

1

Paper 4778-2020

Let’s See Further than One Observation: Applying Hash Objects

for Typical Clinical Programming Tasks

Valeriia Oreshko, IQVIA

ABSTRACT

It is commonly known that SAS® executes the data step for each observation iteratively. A

common method that is used to compare the current record to data from previous records is

to sort using first/last automatic variables and the retain statement. This method is often

time-consuming, requires the creation of additional data steps and variables, additional

sorting and is not always intuitive or easy to update. This paper will demonstrate an

alternative approach to typical clinical programming through hash objects: defining

baseline, detecting of repeated adverse events, flagging of all records from an interval and

fuzzy merging. Hash objects allow for the loading of a whole dataset into memory and for

the analyzing of combinations of observations. This paper will explain techniques on how to

navigate through the hash table and provide a comparison of execution speed between code

containing hash objects and traditional code.

INTRODUCTION

Hash object is a dynamic data structure. It can be summarized as an array that can be

accessed by a key and uses methods to navigate it. The paper will show how hash object

programming can be applied alongside with concepts of SAS®, that are more usual for

clinical programmers. A detailed explanation of storing and retrieving data in a hash object

is provided for each example, rather than providing a theoretical overview of the hash tools

EXAMPLE 1 – DETECTION OF REPEAT ADVERSE EVENTS

The first example demonstrates a method to flag repeat adverse event terms for a subject.

Our source dataset contains three variables: SUBJ, VISN, TERM. We create the hash object

from our source dataset to navigate through it in search of the repeat AE term. It is

essential to rename variables in the hash object EVENTS (#1) to differentiate and compare

the values in hash with those handled in a data step.

A hash object consists of keys and data items. During the declaration of the hash object at

least one key must be defined to make a link with the data step. SUBJ and VISN were

selected as keys (#2), because we want the data to be saved in hash in ascending order by

SUBJ, VISN and there are no duplicate adverse events on one visit. The argument tag

ORDERED specifies that SAS returns data in ascending order by SUBJ and VISN. The

definition of data items is optional. Data items associated with key items will be retrieved

from hash and stored in the dataset REPEATED. In DEFINEDATA() method we specify that

all variables from source dataset should be placed in hash – in our case SUBJ, VISN and

TERM (#3).

Furthermore, we declare and instantiate a hash iterator (hiter) object POINTER associated

with object EVENTS (#4). This hiter enables retrieval of data from EVENTS in forward or

reverse key order.

When we instantiated a new hash object with the DECLARE statement, we defined its

characteristics (key, data), however SAS does not yet recognize these characteristics as

variables. So, our next step is to use standard SAS statements (for ex., LENGTH) to add to

2

PDV variables with the same names as the object’s key and data. Otherwise we’ll receive an

error. The CALL MISSING statement is used to remove log notes regarding uninitialized

variables, i. e. those defined for the hash object (#5).

After setting the source dataset, the POINTER goes to the record in the EVENTS hash object

that precedes the record currently read from dataset observation (#6). DO WHILE loop (#7)

checks that the return code (assigned to RC variable) is equal 0 – meaning successful

execution and that the desired record exists. Inside the loop we navigate through all

preceding records (relative to current observation) of the hash object EVENTS and mark an

adverse event as repeated if the same TERM presents in part of EVENTS that corresponds to

the current SUBJ value.

The code for the detection of repeat adverse events is provided below:

data repeated(keep= subj visn term repeated);

 if _N_ = 1 then do;

declare ha declare hash events(dataset:'adv_ev(rename=(term=hash_term

 visn=hash_visn subj=hash_subj))',

 ordered: 'a');

 events.definekey('hash_subj', 'hash_visn');

 events.definedata(all:"yes");

 events.definedone();

 declare hiter pointer('events');

 end;

 length hash_term $20 hash_subj 8.;

 call missing(hash_term, hash_subj);

 set adv_ev;

 do i = 1 to _N_-1;

 rc = pointer.next();

 end;

 do while(rc = 0);

 if subj = hash_subj and hash_term = term then repeated="Y";

 rc = pointer.prev();

 end;

run;

In Display 1 the result of execution of code above is presented.

#1

#2

#3

#4

#5

#6

#7

3

Display 1. Output dataset for example 1

DUPLICATES IN HASH OBJECTS

The default structure of a hash object only allows a unique set of data items per key value.

If data loaded into a hash object contains duplicate key items, only the record with the first

occurrence of key items will be stored in the hash object. Suppose, we need to remove

repeated adverse events from prior ADV_EV dataset and only keep the occurrence of an

adverse event with the latest VISN. The argument tags of the hash object declare statement

have options to handle duplicates in dataset. It can be used as an analogue of NODUPKEY,

NODUPREC options in proc sort.

At the beginning of the data step, the variables needed for the hash object are loaded into

the PDV with the help of alternative method (#1 - instead of writing LENGTH statement).

The condition of the “IF” statement is always false. Although, SAS will not execute the

“SET”, it will be compiled. During compilation all variables from the dataset named on the

SET statement are added to the PDV.

In the standard DECLARE statement we add argument tag DUPLICATE: ‘r’, that tells SAS to

store the last duplicate key record (#2).

The OUTPUT method (#3) loads the content from the hash object EVENTS to the dataset

UNIQUE_AE, that can be used further in code. The sample of described code is provided

below:

data _null_;

 if _N_= 0 then set adv_ev;

 if _n_ = 1 then do;

 declare hash events(dataset: 'adv_ev', duplicate: 'r',

 ordered: 'a');

 events.definekey('subj', 'term');

 events.definedata(all: 'yes');

 events.definedone();

 end;

 rc = events.output(dataset: 'unique_AE');

run;

#1

#3

#2
2

4

EXAMPLE 2 – FLAGGING OF ALL RECORDS FROM AN INTERVAL

Suppose, we want to flag all the results that meet a specific condition continuously

throughout a defined period – stabilization period. To decide if the current record from

dataset should be included in the stabilization period, we need to look ahead to subsequent

records ensuring they are within the interval. Hash object enables us to view the limits of

stabilization period from the record that is currently handled in data step.

In this example we are looking for intervals where FL = “Y” during at least 10 days (Display

2).

The first block (#1) is responsible for setting the SOURCE dataset and, as seen in the prior

example, for creating hash variables in the PDV. Further (#2), we create the hash object

SRC and placing within it all data from the SOURCE dataset, specifying HASHSUBJ and

HASHDAY as key items. The hash iterator linked to SRC object is also created at this step.

After execution of the third block (#3) iterator HITER reaches the record in SRC object next

to the observation currently read in data step.

Display 2. Input and output datasets for example 2

Let’s consider closely what happens for each observation of SOURCE dataset in the code step

#4 taking _N_ = 5 as an example. It is essential to understand that during loop execution

the record from the dataset will be the same and only hash records are searched.

Iteration 1 of “WHILE” LOOP (blue route in Figure 1):

• At the beginning TRACER is on the record with _N_ = 6 in hash.

• The condition to execute the body of the loop is true: subj=hashsubj =1, hashfl = “Y”,

rc1 = 0, as record with _N_=6 (next to _N_=5 from dataset) exists in hash.

• Hashday - day = 27 – 24 = 3 < 10 - condition of “IF” statement is FALSE and tracer

goes to the next record in hash (_N_=7).

Iteration 2 of “WHILE” LOOP (green route in Figure 3):

• TRACER is on the record with _N_ = 7 in hash.

• The condition to execute the body of the loop is true: subj=hashsubj =1, hashfl = “Y”,

rc1 = 0, as record with _N_=7 exists in hash.

• Hashday - day = 35 – 24 = 11 > 10 - condition of “IF” statement is TRUE. The variable

STABILIZATION in dataset is mapped with “Y” and retained until FL = “N” appears in

dataset. “WHILE” loop ends for record with _N_ = 5 from dataset.

5

Figure 1. Scheme of work WHILE LOOP #4 when record with _N_= 5 is read from

dataset SOURCE

The value “Y” for STABILIZATION will be retained in dataset until in data step the record

with FL = “N” or new subject appears. Then we’ll begin to look for the new interval of

stabilization once record with fl = “Y’ is read from the dataset. Here is the code for defining

the needed interval:

data intervals(keep=subj fl day stabilization);

 set source;

 by subj day;

 length hashfl $1 hashday hashsubj 8. ;

 call missing(hashfl, hashday, hashsubj);

 if _n_=1 then do;

declare hash src (dataset: 'source(rename=(fl = hashfl day =

hashday subj = hashsubj))',ordered: 'a');

 src.definekey('hashsubj', 'hashday');

 src.definedata(all:"yes");

 src.definedone();

 declare hiter tracer("src");

 end;

 rc1 = tracer.first();

 do i = 1 to _n_; rc1 = tracer.next(); end;

 if fl = "Y" and first.subj=0 then do;

 do while (subj = hashsubj and hashfl = "Y" and rc1 = 0);

 if hashday - day > 10 then do;

 stabilization = "Y";

 retain stabilization;

 leave;

 end;

 rc1 = tracer.next();

 end;

 end;

 else call missing(stabilization);

run;

#1

#2

#3
3

#4

6

EXAMPLE 3 – MAPPING OF BASELINE FLAG

The example code below presents the method of detecting a baseline record for the finding

dataset and outputting a flag back into the finding dataset using hash objects. To implement

this example, we’ll need 2 hash objects: the first one - with data about subjects’ start

treatment date, the second one containing data about tests performed.

After declaration of hash objects and iterator (#1), we will firstly look up the corresponding

RFXSTDTC in the previously created hash table STTRT with the help of FIND method. This

method connects handled dataset with hash table by the key variable (SUBJ) and uploads

the variables specified in DEFINEDATA method (RFXSTDTC in our case). This step is the

analogue of merge statement to get date of start treatment from demographic data.

When SAS reads a new record from a set dataset, our hash iterator TRACER is placed on the

first observation of hash table that contains tests’ results (#2). Using DO loop (#3) we are

moving iterator to the next (relative to our current read from VS) observation. Then we

check, if current record from VS can potentially be baseline one, (i.e., it has non-missing

result and date is prior to start of treatment) and map all such records with POT_BL flag

(#4). The goal of further executed WHILE loop (#5) is to define whether there is any

potential baseline record after current one. If yes, the current record is not a true baseline,

because there is later one but at the same time earlier that start of treatment. Note, that

our data in hash table was sorted while declaring hash object through argument tag

SORTED, that is why in WHILE loop the next element will always have the bigger VSDTC

that current record has. In Display 3 you can see the resulting dataset with a mapped

baseline flag.

The code for baseline mapping is presented below:

data baseln(drop= hash: rc: i);

 length rfxstdtc hashtest hashvsdtc $10 hashsubj hashres 8. ;

 call missing(rfxstdtc, hashtest, hashvsdtc, hashsubj, hashres);

 if _n_ = 1 then do;

 declare hash sttrt(dataset: 'dm');

 sttrt.definekey('subj'); sttrt.definedata('rfxstdtc');

 sttrt.definedone();

declare hash tests(dataset: 'vs(rename=(subj=hashsubj test=hashtest

vsdtc=hashvsdtc res=hashres))', ordered: 'a');

 tests.definekey('hashsubj','hashtest','hashvsdtc');

 tests.definedata(all:"yes");

 declare hiter tracer ("tests");

 tests.definedone();

 end;

 set vs;

 if sttrt.find() = 0;*DM merging;

 rc2 = tracer.first();

 do i = 1 to _n_; rc2 = tracer.next(); end;

 if vsdtc < rfxstdtc and not missing(res) then do; pot_bl = "Y";

 do while(rc2 eq 0 and subj eq hashsubj and test eq hashtest);

if hashvsdtc<rfxstdtc and nmiss(hashres)=0 then

do;

 pot_bl="N";

 leave;

end;

 rc2 = tracer.next();

 end;

 if pot_bl = "Y" then blfl = "Y;

#1

#5

#2

#4

#3

7

 end;

run;

Display 3. Output dataset for example 3

EXAMPLE 4 – FUZZY MERGING

As started in example 1, the default definition of a hash object excludes the duplicate

records by key items. In this example we’ll consider a method to place multiple sets of data

per key value in hash and the advantages seen in manipulating duplicates in hash objects.

We’ll use two datasets: ADV_EV (contains adverse event terms and the day of their

occurrence) and RESULTS (results of one test and day when it was performed). Suppose,

we want to find the result of the given test that was performed closest to (before or after)

the adverse event (Display 4).

Display 4. Source and wanted datasets for example 4

As we need the final dataset to have the same structure as ADV_EV, we’ll handle ADV_EV in

dataset and the RESULTS will be loaded in hash. The two source datasets have only one

common key variable - SUBJ. The datasets contain more than one observation per subject,

so we are forced to load multiple records per key value.

At the beginning of data step execution, we declare two hash objects. In the first RES_HASH

– we place our source dataset with results. It is important to highlight that we are using

argument tag “multidata” - with its help we can load several results per one value of

variable SUBJ, that is defined as key item.

8

The second hash ALL_COMB is not filled immediately after declaration, as its DECLARE

statement doesn’t contain the ‘DATASET:’ argument tag. Further in loop #4 the data will be

uploaded to ALL_COMB hash object using method ADD (#5).

In block #3 we set ADV_EV dataset with the END option to allow detection of the last

observation. The method FIND() in this case retrieves the first set of data items for every

subject from the hash object RES_HASH.

In #4 loop we calculate the difference between DAY and AESTDY for each adverse event

and each result within one subject. In other words, we formulate a hash object that has

cartesian products of adverse events*results for each subject. To navigate through

RES_HASH we use the FIND_NEXT() method that is typical for objects with duplicate key

items. It finds and places the next set of data items for the current key value in the data

step. To see the result of loop #5 we store the content of ALL_COMB in dataset CHECK (#6

– Display 5)

Display 5. Interim result – a piece (for subj = 2 and 3) of ALL_COMB hash object

loaded in CHECK dataset

When the end of dataset ADV_EV is reached (#7), we already know all of the differences

between days of result and adverse event – they are stored in CHECK dataset in DIFF

variable. Now we just need to select the result with minimum DIFF for each subject, adverse

event. We then create a hash object from CHECK dataset with key that specifies unique

adverse event and loads only first occurrence. The dataset CHECK is sorted by DIFF because

it was made from ALL_COMB hash object whose definition contains the argument tag

‘ordered’ and DIFF as key item. So, the observation loaded in MIN_COMB hash object and

then outputted in FINAL dataset has the minimum difference between days of adverse event

and result.

The last two DELETE methods (#8) remove hash objects ALL_COMB and RES_HASH during

data step execution as they are no longer needed. Step #8 is not mandatory, the hash

object would be deleted automatically by SAS at the end of data step, but it demonstrates

that memory can be manually cleared if resources are limited. The full code for the

described example is listed below:

data _null_;

if _n_ = 0 then set results;

 if _n_ = 1 then do;

 declare hash res_hash(dataset: 'results', multidata:"yes");

 res_hash.definekey('subj');

 res_hash.definedata(all:"yes");

 res_hash.definedone();

 declare hash all_comb(ordered: 'yes' multidata: "yes");

 all_comb.definekey('subj', 'term', 'aestdy', 'diff');

 all_comb.definedata('subj', 'term', 'aestdy', 'diff', 'res');

#1

#2

9

 all_comb.definedone();

 end;

 set adv_ev end = last;

 rc = res_hash.find();

 do while (rc=0);

 diff = abs(day-aestdy);

 rc1 = all_comb.add(key: subj, key: term, key: aestdy,

 key: diff, data: subj, data: term,

 data: aestdy, data: diff, data: res);

 rc = res_hash.find_next();

 end;

 rc3 = all_comb.output(dataset: 'check');

 if last then do;

 declare hash min_comb(dataset: 'check', ordered: "yes");

 min_comb.definekey('subj', 'term' , 'aestdy');

 min_comb.definedata('subj', 'term', 'aestdy', 'diff', 'res');

 min_comb.definedone();

 rc4 = min_comb.output(dataset: 'final');

 all_comb.delete();

 res_hash.delete();

 end;

run;

SPEED OF EXECUTION

Execution time was measured for the examples provided in paper and compared with the

execution times of standard SAS code that perform the same task. The results are provided

in Table 1.

N obs in

dataset

placed in

hash

Example 1 Example 2 Example 3 Example 4

hash no

hash

hash no

hash

hash no

hash

hash no

hash

(SQL)

1 000 0.01 0.03 0.04 0.08 0.12 0.02 0.15 0.03

10 000 0.04 0.05 0.06 0.19 0.15 0.05 0.19 0.06

100 000 0.05 0.27 0.09 0.48 0.22 0.34 0.21 0.41

1 000 000 0.08 2.38 1.12 4.15 0.25 2.99 0.22 3.79

5 000 000 1.35 26.08 4.21 44.31 6.31 19.81 6.28 40.81

Table 1. Comparison of execution time: hash vs standard code

Two major benefits of hashing are performing a table lookup using two unsorted datasets and

as seen in table 1 a low and almost consistent runtime when scaled. When matching two

tables by a variable it is better to place the larger of the two into hash. For an appropriately

implemented hash data structure, the cost of lookups is independent of the number of

elements stored in the table.

FAQ WHILE WORKING WITH HASH OBJECTS

1. Which dataset should be uploaded to hash and which should be set? – Consider the form

of your final dataset, you should set the dataset that has similar structure to your final

one. A dataset in hash is like a stable database.

#4
#5

#6

#3

#7

#8

10

2. When do we need to rename variables? - When the same dataset is uploaded to hash as

is set in the data step.

3. How long does a hash object persist? – It exists only during execution of the data step in

which the hash object was created. So, if you need to use previously created hash object

in other data step, you should recreate it in current data step. The content of hash

object can be saved for further usage in the dataset (with help of output() method), but

it does not save the hash object.

4. How much memory does a hash object occupy? – A rough estimation can be made by

multiplying the number of observations by the observation length. For a more precise

estimation the attribute use ITEM_SIZE.

CONCLUSION

In clinical programming there are many situations (sorting, merging, complex manipulation

with multiple records) where using hash tables to store data in memory can be a useful

technique. The limit of memory can be an obstacle while using a hash object, as the amount

of data that can be loaded into a hash object is the amount of memory available to the SAS

session. It is desirable to clear memory manually using appropriate methods while working

with hash objects. At first glance, the hash approach can be perceived as sophisticated one,

so it often more reasonable to use this approach in stable pieces of code such as standard

macros, that require less day to day maintenance.

REFERENCES

Burlew, Michele M. 2012. SAS® Hash Object Programming Made Easy. Cary, NC: SAS

Institute Inc.

P.Dorfman, L.Shajenko. Data Step Programming Using the Hash Objects, NESUG 2004,

Baltimore, MD 2004.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Valeriia Oreshko

IQVIA

valeriia.oreshko@quintiles.com

