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ABSTRACT  

Bayesian inference, in particular Markov Chain Monte Carlo (MCMC), is one of the most 

important statistical tools for analyses. Although there is free access to many powerful 

statistical software tools for Bayesian analysis, still, it is challenging both to learn and to 

apply to real life research. SAS® has facilitated many procedures using Bayesian analysis 

which make it much easier to use, particularly for SAS users. This presentation 

demonstrates various examples such as ‘one sample proportion’, ‘two sample proportion’, 

and ‘two sample t-test’, to more advanced models via Bayesian analysis. The results will be 

compared with non-Bayesian models. Many real-life examples in medicine, clinical trials and 

meta-analysis will be given. 
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INTRODUCTION  

Despite differences in Bayesian and frequentist approaches we do have: Bernstein-von 

Mises Theorem: Under suitable assumptions and for sufficiently large sample sizes, the 

posterior distribution of θ is approximately normal with mean equal to the true value of θ 

and variance equal to the inverse of the Fisher information matrix. This theorem implies 

that Bayesian and Maximum Likelihood Estimate (MLE) estimators have the same large 

sample properties - not really surprising since influence of the prior should diminish with 

increasing sample sizes. But this is a theoretical result and we often don’t have “large” 

sample sizes, so it is quite possible for the posterior to be (very) non-normal and even 

multi-modal. Most of Bayesian inference is concerned with (which often means simulating 

from) the posterior 
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Clearly, there will be integration involved in (1). One of the important methods of 

integration is the acceptance-rejection algorithm, but this can work very well for low-

dimensions, however it can be extremely inefficient for high dimensions. Although it can be 

a useful technique (even for high dimensions) when combined with MCMC methods. 

MCMC is a combination of two terms, Markov Chain and Monte Carlo, where the second one 

(Monte Carlo) was originally developed in the 1940’s by physicists at Los Alamos. 

Bayesians, and sometimes also frequentists, need to integrate over possibly high-

dimensional probability distributions to make inference about model parameters or to make 

predictions. Bayesians need to integrate over the posterior distribution of the model 
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parameters given the data, and frequentists may need to integrate over the distribution of 

observables given the parameter values. As described below, Monte Carlo integration draws 

samples from the required distribution, and then forms sample averages to approximate 

expectations. Markov Chain Monte Carlo draws these samples by running a cleverly 

constructed Markov chain for a long time.  

Metropolis et al. (1953) introduced a Monte Carlo-type algorithm to investigate the 

equilibrium properties of large systems of particles, such as molecules in a gas. Hastings 

(1970) used the Metropolis algorithm to sample from certain distributions; for example, 

normal (standard), Poisson, and random orthogonal matrices. Geman and Geman (1984) 

illustrated the use of a version of the algorithm that they called the Gibbs sampler in the 

context of image reconstruction. Tanner and Wang (1987) developed a framework in which 

Gibbs sampler algorithms can be used to calculate posterior distributions, they called it Data 

Augmentation.  Gelfand, Hills, Racine-Poon, and Smith (1990), Gelfand and Smith (1990), 

and Zeger and Karim (1991) used the Gibbs sampler to perform Bayesian computation in 

various important statistical problems. Gibbs sampling is a special case of Markov Chain 

Monte Carlo (MCMC) using the Metropolis-Hastings algorithm, which is a general method for 

the simulation of stochastic processes having conditional probability densities known up to a 

constant of proportionality.  

Before we go through PROC MCMC we need to explain how Gibbs sampling is working. We 

start by a simple example from Casella and George (1992) paper. 

 

Example1.  For the following joint distribution of x  and y   
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( | ) ~ ( , )• Bin nx    . 

2. ( ) 11( | ) 1 ,
− + −+ − −

xx n
f x

    

( | ) ~ ( , )• + − +Bex xta n x  . 

We will go through this k=500 times and we will take the last values of x and theta as our 

first sample. We will repeat this N=5000 times. 

Let us pick 
(0)(0) , , 1005 0.2x n = ==  as initial values. 

First cycle: 

Sample 
( )1

x  from  
( ) 0)1 (( | ) .~ (10, )0.50 0 20Binx  = , 

it gives: 
(01) )( 0.200,x  == . 

sample 
(1)  from 

( )1(1)( | ) ~ ( 1,10 1)0 0 0Betax + − += ,  

1(1) ( ) 0.01513,0x  ==  
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Second cycle: 

Sample 
( )2

x  from  
( ) 0)2 (( | ) 5~ (10, )0.01513 0.01 13Binx  = , 

it gives: 
)(2) (1 0.164732,2x  == . 

sample 
(3)  from 

( )2(3)( | ) ~ ( 1,10 1)2 2 2Betax + − += ,  

1(2) ( ) 0.1666,2x  == . 

This can be repeated 500 times and pick the first sample. We will keep doing this from 

another 5000 times. The following SAS codes will do the job. 

 

Beta Binomial 

%let Sample = 5000; 

data BetaBin;                          

alpha = 2; beta=4; n= 16; x=0 ;k=500;         /* initialize hyperparameters */ 

call streaminit(4321); 

do j=1 to &Sample;; 

  do i = 1 to k; 

      a=x+alpha;b=n-x+beta; 

      x = rand("Binomial", tetha, n);/* x[i]|tetha[i] ~ Bin(tetha[i], n) */ 

      tetha = rand("Beta", a, b);   /* tetha[i]|x[i] ~ Beta(a,b)  */ 

      output; 

  end; 

end; 

keep x tetha; 

run; 

proc univariate data=betabin; 

var x tetha; 

histogram x tetha;run; 

   

Table 1: SAS codes for Gibbs sampling of 2 variables x and  . 

The output will be the distribution of both x and  .Then from the sample we can find any 

characteristic of the two random variables such as mean, median and standard deviation. 

In SAS PROC MCMC Statements has the following syntax: 

PROC MCMC options;  

          PARMS;/* to declare the parameters 0 5;   

          PRIOR; /* Stating the distribution of priors. We can have more than one prior  

                              abatelement ( ) ( )0 100~ Beta a,b , ~ Normal ,   

Programming statements; /*  

MODE: like ( )2y ~ Normal ,   , multiple model is allowed 

RANDOM; ( )10 25~ Normal , , multiple random statement is allowed 

PREDDIST; Prediction distribution  
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Run;  

 

STEPS OF BAYESIAN METHOD 

1. Decide on the Prior: ( )P    

• ( )P  expresses what is known about prior to observing y  

2. Decide on the Likelihood: ( )L y |   

• Describe the process of giving rise to the data in terms of unknown   

3. Derive the Posterior: ( ) ( ) ( )P | y L y | P      

• Apply the Bayes Theorem to derive ( )P | y , this expresses what is known 

about  after observing y .  

4. Inference statement are derived from posterior distribution ( )P | y   

• Point estimates, interval estimates, probability of hypotheses. 

• All parameters are assumed to be unknown 
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Example2: One sample Proportion 

Let Y be a Bernoulli trial with probability of success  . Derive the posterior of  given some 

data. 

Likelihood: ( )Y | ~ Bin n,  :  ( ) ( )1
n yyn

L y |
y

  
− 

= − 
 

 

Prior: ( )~ Beta a,b  : ( ) ( ) ( ) 111
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where 

( ) ( )
1n

C
B , f yy  
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( ) ( ) + − +y y| ~ Beta ,n y   

 

That is, ( )y| is a beta distribution with parameters +y  and − +n y  respectively. 

Let us use data: let ( )25Y ~ Bin ,  and we observed y = 12 successes. Then we will 

get the posterior mean for four different priors as sensitivity of prior, Chen, F. (2009): 

12
0 48

25
MLE
ˆ .= =   

          Prior Posterior Mean Credible Interval 

( )1 1~ Beta ,  

( )3 7~ Beta ,  

( )7 3~ Beta ,  

( )10 10~ Beta ,  

( )13 14y ~ Beta ,|  

( )15 20y ~ Beta ,|  

( )19 16y ~ Beta ,|  

( )22 23y ~ Beta ,|  

0 481.  

0 429.  

0 537.  

0 489.  

0.283   0.662 

0.273   0.574 

0.365   0.679 

0.335   0.622 

      

     Table 2  the results on posterior of  for different distribution of priors. 

 

In the following we use PROC MCMC where we used a Macro to calculate the posterior 

distribution of   for different prior distributions.  
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Proc MCMC 

data one; 

  n = 25; y = 12; 

run; 

%macro BetaBinom(alpha, beta);  

ods graphics on; 

title "Priors: Beta(&alpha, &beta)"; 

proc mcmc data=one seed=123 outpost=PosteriorSample diag=ess 

          nbi=1000 nthin=10 nmc=10000 statistics=(summary interval); 

  parms theta 0.5;  

  prior theta ~ beta(&alpha, &beta);  

  model y ~ binomial(n, theta); 

  ods select PostSummaries PostIntervals TADPanel; 

run; 

ods graphics off; 

%mend; 

%BetaBinom(1, 1); 

%BetaBinom(3, 7); 

%BetaBinom(7, 3); 

%BetaBinom(10, 10); 

             

 Table 3: SAS codes to produce the results founded in table 2              

 

 

Figure 1: Distribution Plots for prior, posterior and likelihood of   

The MCMC procedure produces the following three types of plots (Figure2) that can be used 

for convergence criterion. The first one on the top (trace plot) indicates that the Markov 

chain appears to be stable and constant variance. In other words, it is a good mixing. The 

second one (bottom left) is the autocorrelation plot that shows a very small degree of 

autocorrelation among the posterior samples for . Finally, the third one is the kernel 

density plot estimates the posterior marginal distribution for the parameter  . 
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Figure 2 Diagnostic Plots for  

 

BINARY REGRESSION 

Binary outcomes in many studies are usually analyzed via the logistic regression model to 

obtain odds ratios in order to compare two different levels of exposures. Recently, many 

papers have been published either with simulations or with real life data that are common 

(incidence of 10% or more); it is often more desirable to estimate a RR rather than OR with 

increasing incidence rates, and there is a tendency for some to interpret ORs as if they are 

RRs (McNutt LA, et al. 2003), but there is an increasing differential between the RR and OR 

when the incidence becomes more common.  

For instance,  let 1̂
   be proportion of say low birthweight children with smoking mothers 

and 2
̂  be proportion of low birthweight children among non-smoking mothers.  There are 

three common measures of association in Epidemiology as follows: 

o Risk Difference (RD): 1 2
ˆ ˆ−   

 

o Risk Ratio (RR): 1 2
ˆ ˆ/    

o Odds Ratio (OR): 
( )
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Example3: Risk Difference (RD): To make Bayesian inference on  
1 2
ˆ ˆ−  , we are going 

to apply a linear model to produce a binary outcome. 

  Model: 

0 1
1i ip X , i , ,n= + =  , 

with ( )i iE Y p= , where 1iY = if Low Birth and 0 otherwise, 1iX = if smoker and 

0iX = otherwise. Thus, 

( )
( )

0 1

2 1

0
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1

2
0

1

i

i
ˆ E Y ˆ ˆ

ˆ
ˆ ˆ ˆ

ˆE Y


−

+
 =

= = =

=



= = 
 

 


 
 

The biggest issue with binary regression is convergence. Pedroza and Truong (2016) used 

some simulations study in many cases and in all vases analyzed, it was observed that 

Bayesian methods are capable of estimating the measures of interest, always within the 

correct parametric space of probabilities. In particular we can use the multi-clinic data which 

is an easy approach via MMCMC. As a real life’s example we use the data from a 1986 

cohort study conducted at the Baystate Medical Center, Springfield Massachusetts, see 

Hosmer and Lemeshow (2000). The outcome is the low birthweight (1 if the weight is 

<2500 gr, 0 otherwise). The data consist of 189 live births of which 59 of them had low 

birth weight.  

A frequentist approach is via Proc Freq to calculate the risk difference
1 2
ˆ ˆ−   as shown 

here: 

Risk difference 

data one;set sasuser.lowirth; 

 proc sort data=one; by descending low descending smoke;run; 

 proc freq data=one order=data; 

tables smoke*low/nopercent nocol riskdiff all;run; 

Column 1 Risk Estimates 
 

Risk ASE 95% 

Confidence Limits 

Exact 95% 

Confidence Limits 

Difference 0.1532 0.0700 0.0161 0.2904   
 

Table 4: SAS codes and the partial output for risk differences 1 2
ˆ ˆ −   

 

1

30
0 4054

74
ˆ . = = ,

2

29
0 2522

86
ˆ . = =  

21
0 40 0 2522 25ˆ .ˆ . = −− =

0 1532.  
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Frequency 

Row Pct 
 

 

Table of smoke by low 

smoke low 

1 0 Total 

1  30 

40.54 
 

44 

59.46 
 

74 

  
 

0  29 

25.22 
 

86 

74.78 
 

115 

  
 

Total  59 
 

130 
 

189 
 

 

Now we will show binary regression with identity link as follow 

Risk difference 

proc genmod data=TWO desc; 

model low=smoke; 

bayes seed = 21 coeffprior = normal nmc = 10000 outpost = 

mcmcout seed = 21 nbi = 1000 thin = 10;run; 

 

Table 5: MCMC codes via PROC GENMOD for binary linear regression   

2 11̂
ˆ ̂ − =        10 25 53223 0 iˆ .y . X= +  

Parameter N Mean Standard 

Deviation 

Posterior Intervals 

Equal-Tail Interval HPD Interval 

Intercept 10000 0.2523 0.0432 0.1681 0.3363 0.1726 0.3403 

SMOKE 10000 0.1531 0.0695 0.0158 0.2883 0.0175 0.2896 

Output 1: MCMC output for,
1

̂  the regression coefficient  

 

 As it is shown in output 1, in above, there is no issue about the convergence. There 

is no apparent issues about the convergence. This has been also confirmed by the 

Geweke test (P-value=0.12) (Geweke (1992). Also the effective sample size in all 

cases is above 9967 which is an indication of good mixing. 

 

Example4: Risk Ratio (RR):  

To estimate risk ratio (RR) we can use a log-binomial regression model, but it has 

again convergence issues. However, as we stated in above Bayesian simulations 

analysis, many have shown that this problem has been resolved by choosing an 

appropriate prior. Pedroza et al.(2016) in an extensive simulations study used the 

Bayesian approach to solve the problem of convergence. 

      Model: 

                                          ( ) 0 1
1i iln p X , i , ,n= + =   

 where iY  and iX  are defined as above. For the low birth data set we have: 

( )  0 1 0 11
1 1l ˆ| X en p xp== == +  +      



10 

          ( )  0 2 0
01 ˆln pXp ex| = = ==     

 
 

1

0

1 0 1

2

ˆ exp
e

expˆ
+

= =  






, as it is called risk ratio. 

 

Risk Ratio 

/* Log-Binomial*/ 

proc genmod data=one desc; 

model low=smoke/d=bin link=log; 

bayes seed = 1 coeffprior = normal;  
ods output PostSummaries = ps;run; 

data CI; 

  set ps (where = (Parameter ^= "Intercept")); 

  RR = exp(Mean); 

  Lower = exp(Mean - 1.96 * StdDev); 

  Upper = exp(Mean + 1.96 * StdDev);run; 

proc print;run; 

Risk            95% 

Confidence Limits 

1.59074 1.04016 2.43277 
 

 

Table 6: SAS codes for MCMC codes via PROC GENMOD for log-binomial regression   

 

0 955 0 49990 il . .n p X= − +  

( ) ( )1

2

1 0 4642 1 591ˆexp e
ˆ

xp . .ˆ 



= = =      

Parameter N Mean Standard 
Deviation 

95% Credible Interval 

Equal-Tail Interval HPD Interval 

Intercept 10000 -1.3958 0.1618 -1.7208 -1.0921 -1.7121 -1.0892 

SMOKE 10000 0.4642 0.2167 0.0334 0.8764 0.0300 0.8677 

                      Output 2: MCMC output for 1
̂

, the log-binomial regression coefficient 

Again there is no apparent issue about the convergence. This has been also confirmed by 

graphical search and the Geweke test (P-value=0.47). 

 

Example5: Odds Ratio (OR):  
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 To estimate the OR, we can use a logistic regression as it has no serious issue with 

convergence, but it will not do well for high incidence (usually more than 10%). Here also 

Bayesian analysis has been used. 

  Model: 

0 1
1

i
i

i

pln X
p

 
= + − 
  . 

For the low birth data set we have: 

( )
( )  0 1 0 11

1

1

1

11
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|p
Odd expn

p
X
| X

 
= +



=
=

 + −
=

=
=
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( )  020

01

011
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| X
| X
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=  −

=



=
=

==
   

          ( )  0 2 0
01 ˆln pXp ex| = = ==     

 
 

10 1

0

exp
OR e

exp
+

= =  


, as it is called odds ratio 

SAS Variable Format 

/* Logistic*/ 

proc genmod data=one desc; 

model low=smoke/d=bin link=logit; 

bayes seed = 1 coeffprior = normal; 

ods output PostSummaries = ps;run; 

data CI; 

  set ps (where = (Parameter ^= "Intercept")); 

  RR = exp(Mean); 

  Lower = exp(Mean - 1.96 * StdDev); 

  Upper = exp(Mean + 1.96 * StdDev);run; 

proc print;run; 

OR 95% 

Confidence Limits 

2.03459 1.07393 3.85459 
 

     Table 7: SAS codes for MCMC codes via PROC GENMOD for logistic regression   

9 0 711 0 6 03
1

8i

i
i

pl .. Xn
p

 
= − + − 

    ( ) ( )1
0 7103 2 03ˆexp exp .R .O = = =      

Parameter N Mean Standard 

Deviation 

Posterior Intervals 

Equal-Tail Interval HPD Interval 

Intercept 10000 -1.0968 0.2153 -1.5218 -0.6865 -1.5105 -0.6800 

SMOKE 10000 0.7103 0.3260 0.0601 1.3460 0.0747 1.3572 
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                      Output 2: MCMC output for 1
̂

 , the -logit regression coefficient 

 
 

Figure 3  Diagnostic Plots for 1
 , slope of log Odds Ratio on Smoking. 

In Figure 3, in above, there is no obvious issue about the convergence and mixing. This has 

been also confirmed by the Geweke test (P-value=0.58). 

Remark: All three binary models discussed above can easily be extended with a 

random effect model.  For instance, let us try the effect of smoking in low-birth 

data from k different clinics with relative risk or RR as a measure of association. 

The model can be writes as follow: 

( ) 0 1
1ij ij jln p X , i , ,n = + + = ( )20 1 2j ~ N , ,j , , k  = . 

 For more details see Pedroza et al. (2017). 

 

Example6: Two sample t-Test 

 

For the two sample t-test it is the best to use a regression approach in PROC MCMC. 

 

Model: 

( )0

2

1
1 2 1 2ijj ji ij ;y i , , , ,~ N z , n j ,  =+ =   

1 1

0 2
ij

if group
z

if group


= 
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The frequentist approach assumes that the variances are equal and performs a two-sample 

t-test to get confidence intervals and test of hypothesis for the means. If the assumption 

fails then they use Satterwait- approximation as follows, but Casella and Berger (2002 page 

410) claim the exact t-distribution in the case of unequal variances is not pleasant and the 

approximation may not work well and even result in incorrect conclusions due to the 

sensitivity of the test to the assumptions. It is always safe to assume they have unequal 

variance and in Bayesian analysis will treat the model as if they are unequal. 

If 21
  , then use the following t statistic test. 

( ) ( )2 2

2

2

2

1 1

2

1

1

t
x

n

x

s s
n

− − −
=

+

 

Let us take a look at the example from Casella and Berger (2002 page 409): 

Samples of wood are obtained from the corn and periphery of a certain Byzantine church. 

The data of the wood were determined, giving the following data 

Corn 1294 1279 127 1264 1263 1254 1251 1251 1248 1240 1232 1220 1218 

1210 

Periphery 1284 1272 1256 1254 1242 1274 1264 1256 1250  

 

 Use two sample t-test to determine if the mean age is the same as the mean of the 

periphery. 

Two sample T test 

data p841; /* from casella and Burger Page409*/ 

input trt y@@; 

cards; 

1 1294 1 1251 1 1279 1 1248 1 1274 1 1240  

1 1264 1 1232  1 1263 1 1220 1 1254 1 1218  

1 1251 1 1210 2 1284 2 1274 2 1272 2 1264  

2 1256 2 1256 2 1254 2 1250  2 1242 

; 

proc ttest data=p841; 

class trt; 

var y;run; 

proc genmod data = SBP; 

  class trt; 

  model y = trt; 

 bayes seed = 1 coeffprior = normal nbi=1000 nmc=10000 thin=10 seed=140             

out=posterior DIAGNOSTICS=ALL;; 

run; 

 

Table 8: SAS codes for t test and MCMC codes via PROC GENMOD for the regression 

model 

 

Frequentist Results 

trt Method Mean 95% CL Mean Std Dev 95% CL Std Dev 

1   1249.9 1235.8 1263.9 24.3179 17.6294 39.1772 

2   1261.3 1251.1 1271.5 13.2665 8.9610 25.4156 

Diff (1-2) Pooled -11.4762 -29.9676 7.0152 20.8118 16.0116 29.7413 

Diff (1-2) Satterthwaite -11.4762 -27.8417 4.8893       
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Bayesian Results 

Parameter N Mean Standard 

Deviation 

95% Credible Interval 

Equal-Tail Interval HPD Interval 

Intercept 10000 1261.3 7.2914 1246.6 1275.6 1246.7 1275.7 

trt1 10000 -11.4722 9.3776 -30.0798 7.1527 -29.3786 7.6735 
 

Output 3: the Bayesian result and frequentist output for two sample test. 

As we observe the results both frequentist and Bayesian are pretty close in conclusion as 

expected since we used non-informative prior. We also checked for convergence and all 

assumptions were met. 

 

Example7: Bayesian simple linear regression: In this example we will regress iY  , the 

Systolic Blood Pressure (SBP), on iX  , age, a hypothetical data set. In this example, first 

we will try to do by the frequentist approach and then via MCMC, both by SAS. We will also 

add a random effect to the model and see how simple it can be done by PROC MCMC. The 

output for the random effect is not shown. 

Model: 

              0 1i i iY X  + +=  , ( )20 1 20i ~ N , , i , ,=  . 

Likelihood: ( ) ( )
1

2

022

2

1 10

1 1

22

n

i i
i

L y | x , , exp, y x
=

 = −  −   


+


  


 


  

( )

( )
( )

10

0

2

2

2

22
1

2

2

1

1

1 1

22

1 1

2

n n
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i

n

i in
i

exp y x

exp y x
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Prior: ( ) ( ) ( ) ( ) 210 10

1h , , h h h    


=   

Posterior: ( )
( )

( )0

2

2

2

1 1
1

2 12

0

1 1

2

n

i in
i

P y, , | y , x exp x
+

=

  
 −  −   

  

+   




 

Now we use the traditional Bayesian approach and compare with MCMC. 

To get the marginal posteriors we integrate out as follows;  

Gibbs Sampling: We can indirectly sample a random variable from a distribution without 

having the density (see Casella and George (1992)). This can be done by having conditional 

posterior densities as follows: 
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Let us define ( ) 2

1

1

0

n

i i
i

S xSE y  
=

=  −  + , then we have: 

( ) ( ) 1

0

0

1

1

2 2| , x ,
ˆ

y N
ˆ

, , X X
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Informative Prior: In case we do have informative prior as 
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Posterior: 
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Simple Linear Regression 

data one; 

input ID age SBP clin@@; 

cards; 

1 20 120 1 11 18 125 2 

2 43 128 1 12 42 122 2 

3 63 141 1 13 61 136 2 

4 26 126 1 14 25 146 2 

5 53 134 1 15 55 136 2 

6 31 129 1 16 38 135 2 

7 58 136 1 17 48 138 2 

8 46 132 1 18 56 143 2 
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9 59 140 1 19 62 140 2 

10 70 144 1 20 65 144 2 

; 

/*Frequentist Regression*/ 

proc reg data=one; 

model sbp=age/clb;run; 

ods graphics on; 

proc mcmc data=one outpost=postout nbi=1000 nmc=10000 seed=123 

plots=trace DIAGNOSTICS=ALL; 

   *ods select Parameters REparameters PostSumInt tracepanel; 

   parms b0 0 b1 0 s2 1; 

   prior b: ~ normal(0, var = 10000); 

   prior s: ~ igamma(0.01, scale = 0.01); 

   mu = b0 + b1 * age; 

   model SBP ~ normal(mu, var = s2); 

   preddist outpred=pout nsim=1000; 

run; 

ods graphics off; 

  

Table 9: SAS codes for simple regression with PROC MCMC 

 

Bayesian MCMC output 

Posterior Summaries and Intervals 

Parameter N Mean Standard 

Deviation 

95% HPD Interval 

b0 50000 119.6 4.3739 110.7 128.2 

b1 50000 0.3219 0.0886 0.1533 0.5084 

s2 50000 39.0260 14.6110 16.6404 67.4271 
 

           

        Output 4: The MCMC output regression of SBP on age. 

 

Frequentist output 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 1 486.19921 486.19921 13.95 0.0015 

Error 18 627.55079 34.86393 

 

  

Corrected 

Total 

19 1113.75000 

  

  

Root MSE 5.90457 R-Square 0.4365 

Dependent Mean 134.75000 Adj R-Sq 0.4052 
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Coeff Var 4.38187 

  

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 95% Confidence Limits 

Intercept 1 119.88622 4.19352 28.59 <.0001 111.07596 128.69647 

age 1 0.31659 0.08478 3.73 0.0015 0.13848 0.49470 
 

 

          Output 5: The Frequentist output for regression of SBP on age. 

As we see the results from these approaches are pretty much the same as expected 

since we are using non-informative prior. Also for the prediction we can use the 

following codes 

preddist outpred=pout nsim=1000; 

 

Portion of the output is given in the following table: 

 

Posterior Summaries and Intervals for Prediction 

Parameter N Mean Standard 
Deviation 

95% HPD Interval 

SBP_1 1000 126.2 6.7909 113.4 140.1 

SBP_2 1000 125.6 6.9519 112.6 139.4 

SBP_3 1000 133.6 6.3207 120.9 145.5 

 

We can use PROC GENMOD to do Bayesian regression as well as stated in the following 

codes. 

proc genmod data=one; 

model sbp=age; 

bayes nbi=1000 nmc=10000 thin=10 seed=140;run; 

 

Remark: in the case of random effect, we can easily extend the regression model as follows: 

 

( )2

0 1
0ij i iji ij jy ; ~ N ,X    ++ +=

and 
( )20i ~ N , 

is the random effect 

part of the model.
1 2i , , ,k=

for ith cluster and
1 2 ij , , ,n=

 is number of 

observations in the ith group. The 
0
 and 

1
 are the fixed effects in regression coefficients. 

Only one line of code will be added as follows:  

random gamma ~ normal(0, var = s2g) subject=clin monitor=(gamma); 
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Example8: Nonlinear Poisson Regression Models: Taken from SAS/USER13.1. 

 This is an example of when PROC MCMC faces challenges to converge. This happens by 

mixing different proposal distributions. Also we need to do some transformations on some 

parameters. The data for this example come from SAS MCMC examples. It shows how to 

analyze count data for calls to a technical support help line in the weeks immediately 

following a product release. This information could be used to decide upon the allocation of 

technical support resources for new products. You can model the number of daily calls as a 

Poisson random variable, with the average number of calls modeled as a nonlinear function 

of the number of weeks that have elapsed since the product’s release.  

During the first several weeks after a new product is released, the number of questions that 

technical support receives concerning the product increases in a sigmoidal fashion. The 

expression for the mean value in the classic Poisson regression involves the log link. This an 

example shows the strength of PROC MCMC methodologies over the convenient Poisson 

models. 

 The mean function ( )t    is modeled as follows: 

( )1
i

itexp  + − 



 + 
 =

 

Likelihood: 
( )

1

i
i i
yn

i i

exp
L

y !=

 −
=   

Prior: Past experience with technical support data for similar products suggests the 

following prior distributions: 

     
( )3 5 12~Gam . ,

 ,
( )25 0 5~ N , . −

    
( )20 75 0 5~ N . , .
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Nonlinear Poisson Model 
data calls; 

input weeks calls @@; 

datalines; 

1 0 1 2 2 2 2 1 3 1 3 3 

4 5 4 8 5 5 5 9 6 17 6 9 

7 24 7 16 8 23 8 27 
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; 

ods graphics on; 

Title " Non-Linear Poisson model with Random effcet statement"; 

proc mcmc data=calls outpost=callout seed=53197 ntu=1000 

nmc=20000 

propcov=quanew stats=none diag=ess; 

ods select TADpanel ess; 

parms alpha -4 beta 1 gamma 2; 

prior gamma ~ gamma(3.5, scale=12); 

prior alpha ~ normal(-5, sd=0.25); 

prior beta ~ normal(0.75, sd=0.5); 

lambda = gamma*logistic(alpha+beta*weeks); 

model calls ~ poisson(lambda);run; 

ods graphics off; 

 

      Table 10: SAS codes for Non-Linear Poisson regression via PROC MCMC  

The diagnostic graphs, Figure 4, blow show clear issues with convergence and effective 

sample sizes (ESS) calculation in each parameters are all relatively low. 

 

            Figure 4  Diagnostic Plots for 


 

This is because a random walk Metropolis with a normal proposal is not always working well 

to get the joint distribution efficiently—the algorithm works best when the target distribution 

is unimodal and symmetric (normal-like). The nonlinearity in the parameters make it 

impossible to find a single proposal scale parameter that optimally adapts to different 

regions of the joint parameter space.  

The parameter gamma has a positive support and the posterior distribution is right-skewed. 

Thus, let us use the logarithm of the parameter gamma for a better rate of convergence. 

Take ( )ln =   and substitute in the above mean as follows: 
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( )
( )1

i
i

exp
exp t + − 



 + 
 = , with the following priors 

( ) ( )
11 a

aa
x

b
e p

b
−  

  − 
 

 =


 

( ) ( ) ( )( ) ( ) ( )11 a

a exp
exp

exp exp
ba b

− 
  

 
 = −  

  
 

Where the last term on the right is the Jacobian term of the transformation. This is called 

ExpGamma distribution which is supported by PROC MCMC. So we replace the gamma prior 

in the above with the following codes: 

 prior delta ~ egamma(3.5, scale=12); 

You can obtain the same inference by specifying an ExpGamma prior on delta and take an 

exponential transformation to get back to gamma: 

gamma = exp(delta); 

Nonlinear Poisson Model With modified prior 

proc mcmc data=calls outpost=tcallout seed=53197 ntu=1000 

nmc=20000 

propcov=quanew diag=ess plots=(trace) monitor=(alpha beta 

gamma); 

ods select PostSumInt ESS TRACEpanel; 

parms alpha -4 beta 1 delta 2; 

prior alpha ~ normal(-5, sd=0.25); 

prior beta ~ normal(0.75, sd=0.5); 

prior delta ~ egamma(3.5, scale=12); 

gamma = exp(delta); 

lambda = gamma*logistic(alpha+beta*weeks); 

model calls ~ poisson(lambda);run; 

 

Table 11: SAS codes for Nonlinear Poisson model via proc MCMC 

 
 

Figure 5: trace Plots for all 3 parameters 
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The trace plots in figure 5 show a better mixing of the parameters, and the effective sample 

sizes in the output below show substantial improvements over the original formulation of 

the model. The improvements are especially obvious in beta and gamma, where the 

increase is fivefold to tenfold. 

 

Example9 Meta-Analysis: The meta-analysis by Yusuf et al. (1985) on the 

effectiveness of beta blockers for reducing mortality and reinfarction is usually cited as the 

reference for what is called modified Mantel-Haenszel method for meta-analyzing data from 

22 such studies. At each center, patients were randomly assigned to receive beta blockers 

or a placebo after a myocardial infarction, in the form of 2×2 tables and the mortality rates 

were recorded. The outcome measure is the estimated log-odds ratio under a random-

effects model due to heterogeneity of studies. When we have no prior information for 

believing that any particular study is different from another (exchangeability), you can treat 

Bayesian meta-analysis as a hierarchical model Chen, F. (2011). The following variables 

read the data into SAS: 

Center: Study id, i , , ,= 1 2 22 .  

tx : Number of deaths in treatment group     tn : Number of patients in treatment 

group 

cx : Number of deaths in control group      cn : Number of patients in control group 

Assumptions and Notations: 

( )t i t ix ~ Bin n , p , where t ip is the probability of death in treatment group. 

( )c i c ix ~ Bin n , p , where c ip is the probability of death in control group. 

1

c i
i

c i

ln p
p

 
=  − 

  is the log odds of control group. 

1

t i
i

t i
i

pln
p

 
=  −

+


  is the log odds of treatment group. 

Then 
1 1 1 1

t i t i
i

t i tc i

c i c i

i c i

ln ln ln
p

p p
p

p
p

p
p

/
        

= − =          


− − − −        
is the log of odds ratio or 

treatment effect. Furthermore assume ( )2

i ~ N ,
 

  and ( )2

i ~ N ,
 

   

With the following priors 

( )0 3, ~ N ,


     and ( )2 2

1 1
1 2, ~ Gamma ,

 
 

 

Center 
tx  tn  cx  cn  

OR 

1 3 38 3 39 1.02 

2 7 114 14 116 0.54 
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3 5 69 11 93 0.64 

4 102 1533 127 1520 0.81 

5 28 355 27 365 1.06 

6 4 59 6 52 0.61 

7 98 945 152 939 0.67 

8 60 632 48 471 0.94 

9 25 278 37 282 0.71 

10 138 1916 188 1921 0.75 

11 64 873 52 583 0.83 

12 45 263 47 266 0.97 

13 9 291 16 293 0.58 

14 57 858 45 883 1.28 

15 25 154 31 147 0.80 

16 33 207 38 213 0.91 

17 28 251 12 122 1.12 

18 8 151 6 154 1.34 

19 6 174 3 134 1.52 

20 32 209 40 218 0.86 

21 27 391 43 364 0.61 

22 22 680 39 674 0.57 

  826 10441 985 9849 0.82 

Table 12: Data from 22 different studies to instigates Odds Ratio 

An easy frequentist estimate of meta-analysis of this kind of data is given by 

22

1

22

1

0 8238
i

i

i

i

i

i

i

i

ti

poo e

t

c
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i

t

c

c

c

t

O

n
n

x

n

n
.

x

n n

R
=

=

 
 
 
 = =
 



+

+
 


 





. 

 

This assumes homogenous data across all studies. However, in general this assumption may 

not hold.   

 

Meta Analysis of Multi-Centers. 

data meta; 

input center Xc Nc Xt Nt; 

datalines; 
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1  3 039 3 038 

2 14 116 7 114 

3 11 093 5 069 

.. 

; 

proc mcmc data=meta outpost=PostOut nmc=50000 thin=5 monitor=(OR Pooled); 

parms mu_theta mu_phi s_theta s_phi; 

prior mu: ~ normal(0,sd=3); 

prior s: ~ igamma(0.01,s=0.01); 

random theta ~normal(mu_theta, var=s_theta) subject=center;/*1*/ 

random phi ~normal(mu_phi, var=s_phi) subject=center; 

pc = logistic(phi); 

model Xc ~ binomial(Nc, pc); 

pt = logistic(theta + phi); 

model Xt ~ binomial(Nt, pt); 

array OR[22]; 

OR[center]=exp(theta); 

Pooled=exp(mu_theta); 

run; 

Table 13: SAS codes for meta-analysis via PROC MCMC, SAS support. 

The first RANDOM statements is ( )2

i ~ N ,
 

   and the second one ( )2

i ~ N ,
 

  . The 

SUBJECT= center is the grouping index for the centers. The statement, OR 

[center]=exp(theta), calculates the odds ratio for each center as it is shown in the output 

below as a posterior summary. The symbol Pooled calculates the overall odds ratio for the 

treatment effect.  

Table 14 shows the effect of treatment varies from study to study, the most effective is at 

center 7 (OR= 0.6889) and least effective is at center 14 (OR= 0.9340). The pooled 

posterior estimate of the odds ratio is 0.7824 (95% HPD CI=0.6842, 0.8838). 

 

Posterior Summaries and Intervals 

Parameter N Mean Standard 

Deviation 

95% HPD Interval 

OR1 10000 0.7985 0.1390 0.5361 1.0795 

OR2 10000 0.7514 0.1216 0.5065 0.9850 

OR3 10000 0.7748 0.1269 0.5332 1.0403 

OR4 10000 0.7817 0.0805 0.6237 0.9389 

OR5 10000 0.8428 0.1290 0.6119 1.1098 

OR6 10000 0.7782 0.1304 0.5225 1.0479 

OR7 10000 0.6889 0.0761 0.5334 0.8305 

OR8 10000 0.8371 0.1124 0.6465 1.0812 

OR9 10000 0.7603 0.1086 0.5530 0.9833 

OR10 10000 0.7434 0.0706 0.6040 0.8803 

OR11 10000 0.7963 0.0986 0.6128 0.9993 

OR12 10000 0.8566 0.1249 0.6311 1.1084 

OR13 10000 0.7375 0.1177 0.5073 0.9719 

OR14 10000 0.9340 0.1436 0.6868 1.2297 

OR15 10000 0.7977 0.1194 0.5703 1.0404 

OR16 10000 0.8293 0.1212 0.6094 1.0742 

OR17 10000 0.8502 0.1387 0.5957 1.1285 

OR18 10000 0.8078 0.1365 0.5613 1.0937 

OR19 10000 0.7865 0.1294 0.5453 1.0578 
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Posterior Summaries and Intervals 

Parameter N Mean Standard 

Deviation 

95% HPD Interval 

OR20 10000 0.8125 0.1170 0.5956 1.0513 

OR21 10000 0.7229 0.1039 0.5159 0.9312 

OR22 10000 0.7072 0.1029 0.5051 0.9118 

Pooled 10000 0.7824 0.0516 0.6842 0.8838 

 

Table 14: The OR for each study and for the pooled data 

 

CONCLUSION 

The Bayesian approach via PROC MCMC presented in this paper is for the introduction of any model 

building approach. We are trying to show to the readers how easy it is to use SAS to implement Bayesian 

models without that much of code writing.  We started with very basic and elementary examples to make 

sure you will understand how MCMC works and how easily you can manipulate the SAS code to do 

some difficult analysis with some minor modifications. PROC GENMOD is an example, however, as a 

warning to people who have no foundation is Bayesian analysis. We are hoping after you went through all 

the examples you will agree that SAS is an easy tool for Bayesian analysis, especially for teaching 

students who have difficulties with programming. Although we will recommend that for real research one 

must be extra careful in the use of these procedures, in particular the choice of priors and the 

transformation of the parameters. Example 11 in this paper is an evidence that how dangerous it can be if 

you are unfamiliar with MCMC. It was also shown that the Bayesian approach overcomes difficulties of 

convergence common in the frequentist approach for the many models like log-binomial model. For more 

details please see the article by Bielefeldt et al. (2015) for more details. It correctly restricts (ie, choose 

appropriate prior) the parameter space to produce valid probabilities. 
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