

1

Paper 4923-2020

Reading in a Comma Delimited File with a Data Dictionary

Kalyani Telu Henry Jackson Foundation

ABSTRACT

Comma-separated values files (CSV) are one of the most common files that SAS

programmers import to create SAS datasets. When using PROC IMPORT, user defined

formats and labels will be lost and the programmer needs to establish informats, formats

and labels to each variable. This process is typically done manually, and it is highly time

consuming if the dataset has many variables. This process can be automated through

storing meta data in an excel file and writing a simple SAS program to combine the meta

data with the raw data. A dynamic approach has been developed for reading large raw CSV

files using simple data step statements understandable to beginner programmers.

INTRODUCTION

Data comes from a wide variety of sources with different format types and it is typical

practice to use either PROC IMPORT or INFILE- INPUT statements to read such files. One

main disadvantage for using the PROC IMPORT is that all the user defined formats and

labels will be lost, which are useful when generating tables and graphs. In addition, SAS

determines attributes of variables as either character or numeric and lengths of the fields

depending on the first few observations. There is a possibility of incorrect assumptions by

SAS when the first few observations have numeric data and later observations have non-

numeric data. To overcome this problem, the programmer must assign attributes by writing

a line listing of each single variable using INFILE-INPUT statements and later formats and

labels. The task becomes problematic when there are hundreds of variables.

MANUAL PROGRAMMING TO READ CSV FILES

data demog_med;

infile ‘location of the file- file name’ dlm=’,’;

 input @1 id $6.

 @7 gender $2.

 @9 age 3.

 @12 origin 3.

 ;

 label id=’Studyid’

 gender=’Gender’

 age=’Age (in Years)’

 origin=’Country of Origin’

 ;

 format gender gender.

 origin countryf.

 ;

run;

One solution is to store meta data containing the list of variable names, lengths of the

variables, labels, formats in a separate excel file, and use a simple code to combine the

meta data with the raw data in the CSV file. Adding, removing or editing variables and

updating meta data is easier when the entire meta data is stored in one single file. A step

2

by step approach to write a simple program that combines the external data structure with

the related raw CSV file is discussed in this paper.

READ THE META DATA STORED IN THE EXTERNAL FILE

The first step is to create a meta data file that contains the variable names, labels, data

types, lengths and formats and then import this data structure into SAS that creates the

data set called ‘Layout’.

PROGRAM THAT GENERATES ANOTHER PROGRAM

Once the data structure is ready, the next step is to combine this meta data information

with the raw CSV file. This is accomplished in three phases by creating three different

NULL data sets.

1. Generate inputs

2. Generate informats

3. Generate formats and labels

In these three phases, the put statement is used to write another program to store the

meta data which is explained below. Three derived programs will be generated at the end of

these three phases.

1) Generate Inputs

In this phase, infile statement and inputs are programed. The raw data example is

‘Demographics_medication.csv’.

Here is an example of a raw data file (made up test data).

3

filename s_inputs “...\readin_inputs.sas”;

data _null_;

 set work.layout end=eof;

 file s_inputs;

 if _n_ = 1 then do;

 put “data demog_med;”;

 put ‘infile’;

 put ““‘.../Demogrpahics+Medication.csv’””;

 put “delimiter = ‘,’ MISSOVER DSD lrecl=32767 firstobs=2;”;

 put “input”;

 end;

 if upcase(data_type) = ‘CHARACTER’ then

 put variable ‘$’;

 else put variable;

 if eof then do; put ‘;’;

 end;

run;

At the end of this first phase, a program is created: ‘readin_inputs.sas’. Below is an

example of this program. Note that the run statement is not coded here because the

informat statement will be placed immediately after the input statement.

2) Generate informats

filename s_infmts “...\readin_informats.sas”;

data _null_;

 set work.layout end=eof;

 length = compress (catx (‘’, data_length,’.’));

 file s_infmts;

 if _n_ = 1 then do;

 put “infotmat”;

 end;

 if upcase(data_type) = ‘CHARACTER’ then

4

 put variable ‘$’ length;

 else if upcase(data_type) = ‘DATE’ then

 put variable ‘MMDDYY’ length;

 else put variable length;

 if eof then do; put ‘;’; put ‘run;’; ebdl

run;

Below is an example of ‘readin_informats.sas’.

 3) Generate formats and labels

filename s_f_lbl “...\readin_formats_labels.sas”;

data _null_;

 set work.layout end=eof;

 file s_f_lbl;

 if _n_ = 1 then do;

 put “proc datasets nolist;” /

 “modify demog_med;”;

 end;

 *Generate format statement for each variable;

 Put “ format “ variable fomat “;”;

 *Generate label statement for each variable;

 if indexc(lable,”’”) = 0 then

 put “ label “ variable “ = ‘: label “’;”;

 else if index(label, ‘”’) = 0 then

 put “ label “ variable ‘ = “’ label ‘”;’;

 if eof then put “quit;”;

run;

Below is an example of ‘readin_formats_labels.sas’.

5

After completing the three phases, the final step is to include these programs for reading in

the raw data.

%include “... \readin_inputs.sas”;

%include “... \readin_informats.sas”;

%include “... \readin_formats_labels.sas”;

At the end of this program a data set called ‘demog_med’ is created, contents of this table

show assignment of labels and fomrats.

6

CONCLUSION

This paper demonstrates one of the best approaches to overcome the tedious process of

manually listing numerous variables, their attributes, formats and labels within a SAS

program. It provides a simple and easy to understand data step procedure for automatically

combining meta data stored in an external file with the raw CSV file.

RECOMMENDED READING

• Base SAS® Procedures Guide

• SAS® For Dummies®

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kalyani Telu

Henry M. Jackson Foundation in support of

 The Infectious Disease Clinical Research Program
 Department of Preventive Medicine and Biostatistics
 Uniformed Services University of the Health Sciences
ktelu@idcrp.org

