

1

Paper 4911-2020

A Level-Headed Approach to the METHOD = FASTQUAD Option in the
GLIMMIX Procedure

Sidney J. Hann, Grand Valley State University and Spectrum Health Office of Research and
Education

ABSTRACT

The Gaussian quadrature algorithm approximates the likelihood of a generalized linear model with
multiple nested levels using the Gauss-Hermite quadrature method of integration. While the
approximations are close to exact, the calculation of these approximations in SAS are
computationally demanding both in memory and time. To address these intense requirements, the
SAS/STAT 14.1 update added the multilevel adaptive Gaussian quadrature algorithm of Pinheiro
and Chao (2006) to PROC GLIMMIX using the METHOD = FASTQUAD option. Pinheiro and Chao’s
algorithm reduces the number of integrations required while SAS processes the estimation of the
conditional log-likelihoods required for this modelling technique. The reduction of integrations
reduces computation memory and time. Using a public dataset, this paper will examine the process
of creating a multilevel model using adaptive Gaussian quadrature while comparing the run times of
single level and multilevel adaptive Gaussian quadrature.

INTRODUCTION

Adaptive Gaussian Quadrature algorithms are based on the Gauss-Hermite Quadrature rule
defined in the Handbook of Mathematical Functions of Abramowitz and Stegun (1964). The
single level Adaptive Gaussian Quadrature algorithm of Pinheiro and Bates (1995) and
multilevel Adaptive Gaussian Quadrature algorithm of Pinheiro and Chao (2006) both use
importance sampling to approximate the log-likelihoods in Generalized Linear Mixed Models
(GLMMs). Using the approximations of the log-likelihoods in GLMMs the maximum likelihood
estimator for the parameters in the model may be derived. Multilevel GLMMs, such as
students being nested within teachers, require exponentially more integrations as the
number of levels increases. The increase in integrations can quickly cause the statistical
software and the computers processing programs to quickly run out of computational
memory.

With the release of SAS/STAT® 14.1 the GLIMMIX procedure may now use the multilevel
Adaptive Gaussian Quadrature algorithm. To use the multilevel algorithm instead of the
single level algorithm, the FASTQUAD sub-option must be specified alongside
METHOD=QUAD. With the FASTQUAD sub-option SAS is now able to process multilevel
GLMMs more efficiently through integration reduction. The reduction in number of
integrations leads to faster processing speeds and lower memory requirements.

The largest advantage to the addition of the FASTQUAD sub-option is reduced computation
memory and time. To adduce this advantage, we compared computation memory and run

time between single level and multilevel Adaptive Gaussian Quadrature using a created
dataset based on a SAS Support simulation (SAS Support, 2017). Due to a lack of memory
the application of single level Adaptive Gaussian Quadrature to a multilevel model was
unable to process. In place of the single level model, the number of quadrature points used
in multilevel Adaptive Gaussian Quadrature were compared at levels of 3, 5, and 7. The
increase in quadrature points leads to an increase in integrations required when
approximating the log-likelihoods. This paper will discuss the theoretical differences

2

between single level and multilevel Adaptive Gaussian Quadrature, the implementation of
the FASTQUAD sub-option in the GLIMMIX procedure, and compare computational memory
and run time requirements for using 3, 5 and 7 quadrature points for approximation.

ADAPTIVE GAUSSIAN QUADRATURE

WHAT IS ADAPTIVE GAUSSIAN QUADRATURE

To understand the differences between single level and multilevel Adaptive Gaussian
Quadrature we must start at its roots. Let 𝑝(𝑥) be a probability density function (pdf) and
𝑓(𝑥) be a function which the pdf is integrated against. Gauss-Hermite quadrature is

appropriate when the density of 𝑝(𝑥) has kernel 𝑒−𝑥2
 and the limits of integration span all

real numbers. From formula 25.4.46 of Abramowitz and Stegun (1964), the Gauss-Hermite
quadrature rule from which Adaptive Gaussian Quadrature is based follows the form

∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥
∞

−∞

= ∫ 𝑒−𝑥2
𝑓(𝑥)𝑑𝑥

∞

−∞

≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑁

𝑖=1

Where N represents the number of quadrature points, 𝑤𝑖 and 𝑥𝑖 represent the weights and
abscissas. These weights and abscissas are based on areas of high densities in the kernel

function. Weights and densities for common kernels, such as the normal distribution, are
calculated following the methods described in Hammer, P. C., & Wymore, A. W. (1957).

In single level Generalized Linear Mixed Models (GLMMs) the marginal distribution of the
random effects follows a ~𝑁(0, 𝜎2) distribution. Using the structure of the integrand in
GLMMs, Adaptive Gaussian Quadrature transforms the calculation of multiple Gaussian
quadrature rules into repetitive applications of one-dimensional Gaussian quadrature rules.
In this case, the Gaussian quadrature rule is a deterministic version of a Monte Carlo
integration algorithm in which random samples of the random effects, 𝑏𝑖, are generated

from the ~𝑁(0, 𝜎2) distribution; and the samples and weights are fixed beforehand instead of
randomly chosen. (Pinheiro and Chao 2006). To obtain increased efficiency, an importance
sampling version of Gaussian quadrature is utilized. This importance sampling version,
defined by Pinheiro and Bates (1995), is known as Adaptive Gaussian Quadrature.

SINGLE LEVEL ADAPTIVE GAUSSIAN QUADRATURE

In single level Adaptive Gaussian Quadrature for GLMMs the likelihood estimation, for a
given group 𝑖, relies on the marginal density of the response vector 𝑦𝑖. The marginal density

of 𝑦𝑖 is obtained by integrating the joint likelihood function of (𝑦𝑖 , 𝑏𝑖) with respect to the
random effects vector 𝑏𝑖. For the purposes of this paper, let 𝛽 represent the vector of fixed
effects, 𝑋𝑖 is the fixed effects regression matrix, 𝑍𝑖 is the random effects matrix, and ℎ = 𝑔−1

is the inverse link function. The joint density of (𝑦𝑖 , 𝑏𝑖) when assuming an exponential link
function in canonical form for appropriate functions 𝑎(.), 𝑐(.), and 𝑑(.) is

𝑝(𝑦𝑖 , 𝑏𝑖) =
𝑒

[
𝑦𝑖

′(𝑋𝑖𝛽+𝑍𝑖𝑏𝑖)−𝑑(𝑋𝑖𝛽+𝑍𝑖𝑏𝑖)′1
𝑎(∅)

+𝑐(𝑦𝑖,∅)′−
𝑏𝑖

′(𝜎2)−1𝑏𝑖
2

]

[(2𝜋)
𝑞
2 |(𝜎2)|

1
2]

where 𝑞 is equal to the number of random effects.

3

As previously stated, the marginal density of 𝑦𝑖, which the likelihood estimation relies upon,
is obtained by integrating the joint likelihood function of (𝑦𝑖 , 𝑏𝑖) with respect to the random

effects vector 𝑏𝑖. The marginal GLMM likelihood in the single level case can be written as

𝑝(𝑦𝑖) = ∫ 𝑝(𝑦𝑖 , 𝑏𝑖)𝑑𝑏𝑖 = (2𝜋)−
𝑞
2 |(𝜎2)|−

1
2 ∫ 𝑒𝑔(𝛽,(𝜎2,∅,𝑦𝑖,𝑏𝑖)𝑑𝑏𝑖

and defining 𝑔(𝛽, 𝜎2, ∅, 𝑦𝑖 , 𝑏𝑖) as

𝑔(𝛽, 𝜎2, ∅, 𝑦𝑖 , 𝑏𝑖) =
𝑦𝑖

′(𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖) − 𝑑(𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖)
′1

𝑎(∅)
+ 𝑐(𝑦𝑖 , ∅)′ −

𝑏𝑖
′(𝜎2)−1𝑏𝑖

2

Through a second-order Taylor expansion 𝑔(𝛽, 𝜎2, ∅, 𝑦𝑖 , 𝑏𝑖) is approximated around the value
of 𝑏𝑖 which maximizes 𝑔(. , 𝑏𝑖). The second-order derivative of 𝑔(. , 𝑏𝑖) is negative definite

resulting in 𝑔(. , 𝑏𝑖) being a strictly concave function of 𝑏𝑖. This strictly concave function

allows the estimation of a unique point of maximum, �̂�𝑖, corresponding to the value of the
second-order derivative of 𝑔(. , 𝑏𝑖) is equal to zero. The calculation of convergence on 𝑏𝑖 can
be transferred to a least squares problem from which 𝑅𝑖 is defined as part of the Q-R
decomposition in Thisted (1988).

We can now approximate the importance distribution the Adaptive Gaussian Quadrature rule

utilizes. In a single level GLMM the integrand is proportional to 𝑒𝑔(𝛽,𝜎2,∅,𝑦𝑖,𝑏𝑖) which is

approximated by a ~𝑁(�̂�𝑖 , 𝑅𝑖
−1𝑅𝑖

−𝑇) density. The use of this importance distribution centers the

grid of abscissas in the 𝑏𝑖 scale around the conditional nodes �̂�𝑖 and uses 𝑅𝑖 for scaling. To
put everything together, let 𝑧𝑖, 𝑤𝑗 for 𝑗 = 1, … , 𝑁𝐺𝑄 denote the abscissas and weights for the

one-dimensional Gaussian Quadrature rule with 𝑁𝐺𝑄 points based on the ~𝑁(0,1) kernel.

Define the following:

• 𝑧𝑗 = (𝑧𝑗1, … , 𝑧𝑗𝑞
)𝑇

• �̃�𝑖𝑗 = �̂�𝑖 + 𝑅𝑖
−1𝑧𝑗

• 𝑊𝑗 = 𝑒‖𝑧𝑗‖
2

∏ 𝑤𝑗𝑘

𝑞
𝑘=1

The single level Adaptive Gaussian Quadrature rule is then

∫ 𝑒𝑔(𝛽,𝜎2,∅,𝑦𝑖,�̂�𝑖+𝑅𝑖
−1𝑧)+

‖𝑧‖2

2 𝑒−
‖𝑧‖2

2 𝑑𝑧 ≅ (2𝜋)
𝑞
2|𝑅𝑖|

−1 ∑ …

𝑁𝐺𝑄

𝑗1=1

∑ [𝑒𝑔(𝛽,𝜎2,∅,𝑦𝑖,�̃�𝑖𝑗)𝑊𝑗]

𝑁𝐺𝑄

𝑗𝑞=1

and the single level GLMM Adaptive Gaussian Quadrature approximation of the log

likelihood function is

𝑙𝐴𝐺𝑄(𝛽, 𝜎2, ∅|𝑦) = 𝑀 log |∆| + ∑ {− log|𝑅𝑖| + log [∑ 𝑒[𝑔(𝛽,𝜎2,∅,𝑦𝑖,�̃�𝑖𝑗)]𝑊𝑗

𝑁𝐺𝑄

𝑗

]}

𝑀

𝑖=1

Where M is the number of groups and ∆ is a precision matrix from the least squares

transformation. [3]

4

MULTILEVEL ADAPTIVE GAUSSIAN QUADRATURE

Multilevel Adaptive Gaussian Quadrature for GLMMs allows computational feasibility of
approximating the log-likelihood function from data with a nested model structure.
Extending the structure of multilevel GLMMs to the Adaptive Gaussian Quadrature, the
approximation of the log-likelihood for the 𝑖𝑡ℎ group in a two-level GLMM becomes

𝑙𝐴𝐺𝑄2(𝛽, 𝜎1

2, 𝜎2
2, ∅|𝑦𝑖)

= log|∆1| − log|𝑅11(𝑖)| + 𝑀𝑖 log|∆2| − ∑ log|𝑅22(𝑖𝑗)|
𝑀𝑖

𝑗=1

+ log ∑ {[𝑒𝑔21(𝛽,𝜎1
2,∅,𝑦𝑖,�̃�𝑖

(1)
(𝑘)𝑊𝑘

(1)
] × ∏ ∑ [𝑒

𝑔22(𝛽,𝜎2
2,∅,𝑦𝑖𝑗,�̃�𝑖

(1)(𝑘),�̃�𝑖𝑗
(2)

(𝑙,𝑘)
𝑊𝑙

(2)]

𝑁𝐺𝑄

𝑙

𝑀𝑖

𝑗=1

}

𝑁𝐺𝑄

𝑘=1

Where the full data approximation is

𝑙𝐴𝐺𝑄2(𝛽, 𝜎1
2, 𝜎2

2, ∅|𝑦) = ∑ 𝑙𝐴𝐺𝑄2(𝛽, 𝜎1
2, 𝜎2

2, ∅|𝑦𝑖)
𝑀𝑖

𝑖=1

The approximation requires 𝑁𝐺𝑄
𝑞1 evaluations of 𝑔21(.) and 𝑀𝑖𝑁𝐺𝑄

𝑞1+𝑞2 evaluations of 𝑔22(.) which

increases linearly with the number of level two groups, 𝑀𝑖. If single level Adaptive Gaussian
Quadrature were to be directly applied to a two-level model the approximation would

require 𝑁𝐺𝑄
𝑞1+𝑀𝑖𝑞2 evaluations of the 𝑔(.) function. The increase in computational speed and

memory efficiency comes from using 𝑀𝑖𝑁𝐺𝑄
𝑞1+𝑞2 evaluations instead of 𝑁𝐺𝑄

𝑞1+𝑀𝑖𝑞2 evaluations of

the respective 𝑔(.) functions. This difference in evaluations is a product of theoretical
change in the Q-R decompositions for the level 2 arrays in the data. The multilevel Adaptive
Gaussian Quadrature algorithm reduces the number of conditional log-likelihood evaluations

by inverting the least squares upper-triangular matrices; and the log-determinants used in
the computations become the sum of the logarithms of the absolute diagonal values of the
corresponding upper-triangular matrices. Pinheiro and Chao (2006) documents the
application of inverting the upper-triangular matrices to the Adaptive Gaussian Quadrature
rule in detail. [4]

PROC GLIMMIX

The dataset used in the following section was simulated using SAS code which can be found
in the appendix. The simulation creates a multilevel dataset with 20 schools, 30 teachers at
each school, and between 16 and 30 students for each teacher. Each student has a value
for the fixed effect x1. The response variable in the model follows a binomial response
tracking whether a student had the flu. The following code applies a direct application of the
single level Adaptive Gaussian Quadrature approximation to the multilevel simulated dataset

using 3 quadrature points:

 proc glimmix data=sim method=quad(qpoints=3);

 class school teacher;

 model Flu = x1 /dist=binomial link=logit;

 random int / subject=school;

 random int / subject=teacher(school);

 run;

5

Unless the dataset used is small, SAS will return the following error message:

ERROR: Insufficient resources to perform adaptive quadrature with 3

quadrature points. METHOD=LAPLACE, corresponding to a single point, might

provide a computationally less intensive possibility.

The reason this error message displays is because the number of integrations the single

level Adaptive Gaussian Quadrature approximation requires SAS to perform. In the context

of the simulated data, this procedure asks SAS to perform 𝑁𝐺𝑄
𝑞1+𝑀𝑖𝑞2 = (3)1+20∗1 = 10,460,353,203

evaluations of the conditional log-likelihoods.

To use the multilevel Adaptive Gaussian Quadrature approximation the METHOD=QUAD
option with the FASTQUAD sub-option must be used. The only difference in the code is the
addition of the FASTQUAD sub-option shown below:

 proc glimmix data=sim method=quad(fastquad qpoints=3);

 class school teacher;

 model Flu = x1 /dist=binomial link=logit;

 random int / subject=school;

 random int / subject=teacher(school);

 run;

This time, we receive no error message because using the FASTQUAD sub-option asks SAS

to perform 𝑁𝐺𝑄
𝑞1+𝑞2 = (3)1+1 = 9 evaluations of the conditional likelihoods. The output for the

GLIMMIX procedure can be found in the appendix.

MEMORY AND RUNTIME IMPROVEMENT

Since the single level Adaptive Gaussian Quadrature approximation may not be successfully
run when applied to a multilevel model, the memory usage and runtimes of multilevel
models with quadrature points of 3, 5 and 7 will be compared. The computer which
processed each GLIMMIX procedure is a Lenovo™ Thinkpad® L480. The L480 uses an
Inter® Core™ i5-8350U CPU with an internal clock of 1.70Ghz, 8.00 GB of RAM, and a 64-
bit Windows® 10 Operating System. SAS Enterprise Guide was used to run the SAS
programs.

There was a total of 10 trials created following the format of the simulated dataset

mentioned in the previous section. For each trial a GLIMMIX procedure with quadrature
points of 3, 5, and 7 were ran one at a time. The runtime and memory usage statistics were
recorded from the log after running the code:

 options fullstimer;

After which the log information will now display:
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: At least one element of the gradient is greater than 1e-3.
NOTE: PROCEDURE GLIMMIX used (Total process time):
 real time 12.42 seconds

 user cpu time 11.98 seconds

 system cpu time 0.42 seconds

 memory 5897.03k

 OS Memory 23640.00k

 Timestamp 02/16/2020 07:27:51 PM

From which the real time and the memory was recorded for each of the procedures ran. A

means procedure was used to summarize the results on the following page:

6

Quadrature
points

Measure Mean Standard
Deviation

Minimum Median Maximum

3 Runtime
(s)

12.35 0.90 11.07 12.30 13.74

Memory
(k)

5619.55 8.33 5611.28 5618.05 5641.42

5 Runtime
(s)

23.05 1.90 20.53 23.56 26.15

Memory
(k)

5617.71 11.97 5585.34 5619.70 5630.19

7 Runtime
(s)

39.61 2.74 35.92 40.30 43.53

Memory
(k)

5620.87 4.25 5613.60 5619.67 5627.67

Table 1. MEANS Procedure: Runtime and Memory Statistics for FASTQUAD

The mean runtime of the GLIMMIX procedure in seconds increases with the number of
quadrature points used. This can be explained by the increase in the number evaluations of
the conditional log-likelihoods:

• 3 quadrature points: 𝑁𝐺𝑄
𝑞1+𝑞2 = (3)1+1 = 9 evaluations of the conditional log-likelihoods.

• 5 quadrature points: 𝑁𝐺𝑄
𝑞1+𝑞2 = (5)1+1 = 25 evaluations of the conditional log-likelihoods.

• 7 quadrature points: 𝑁𝐺𝑄
𝑞1+𝑞2 = (7)1+1 = 49 evaluations of the conditional log-likelihoods.

As expected, when SAS is asked to perform more evaluations of the conditional log-
likelihoods the program takes longer to run.

The standard deviations for the memory requirements increased from 3 points to 5 but
decreased from 5 to 7. While this result was not expected, it also is not surprising. This is
due to the limitation of running multiple procedures using the same dataset. After a couple
procedures are completed, results may be stored in either the operating system, within
SAS, or another process on the computer. The caching of these results likely lead to
subsequent procedures having lower variances.

CONCLUSION

The addition of the FASTQUAD sub-option in the GLIMMIX procedure for SAS/STAT 14.1
allows the use of the multilevel Adaptive Gaussian Quadrature algorithm of Pinheiro and
Chao (2006). The multilevel algorithm reduces the number of evaluations of the conditional
log-likelihoods by inverting the least squares upper-triangular matrices. By decreasing the
number of integrations of the conditional log-likelihoods SAS can process multilevel models
faster and more efficiently. The reduction in integrations allows users to use additional
quadrature points to increase accuracy of the evaluations performed to derive the model’s
parameter estimates.

7

REFERENCES

1. Abramowitz, M., & Stegun, I. (1964). Handbook of mathematical functions with
formulas, graphs, and mathematical tables. NEW YORK: DOVER PUBLICATIONS.

2. Hammer, P. C., & Wymore, A. W. (1957). Numerical evaluation of multiple integrals.

I. Mathematics of Computation, 11(58), 59–67. doi: 10.1090/s0025-5718-1957-
0087220-6

3. Pinheiro, J., & Bates, D. (1995). Approximations to the Log-Likelihood Function in the
Nonlinear Mixed-Effects Model. Journal of Computational and Graphical
Statistics, 4(1), 12-35. doi:10.2307/1390625

4. Pinheiro, J., & Chao, E. (2006). Efficient Laplacian and Adaptive Gaussian Quadrature

Algorithms for Multilevel Generalized Linear Mixed Models. Journal of Computational
and Graphical Statistics, 15(1), 58-81. Retrieved from
www.jstor.org/stable/27594165

5. SAS Support (2017). Using the FASTQUAD suboption in PROC GLIMMIX to overcome
long computing times or insufficient memory problems. Retrieved from
http://support.sas.com/kb/60/666.html

6. Thisted, R. (1988). Elements of Statistical Computing. New York: Routledge,
https://doi.org/10.1201/9780203758212

ACKNOWLEDGMENTS

The entire Scholarly Activity and Scientific Support Team at Spectrum Health Office of
Research and Education for their feedback on my paper, and the encouragement to submit

to SAS Global. A special thanks to Jessi Parker for her mentorship and guidance on the
paper and submission

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Sidney Hann
Grand Valley State University
Spectrum Health Office of Research and Education
hann.sidney@gmail.com

mailto:baxterac@mail.gvsu.edu

8

APPENDIX

CODE

/* Create the simulation dataset.*/

data sim;

 do trial = 1 to 10; /* Create 10 trials w/ random seeds*/

 call streaminit(rand('uniform', 10000, 10000000));

 do school = 1 to 20; /* Create 20 schools */

 rs = rand('normal')*2;

 do teacher = 1 to 30; /*Create 20 teachers*/

 rt = rand('normal');

 do student = 1 to ceil(rand('uniform')*14)+15;

 x1 = rand('normal');

 /*Create linp relating the random effects*/

 linp = -3 + x1 + rs + rt;

 pi = 1/(1+exp(-linp));

 /* Create a Flu Response based on linp*/

 Flu = ranbin(0,1,pi);

 output;

 end;

 end;

 end;

 end;

run;

*Simulation code;

/* Creating a call function to quickly change trial number*/

%let trialnum = 1;

/* Telling SAS to print the full usage statistics in the log*/

options fullstimer;

/*Single level Adaptive Gaussian Quadrature applied to multilevel model*/

proc glimmix data=sim method=quad;

 where trial=&trialnum;

 class school teacher;

 model Flu = x1 /dist=binomial link=logit;

 random int / subject=school;

 random int / subject=teacher(school);

run;

/*Multilevel model with 3 quadrature points*/

proc glimmix data=sim method=quad(fastquad qpoints=3);

 where trial=&trialnum;

 class school teacher;

 model Flu = x1 /dist=binomial link=logit;

 random int / subject=school;

 random int / subject=teacher(school);

run;

/*Multilevel model with 5 quadrature points*/

proc glimmix data=sim method=quad(fastquad qpoints=5);

 where trial=&trialnum;

 class school teacher;

9

 model Flu = x1 /dist=binomial link=logit;

 random int / subject=school;

 random int / subject=teacher(school);

run;

/*Multilevel model with 7 quadrature points*/

proc glimmix data=sim method=quad(fastquad qpoints=7);

 where trial=&trialnum;

 class school teacher;

 model Flu = x1 /dist=binomial link=logit;

 random int / subject=school;

 random int / subject=teacher(school);

run;

/*Importing dataset with the 10 trial’s runtime and memory usage*/

proc import datafile=’…\SimulationData.xlsx' replace out=simres;

run;

/*Creating a dataset, sorting and printing the means with the statistics

desired*/

data results;

 set simres(drop=Trial);

run;

proc sort data=results;

 by Qpoints;

run;

proc means data=results nonobs min mean std median max maxdec=2;

 by Qpoints;

 var Runtime 'Memory(k)'n;

run;

OUTPUT

When the GLIMMIX procedure completes, the following output is given by default:

Output 1. Model Information

Output 2. Class Level Information

Output 3. Observations Read/Used

10

Output 4. Matrix Dimensions

Output 5. Optimization Information

Output 6. Iteration History

Output 7. Model Fit Statistics for the Multilevel Model

11

Output 8. Model Fit Statistics for the Conditional Distribution

Output 9. Covariance Parameter Estimates

Output 10. Type III Tests of Fixed Effects

