT= option with TITLE

and FOOTNOTE statements:

title3 height=12pt "~S={fontstyle=roman}Summary of Demographic and Baseline

Characteristics";

HEADER
REPORT

COLUMN

LINES

10

Since we have the fontsize defined via the HEIGHT= option, we can remove the fontsize

attribute from the in-line style override.

REPORT MODIFICATIONS

We now proceed through a series of modifications to our original report. The changes will

progressively change the overall appearance of the report to achieve our desired output.

REMOVING CONTINUED TEXT AND EXTRA BLANK LINE BEFORE FOOTNOTES

TAGSETS.RTF automatically inserts a row with the text “(CONTINUED)” for multi-page

reports. In addition, there is a blank line separating the body of the table and the titles and

footnotes. Refer back to Output 5. To remove these, we can utilize the VSPACE and

CONTINUE_TAG suboptions of the OPTIONS option (what a mouthful that was):

ods tagsets.rtf file="d:\drug\study\outputs\t-dm.rtf"

 options(continue_tag="off" vspace="no");

The result is shown in Output 6.

Output 6. Removal of “(CONTINUED)” and Blank Line

MODIFYING TITLES

By default, all titles and footnotes are bold, italic, and 13pt Times New Roman Font.
We can modify our titles and footnotes by using the HEIGHT= option and an in-line style

override as shown:

title height=10pt j=l "~S={fontweight=light fontstyle=roman}Protocol:

CDISCPILOT01"

 j=c "~S={fontweight=light fontstyle=roman}Population: Intent-to-Treat"

 j=r "~S={fontweight=light fontstyle=roman}PAGE_X_OF_Y";

title3 height=12pt "~S={fontstyle=roman}Summary of Demographic and Baseline

Characteristics";

footnote1 height=10pt "~S={fontweight=light fontstyle=roman}[1] P-values

are results of ANOVA treatment group comparisons for continuous variables

and Pearson’s chisquare test for categorical variables.";

footnote2 height=10pt "~S={fontweight=light fontstyle=roman}NOTE:

Percentages are based on the number of non-missing values.";

footnote3 height=9pt j=l "~S={fontweight=bold fontstyle=roman}Source:

~S={fontweight=light fontstyle=roman}d:\t-dm-sgf.rtf"

 j=r "~S={fontsize=9pt fontweight=bold fontstyle=roman}Date:

~S={fontweight=light fontstyle=roman}&sysdate9.";

11

Here, we changed the titles and footnotes to various sizes and weights. To unbold text,

specify fontweight=light. However, there is an unfortunate side effect in that SAS inserts

additional spaces as shown in Output 7.

Output 7. Unintentional Space Insertion

This is a known SAS bug. As a workaround, this problem can be avoided by handling title

and footnotes styles directly in the style template by modifying the SystemTitle and

SystemFooter style elements. This also eliminates the need to repeat the same style

override in every title and footnote by consolidating that specification in one place. Style

template modifications are beyond the scope of this paper but Haworth et al. (2009) give

more details.

REMOVING GREY BACKGROUND IN COLUMN HEADERS

By default, the background color of the column headers is grey. We can alter all column

headers by using a STYLE= override on the PROC REPORT statement. Instead of changing

the background color to white, the following code will change the background to “No Color”

in the HEADER region:

proc report data=comb split='|' missing

 style(header)={backgroundcolor=_undef_};

The result is shown below in Output 8.

Output 8. Remove Column Header Color

CONTROLLING BORDERS BETWEEN CELLS

By default, black borders are present between cells. Some may prefer these border lines,

but most pharmaceutical reports omit them. We will modify our code to only include lines

above and below the table body so there is a visual break between titles, footnotes, and the

table body. We will also place a line between the column headers and the table body.

Lastly, we will decrease the cell padding and spacing between cells to 0 in order to fit more

rows on each page. Here, we use another style override, but on the REPORT region:

12

proc report data=comb split='|' missing

 style(report)={rules=groups frame=hsides

 cellspacing=0 cellpadding=0}

 style(header)={backgroundcolor=_undef_};

Using the RULES=GROUPS attribute we can obtain behavior analogous to the HEADLINE

option used with the ODS LISTING destination. It places a blank line between the headers

and the rest of the table. FRAME=HSIDES places horizontal lines above and below the table

body. Note that the default value of FRAME=BOX places borders around all sides of the

table. There are many combinations of RULES= and FRAME= options to get a desired

appearance. See Haworth et al. (2009) for more details on these style attributes. Output 9

shows the cumulative effect of all our style overrides up to this point.

Output 9. Cumulative Effect of Changes

As an alternative, all the STYLE= overrides used so far could be handled by creating a

custom STYLE template using the TEMPLATE procedure. The font changes can be made by

modifying the Fonts, SystemTitle, and SystemFooter style elements. Attribute changes in

the REPORT region (i.e. cell spacing, padding and borders) can be accomplished by

modifying the Table style element. The white header background can be achieved by

modifying the Header style element. We refer the reader again to Haworth et al. (2009) for

a thorough look at modifying Style Elements via PROC TEMPLATE.

13

CHANGING COLUMN WIDTH

Now, let’s widen the widths of the columns to get rid of unwanted text wrapping.

Unfortunately, the usual WIDTH= option we used with the ODS LISTING destination does

not apply here. However, we can use the CellWidth attribute via a STYLE override:

*Reported columns;

define statlbl /display '' style(column)={cellwidth=2in};

define col: /display style(column)={cellwidth=1.25in};

define pvalue /display style(column)={cellwidth=1in};

Output 10 shows the new cell widths. Notice how the wider cell width provides more space

so the text does not wrap for the age groups as it does in Output 9.

Output 10. Changing Cell Widths

An alternative method to specifying individual widths for each column is to use the

OutputWidth attribute on the PROC REPORT statement:

proc report data=comb split='|' missing

 style(report)={rules=groups frame=hsides

 cellspacing=0 cellpadding=0

 outputwidth=100%}

 style(header)={backgroundcolor=_undef_};

Output 11 shows how the columns now stretch to the right margin.

Output 11. Force Column Widths to Span Width of Page

In most cases, we can get away with this alternative approach. However, in other

situations we may wish to gain more control over the output and explicitly choose our own

column widths on each DEFINE statement.

14

LINE JUSTIFICATION

Next, we left justify the variable labels currently being placed in the center of each column

by using the LINES region with a STYLE override:

compute before varlbl /style(lines)={just=l};

 line varlbl $50.;

endcomp;

Output 12 shows the variable labels being left justified.

Output 12. Variable Labels Left Justified

INDENTING STATISTICS

One approach to controlling indentation is to concatenate padded spaces to the beginning of

the statistical text within the data, (e.g. statlbl=' '||statlbl;). If we use this

approach, we need to make sure to specify the ASIS=ON attribute in the column region:

 define statlbl /display '' style(column)={cellwidth=2in asis=on};

Alternatively, we can more directly affect the indentation without needing to concatenate

padded spaces within the data. To do so, we modify the PADDINGLEFT attribute on the

same define statement:

 define statlbl /display '' style(column)={cellwidth=2in paddingleft=0.1in};

Output 13 shows indentation of statistical text. Regardless of which approach we use, the

appearance will be similar.

Output 13. Indentation of Statistical Text

15

HEADER AND COLUMN JUSTIFICATION

By default, the headers (i.e. the HEADER region) are center justified and the data (i.e.

COLUMN region) are left justified. The following code would left justify all headers:

proc report data=comb split='|' missing style(header)={just=l};

Since the override is performed on the PROC REPORT statement, the justification is applied

to all headers. If we wanted to apply different justification to different columns (e.g. in a

listing report), we can utilize different overrides on the DEFINE statements:

define col: /display style(header)={just=c};

define pvalue /display style(header)={just=r};

This code would apply center justification to the treatment column headers and right justify

the p-value column headers. Similarly, we can manipulate the body of the table (i.e. the

COLUMN region) by using similar style overrides and replacing HEADER with COLUMN.

define col: /display style(column)={just=c};

define pvalue /display style(column)={just=r};

If we wanted the header and column regions to have the same justification, we can specify

multiple regions at once:

define col: /display style(header column)={just=c};

For the report we are currently working on, we will not apply any of these justifications.

This section was added for completeness. In a clinical trial context, these justification

options are used frequently with data listings.

DECIMAL ALIGNMENT

For decimal alignment of the results columns we can choose between two different

approaches:

1) Left justify the COLUMN region with leading spaces concatenated in the data and

specify ASIS=ON, or

2) Apply decimal tab alignment using the JUST=D option with the PADDINGRIGHT

attribute.

In the ODS LISTING world, we would use the first approach but the ASIS attribute would

not be needed (since the listing destination is simply text). The downside of (1) is that

when using a proportional font like Times New Roman, the alignment will not be perfect.

The second approach is predicated on decimals being present in the data and some trial and

error is necessary with the PADDINGRIGHT attribute:

define col: /display

 style(column)={cellwidth=1.25in just=d paddingright=0.3in};

define pvalue/display

 style(column)={cellwidth=1in just=d paddingright= 0.25in};

Output 14 shows the report with decimal alignment being used. PADDINGRIGHT is used to

shift the results towards the center and under the header text.

16

Output 14. Decimal Alignment Using Decimal Tab

LINE INSERTIONS AND PAGE BREAKS

Unlike the ODS LISTING destination, where the SKIP option of the BREAK statement can be

used, we must use the COMPUTE block to insert lines in our RTF output. First, we need to

derive a new variable to assist with placing the lines where we want them. At the same

time, we create a page breaking variable so the pages do not break between rows of

statistics as seen in Output 5 and Output 9:

data final;

 set comb;

 by varord statord;

 if varord in (1 2 3) then pg=1; ❶

 else if varord in (4 5) then pg=2;

 else if varord in (6 7 8) then pg=3;

 else pg=4;

 if statord ge 100 then varord2=varord+100; ❷

 else varord2=varord;

run;

❶ A variable PG is created that will be used as a pagination variable. With some trial and

error, we’ve assigned values of PG so that page breaks will not occur in the middle of

variable summaries. There are more dynamic programming approaches to handle this

situation (e.g. counting the number of lines each variable uses), but this simpler

approach meets the needs of this paper.

❷ Referring to the values of STATORD shown in Display 1, we see when there are

continuous summaries and categorical group counts for the same variable (i.e. Age) that

the groups are assigned 101, 102, etc. So, we know when STATORD increases to a value

of 100 and up, we would like a line inserted. Assigning VARORD2 the value of VARORD

+ 100, will allow the age groups to have the same value but different from the

continuous summary. See Display 3.

17

Display 3. Page Breaking and Line Insertion Variables

Now that we have these variables created, let’s update our PROC REPORT code:

proc report data=comb split='|' missing nocenter

 style(report)={rules=groups frame=hsides cellspacing=0 cellpadding=0 }

 style(header)={backgroundcolor = _undef_};

 columns pg varord varlbl varord2 statord statlbl col: pvalue;

 *Order variables;
 define pg /order order=internal noprint;

 define varord /order order=internal noprint;

 define varlbl /order order=internal noprint;

 define varord2 /order order=internal noprint;

 define statord /order order =internal noprint;

 *Reported columns;

 define statlbl /display '' style(column)={cellwidth=2in

 paddingleft=0.1in};

 define col: /display style(column)={cellwidth=1.25in just=d

 paddingright=0.3in};

 define pvalue /display style(column)={cellwidth=1in just=d

 paddingright=0.25in};

 *Derived page breaking;

 break after pg/page; ❶

 *Labels over statistics;

 compute before varlbl/style(lines)={just=l};

 line varlbl $50.;

 endcomp;

 *Line breaks after variable groups;

 compute after varord2; ❷

 line '';

 endcomp;

run;

18

❶ Fortunately for us, the PAGE option of the BREAK statement still works in RTF (unlike the

SKIP option).

❷ Using a COMPUTE block, we insert a blank line each time the value of VARORD2 changes.

See Output 15 for the effect of these two changes to our report.

Output 15. Report with Manual Pagination and Line Insertions

PAGE X OF Y

The final step in producing our clinical report is to replace the “PAGE_X_OF_Y” placeholders

with actual page numbers such as “Page 1 or 4”, “Page 2 of 4”, etc. While RTF provides

field codes that can be used to automate page numbering, we want our page numbers to

consist of static text. This will ensure the page numbers remain the same if the table is

used as part of a larger document such as a clinical study report. If we use RTF field codes,

the page numbering is based on the number of pages in the document and changes as

pages are added or removed.

Fortunately, RTF documents are nothing more than text files that utilize a specific markup

syntax. Thus, we can easily post-process our RTF file using SAS to read the RTF file, make

any desired changes, and write the modified RTF back out. In general, this process can be

performed in a single pass through the file. However, since we do not know in advance the

number of pages in the document, we need two passes, each of which is a separate DATA

step.

In the first DATA step, we read the contents of the RTF file into a temporary data set. Each

line in the RTF file becomes a record in the data set, and the entire line is stored in a single

character variable. A second variable holds the current page number. Each time the

“PAGE_X_OF_Y” placeholder is encountered, the page count variable is incremented. Once

the entire file has been read, the value of the page count variable represents the total

19

number of pages in our document, which is the “Y” in “Page X of Y.” That total page count

is stored in a macro variable for use in the second DATA step.
 * Read in RTF file and count number of times the placeholder string is ;

 * found (which should correspond with total number of pages). ;

 data _readrtf_;

 infile "d:\drug\study\outputs\t-dm.rtf" missover length=l end=eof

 lrecl=2000;

 input line $varying2000. L;

 retain pagecount;

 if index(line,"PAGE_X_OF_Y") then pagecount + 1;

 * Store total number of pages in a macro variable.;

 if eof then call symput("_numpages",strip(put(pagecount,best.)));

 run;

The second DATA step reads the temporary data set created in the first DATA step. It

writes each record back out to the same RTF file (overwriting the original). When the “Page

X of Y” placeholder is encountered, it is replaced with actual page numbers. The “X” comes

from the page count variable, and the “Y” comes from the macro variable that holds the

total page count.

 *Rewrite the RTF file, replacing the placeholder with Page X of Y. ;

 data _null_;

 file "d:\drug\study\outputs\t-dm.rtf" flowover;

 set _readrtf_;

 if index(line,"PAGE_X_OF_Y") then do;

 line = tranwrd(line, "PAGE_X_OF_Y",

 "Page "||strip(put(pagecount,best.))||" of &_numpages");

 end;

 put line;

 run;

Output 16 shows the header of the RTF document after this post-processing has been

performed. The “Page X of Y” text has been replaced with the correct page numbers.

Output 16. Page X of Y Implementation

OTHER RTF TECHNIQUES

There are several other techniques that are useful when producing RTF files. The following

were not used in the demographics table but may be encountered when working with other

types of clinical outputs.

LINE FEEDS – SPLIT ALTERNATIVE

As mentioned earlier, the SPLIT= option is honored in column headers but not within the

body of the table when using the RTF destinations. Instead, we must insert RTF line feeds

to replicate this behavior. This is done using a DATA step to embed an ODS escape

character followed by an “n” within the data values:

ods escapechar='~';

data linefeeds;

 set ae;

 tox_out=catx('/~n', aetoxgr, aeout);

 run;

20

Display 4 shows the line feed in the data as well as in the abbreviated adverse event listing

output.

Display 4. Line Feed

You can view the line feeds in the RTF document by turning on the option to show

paragraph marks and other hidden formatting symbols in Microsoft Word®.

NON-BREAKABLE SPACE

Even if the ASIS attribute were active for the COLUMN region, there are some scenarios in

which spaces are not honored. For example, when presenting adverse event listings, we

often stack the MedDRA system organ class (SOC) and preferred term (PT) by

concatenating the two variables and indenting the “bottom” variable:

socpt=catx("~n ",aebodsys,aedecod);

However, in this case, the padded spaces after the line feed are not honored. The

workaround for this is to use a non-breakable space (NBSP). Since non-breakable spaces

are invisible to the human eye (i.e. they look just like normal spaces in the editor), it is a

good programming practice to create a macro variable to store the non-breakable space.

This communicates the use of NBSP to someone who may be reusing your program, as well

as avoiding compilation errors. A small DATA step with a hexadecimal reference can

accomplish this:

data _null_;

 nbsp='A0'x;

 call symputx('nbsp',nbsp);

run;

Now, we can update our concatenated variables:

socpt=catx("~n . ",aebodsys,aedecod);

Display 5 shows the NBSP in the abbreviated adverse event listing output.

Display 5. Non-breakable Space

You can view the NBSP in the RTF document by showing paragraph marks and other hidden

formatting symbols in Microsoft Word. A non-breakable space is represented by a small

superscript circle.

21

CALL DEFINE – INDENT CERTAIN ROWS

For adverse event reports, we usually summarize by SOC and PT. Furthermore, we usually

indent PT and display it beneath system organ class as shown in Display 5. The difference

in this scenario is that the data structure will have PT as its own observation and not

concatenated to SOC on the same observation. See Display 6 for an abbreviated look at the

data set.

Display 6. Summarized Adverse Event Data

Note the variable called NOTE which identifies records that are preferred terms as opposed

to the system organ class record. We can take advantage of this structure to eliminate the

need for non-breakable spaces by using the CALL DEFINE statement within PROC REPORT:

proc report data=report split='|' missing ;

 columns varord ...<other variables>... note statlbl col:;

 *... Other PROC REPORT statements ...;

 * Indent PT records;

 compute statlbl;

 if note='PT' then do;

 call define(_col_,'style','style={paddingleft=.1in}');

 end;

 endcomp;

run;

The CALL DEFINE statement allows us to override style attributes to add padding to the left

of the table cell. Even if the text wraps multiple lines, the indention is maintained. The use

of the IF-THEN-DO block allows us to perform this action only for records identified as

preferred terms as shown in Output 17.

Output 17. Indentation of Preferred Terms

22

SPANNING HEADERS

Unlike the ODS LISTING destination, we cannot use repeat characters like “_” or “-”.

Typically, these are used in column headers to span an underline over multiple columns.

Using TAGSETS.RTF, we need to use an in-line style override. Also, since there is no

SPACING= option available in TAGSETS.RTF, we place an empty dummy variable between

spanning headers:

proc report data=comb split='|' missing;

 columns

 sitegr1 siteid

 ("Placebo|(N=86)~S={borderbottomwidth=1}" itt0 eff0 com0) ❶

 _empty ❷

 ("Xanomeline|Low Dose|(N=84)~S={borderbottomwidth=1}" itt54 eff54 com54)

 _empty

 ("Xanomeline|High Dose|(N=84)~S={borderbottomwidth=1}" itt81 eff81 com81)

 _empty

 ("Total|(N=254)~S={borderbottomwidth=1}" itt99 eff99 com99);

 *Reported columns;

 define sitegr1/display'Pooled|Id' style(column)={just=c} ;

 define siteid /display'Site|Id' style(column)={just=c} ;

 define itt: /display style(column)={just=r paddingright=0.3in} 'ITT';

 define eff: /display style(column)={just=r paddingright=0.3in} 'Eff';

 define com: /display style(column)={just=r paddingright=0.3in} 'Com';

 define _empty /display '';

run;

❶ Similar to the approach used to change font sizes of titles and footnotes, we use in-line

styles to override the BorderBottomWidth attribute to display a spanning header

underline across multiple columns.

❷ A variable containing null or missing records can be used to provide space between

columns so the spanning header underline does not run together.

Output 18 shows the spanning header underlines with spacing between them.

Output 18. Spanning Headers Underlines

23

SUPERSCRIPTS, SUBSCRIPTS, AND SPECIAL CHARACTERS

We can use an escape character again to insert superscript, subscript, and special Unicode

characters. The following are 3 independent snippets of code:

• by1lbl='Body Mass Index (kg/m~{super 2})';

• param=tranwrd(param,' max','~{sub max}');

• label AUCINF='AUC~{sub ~{unicode 221e}}';

Display 7 shows these characters being rendered in the RTF file.

Display 7. Superscripts, Subscripts, and Special Characters in RTF

Notice how we can nest Unicode characters within a subscript for AUC∞.

DEALING WITH ORDER VARIABLES NOT REPEATING

Another unfortunate side effect when dealing with TAGSETS.RTF is that order variables do

not repeat after a page break. Output 19 shows page 2 of an output where the subject

number does not get displayed.

Output 19. Order Variable Repetition

SAS documentation, blogs, and forums will point us to the SPANROWS option of PROC

REPORT, but this is not a robust solution for the following reasons:

• It is dependent on where LINE statements are placed.

24

• Page breaks do not always occur in the same places they would occur when not

using SPANROWS.

• Using SPANROWS makes it more difficult to perform validation by reading the RTF

output back into a SAS data set.

• At times, SPANROWS has a negative interaction with the FRAME=HSIDES attribute

as shown in Output 20.

Output 20. Horizontal Rule from FRAME=HSIDES Broken

For these reasons, we must resort to deriving our own paging variable:

data final;

 retain pg 0 ln 0;

 set vs;

 by usubjid;

 ln + 1; *Increment for each data row/observation;

 if first.usubjid then ln+1; *Increment for blank lines between subjects;

 if ln gt 28 then do;

 Pg+1; *Increment page count;

 ln=0; *Reset lines;

 ln + 1; *Increment for each data row/observation;

 if first.usubjid then ln+1; *Increment for blank lines between subjects;

 end;

run;

This method may take some trial and error. The number of observations that can fit on a

page varies depends on the number of titles and footnotes. For this example, suppose 28

lines can fit on a page. Incrementing the line counter for each observation and for the

blank lines we plan to insert between subjects, we know when it is appropriate to increment

the page counter. After we increment the page counter, we must reset the line counter and

recount the existing observation. Then we can utilize this page counter like we did in the

PROC REPORT code that generated Output 15, which will force the subject ID to be

displayed on each new page even if the subject data continues to the second page.

We recognize that this nullifies one of the main advantages of TAGSETS.RTF having vertical

measurement. Despite this setback, TAGSETS.RTF does give you more control and

flexibility that the original RTF destination does not (e.g. control over page panels,

watermarks, and lines between titles/footnotes and body of report). For more information,

see the SAS documentation for the ODS TAGSETS.RTF statement.

CONCLUSION

Change is always hard; fear of the unknown can prevent us from moving forward,

developing better practices, and innovating. Although many pharmaceutical and

biotechnology companies have been slow to move beyond ODS LISTING, we are not giving

up from spreading the good news about the RTF destinations. Using either ODS RTF or ODS

TAGSETS.RTF can harmonize fonts between outputs and the main clinical study report, as

well as provide a common destination between tables, listings and figures by having a file

25

format compatible with graphics procedures. Most importantly, it lays the foundation for a

more robust validation process by having the option to read the actual RTF file back into a

SAS data set as a basis for comparison with output created by a quality control

programmer. We hope this paper will get programmers over the main learning curve for

creating RTF outputs and allow our industry to move beyond text-based output.

REFERENCES

Haworth, Lauren E., Zender, Cynthia L., and Burlew, Michele M. 2009. Output Delivery

System: The Basics and Beyond. Cary, NC: SAS Institute Inc.

Clinical Data Interchange Standards Consortium. (2007, February). Pilot Project Submission

Package. CDISC. Retrieved from https://www.cdisc.org/pilot-project-submission-package.

ACKNOWLEDGEMENTS

We’d like to thank Jane Eslinger for letting us pick her brain on all the little details about

TAGSETS.RTF (sometimes via a SAS Support Ticket), and for getting us in touch with SAS

developers to identify best practices when creating RTF reports.

We’d like to thank Scott Kosten and Richann Watson for their thorough review of this paper

and for providing valuable feedback.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Christopher J. Smith

Cytel

chris.smith@cytel.com

https://www.linkedin.com/in/smithchr/

Joshua M. Horstman

Nested Loop Consulting

josh@nestedloopconsulting.com

https://www.linkedin.com/in/joshuahorstman/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.cdisc.org/pilot-project-submission-package
https://www.linkedin.com/in/smithchr/
https://www.linkedin.com/in/joshuahorstman/

