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ABSTRACT  

Change point (or knot, joint, turning point) was defined as “the time when development 

switches from one phase to another”. Piecewise growth curve model (PGCM) is often used to 

estimate the underlying growth process. When fitting a PGCM, the conventional practice is 

to specify the change points a priori. However, the change points were often unknown and 

misspecifications of turning points could lead to bias of growth trait estimation. Also, there 

was individual variation in the change points. To estimate the individual specific change 

point, several different estimation methods (e.g., the profile likelihood, the first-order Taylor 

expansion and the Bayesian estimation methods) were proposed.  Some R packages were 

developed to estimate the unknown change point.  In SAS, the NLMIXED procedure was 

used to fit the nonlinear random effects models and could potentially be used to estimate 

the change points. We present the PGCMs to allow individual specific change points as a 

function of time-varying predictor. We illustrate these respective models with an empirical 

example to demonstrate the use of SAS in estimation of unknown change points and non-

linear growth curve model. The implication and challenges in fitting these models are 

discussed. 

INTRODUCTION  

Longitudinal studies are designed to measure intra-individual change over time and 

inter-individual differences in these changes. In analyzing longitudinal data, individual 

differences in growth trajectories over time, are typically captured by random effects using 

mixed-effects models. These random effects or latent traits describe each person’s trend 

across time, and explain the correlational structure of the longitudinal data.  

The intra-individual growth trajectory in health and behavioral outcomes often consists 

of distinct segments (phases) of growth (e.g., Kreisman, 2003; Paris, 2005; Silverman, 

Speece, Harring, & Ritchey, 2012). For example, in studies of interventions, the individual 

trajectories before the intervention and after the intervention is different. Thus the overall 

growth trajectory in this scenario include two distinct segments of change, one segment 

that describe the trend before the intervention and one segment that characterizes the 

trend after the intervention. The change rate might also be quite different between post-

intervention (short term) and follow-up assessments (long term). Because the rate of 

change is different in different segments, piecewise growth curve models or piece-wise 

random-effect models are often used to analyze this kind of segmented data set. The 

specification of separate growth profiles (functional forms) corresponds to multiple 

developmental phases of the overall change process and random effects describe the inter-

individual differences in theses phases. 

The major challenge in applying the piece-wise growth curve model (PGCM) is to specify 

the change points. Change point (or knot, joint, turning point) was defined as “the time 

when development switches from one phase to another”. When fitting a PGCM, the 

conventional practice is to specify the change points a priori according to theories or designs 

(e.g., the start point of an intervention). Yet, such consideration may not always be possible 

or reasonable. In the intervention, even we know the start point of an intervention, the 

change or turning point may occur after the intervention due to delay in response to 
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intervention (Ning & Luo, 2017).  The misspecifications of turning points could lead to bias 

of growth trait (e.g., growth rate) estimation, and may attenuate the relationship between 

the predictors and growth rates, leading to misleading inferential conclusions (Ning & Luo, 

2017). In this situation, the unknown change point needs to be estimated based on data. 

With free estimation of change points, we can discover more optimal function form of each 

growth phases and give a more adequate description of the growth patterns in the data 

(Kwok, Luo, & West, 2010; Wood, & Jackson, 2013).  

A piece-wise growth curve model (PGCM) with unknown change points is a type of 

nonlinear random-effects model (Cudeck & Klebe, 2002; Du Toit & Cudeck, 2009; Wang & 

McArdle, 2008). The change point as an unknown parameter in the PGCM is often treated as 

a fixed effect, in which each individual’s change point is assumed to be the same. It might 

be beneficial to treat the change points as randomly varying across individuals to more 

accurately mirror individual differences in the timing of development switch. The estimation 

of the PGCM with individual specific change points is computationally very challenging 

because of the nonlinear random parameter (i.e., change point) where we estimate both its 

mean and its variance as well as its covariance with other random effects (Kohli, Harring, & 

Zopluoglu, 2016). 

Individual-specific change points are relatively novel, and there are very few empirical 

studies to successfully model the random change points using traditional and Bayesian 

mixed effects models and growth mixture models (e.g., Cudeck, 1996; Dominicus, Ripatti, 

Pedersen, & Palmgren, 2008; McArdle & Wang, 2008; Muniz Terrera, van den Hout, & 

Matthews, 2011; Kohli, 2011; Li, Duncan, Duncan, & Hops, 2001). If the change point is not 

the same for all individuals, one of the most interesting features in PGCM is how to predict 

the change points using other time-invariant (e.g., individual characters) and time-varying 

predictors (e.g. individual time-specific intervention). Preacher and Hancock (2012, 2015) 

proposed and illustrated the a four-step strategy to use the structural equation modeling 

(SEM) based structured latent curve modeling (LCM) approach to estimate the random 

change points in PGCM. They not only show that how the change point may be treated as a 

random coefficient within the SEM/LCM framework but also demonstrate how to predict 

individual differences in the change point using time-invariant predictor. However, this 

SEM/LCM-based approach for PGCM requires some degree of balance in measurement 

schedules and it cannot predict the change point using time-varying predictors. 

To best of our knowledge, there is no empirical study to include the time-varying 

predictors to predict individual differences in the change point. The goal of this paper is to 

present the statistical model for estimating individual specific change points as a function of 

other predictors. We illustrate these respective models with an empirical example to 

demonstrate the use of SAS in handling the PGCM with individual specific change point. We 

reexamine data published by Murnane, Willett, & Boudett (1999) related to the benefit of 

obtaining the General Educational Development certificate, or GED for male dropouts. 

Additionally, emphasis is placed on the interpretation of the empirical results and how it 

differs from conventional practice to specify the change points a priori. 

EMPRICAL EXAMPLE 

Murnane and colleagues (1999) used longitudinal data from the National Longitudinal 

Survey of Youth (NLSY) to examine whether the wage trajectories of male high school 

dropouts are affected by the acquisition of the GED credential. Approximately 500,000 

school dropouts acquire this credential each year by passing the GED examinations, which 

test knowledge and/or skills in writing, social studies, science, mathematics, and 

interpreting literature and the arts. Their analytic sample included 901 males who left high 

school before graduation. Approximately two in five dropouts obtained a GED and did so at 

an average age of 20.  They conducted the random intercept mixed-effect models and 

specified the log wage as a quadratic function of potential labor market experience. To 
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examine the impact of the acquisition of the GED, they also included a quadratic function of 

the potential labor market experience of a dropout from his receipt of GED.   In addition, to 

examine whether the impact of GED acquisition on the shape of the wage profile was 

moderated by other important characteristics of the dropouts, they tested for statistical 

interactions between the Years Since GED predictor (and its square) and selected time-

invariant characteristics of dropouts (e.g., indicator of low score on the Armed Forces 

Qualifying Test (AFQT) - a test of reading and mathematics skills). They show that 

acquisition of the GED results in wage increases for dropouts who left school with weak 

skills, but not for dropouts who left high school with stronger skills.  

Singer and Willett (2003) reanalyzed the high school dropout wage data with a sample 

of 888 male dropouts to illustrate how to model discontinuity in longitudinal data analyses. 

They hypothesized that dropouts who obtain a GED might command higher salaries. If so, 

their (log) wage trajectories could exhibit a discontinuity upon GED receipt. They specified 

the log wage is a linear function of potential labor market experience and compared three 

different discontinuities upon GED receipt: an immediate shift in elevation but no shift in 

slope, an immediate shift in slope but no shift in elevation, and immediate shifts in both 

elevation and slope. They also examined whether these discontinuities vary by subjects by 

including both random intercept and random slopes in the mixed models. They found that 

on labor-force entry, a White male who dropped in 9th grade and who live in a community 

with an unemployment rate of 7% is expected to earn an hourly log wage of 1.7386 ($5.69 

in constant 1990 dollars). Before GED attainment, log wages rise annually by 0.0415 (4.2% 

in raw wages). Upon GED receipt, log wages rise immediately by 0.0409 (4.2%) and then 

annually by 0.0509 (5.2%). Although the average effects of shifts in elevation and slope 

upon GED receipt were not statistically significant at conventional level (alpha = 0.05), 

there were significant variations of these effects. The effects of the three substantive 

predictors – local area unemployment rate, race, and highest grade completed- remain 

similar to those found by Murnane and colleagues (1999). 

Both Murnane and colleagues (1999) and Singer and Willett (2003) fitted the random 

effect regression models and specify the change point a prior – upon the time in which the 

dropout obtained his GED. In this paper, we postulate that a discontinuity in individual wage 

trajectories might not occur right at the time of GED receipt. We fit the PGCM and treat the 

change points as an unknown function of the time of GED receipt.  

METHODS 

A two-phase linear-linear piecewise growth curve model with one unknown change 

points was used as an illustrate example. It can be specified in the form of two-level 

models. The Level 1 (repeated measures) model is specified as  
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where yij is the response at the jth measurement for the ith individual, β0i and β1i are the 

subject-specific intercept and the slope growth factor before the change point, and β2i 

denotes the subject-specific difference between slopes after the change point and slopes 

before the change point. γi is the location of the change point marking the shift from one 
growth phase to the other. ɛij is the Level-1 residual for individual i at measurement j. 

We assume that the individual-specific change point is a function of another time-

varying covariate (e.g., indicator whether a dropout attained a GED at a specific year). 
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The Level-2 (between-subject) model is specified as  
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where w is a predictor for Level-1 latent growth factors (β0i, β1i and β2i). uk0 and uk1 

(k=1,2,3) are intercept and slope of w for regression of βki; ζk is random disturbance (Level-

2 residual) for the regression of βki. The Level-1 residuals and the Level-2 residuals are also 

assumed to be uncorrelated with each other and with the latent growth factors. The Level-2 

residuals are assumed to follow multivariate normal distributions with means, variances, 

and covariance as in (5).  

The estimation of above PGCM is rather complicated and time intensive, because the 

estimation of the location of the change point(s) (an intrinsically nonlinear parameter), 

along with the variance of other growth factors makes the overall computation of the model 

very challenging. The above model also cannot be estimated using the structural equation 

modeling (SEM) based structured latent curve modeling (LCM) approach proposed by 

Preacher and Hancock (2012, 2015).  Most of the standard commercial software cannot 

easily fit above models, with the exception of SAS. The above PGCM can be fit in SAS using 

the NLMIXED procedure. PROC NLMIXED is a very flexible program that can be used to fit 

many nonlinear growth model that are linear or nonlinear in their parameters.  

DATA 

We reanalyze the dropout wage data used in Singer and Willett (2003). To track wages 

on a common temporal scale, Murnane and colleagues (1999) decided to clock time from 

each respondent’s first day of work. This allow each hourly wage to be associated with a 

temporally appropriate point in the respondent’s labor force history. The original data set 

has an unusual temporal schedule, varying not only in spacing but length. Some dropouts 

had more than one interviews within same year. We reorganized the dataset to create a 

year-based wage data set. If a respondent has two or more responses within one year, we 

take average of wages (log of wages) for those responses within that year. This data 

manipulation makes a sample of 5206 from 888 individuals available for our analyses.   

Across the full sample of 888 dropouts, 134 men have 1 or 2 waves (years) of data, 171 

have 3 or 4, 187 have 5 or 6, 227 have 7 or 8, and 169 have more than 9.  

In our sample, 27.7% of the dropouts are Black, 23.0% are Hispanic, and 49.3% are 

Non-Hispanic White (see Table 1). More than 50% of them drop out of school at Grade 9 or 

10.   In this sample, 581 dropouts did not receive a GED; among the remaining 307, the 

timing of GED attainment varies, with mean of 2.2 years and range from 0 to 12 years.  

 

 Permanent Dropouts 
(N=581) 

Eventual GED 
Holders (N=307) 

p-value 

Black 26.2% 30.6% .16 
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Hispanic 23.2% 22.5% .80 

Non-Hispanic White 50.6% 46.9% .29 

Grade in high school at dropout 8.8(1.4) 9.1(1.3) .003 

Number of years between labor 
force entry and GED 

-- 2.2(1.7) -- 

Table 1. Sample Characteristics of Dropouts by GED Status 

MODELS 

We specify five PGCMs that examine the impact of GED acquisition and whether the 

impact of GED acquisition on the shape of the wage profile was moderated by race of the 

dropouts. In Model A, we follow the similar specification as in Murnane and colleagues 

(1999): log wage is a quadratic function of potential labor market experience. The 

specification of Model A is as below 
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where ln(wij) represents the natural logarithm of the hourly wage earned by person i (i =1, 

2, …, 888) on the jth (j =1, 2, …, 12) year since work force entrance. Year_1 denotes the 

number of years of potential labor market experience. In this model, we specified the log 

wages is a quadratic function of potential market experience by including both Year_1 and 

its square. Year_2 denotes the number of years of potential labor market experience of a 

dropout from his receipt of GED, and was set to zero on all occasions prior to GED receipt. 

The slopes of Year_2 and its square ensured that the nonlinear shape of wage-experience 

trajectory could differ before and after receipt of the GED. Similarly, as in Murnane and 

colleagues (1999), we included the interactions of Black indicator and its interactions with 

Year_1 and Year_2 to examine whether wage trajectory and impact of GED receipt were 

different between African American and White (Hispanic and Non-Hispanic White).  In Model 

A, we also include two additional predictors: highest grade completed (HGC_9, centered 

around Grade 9) and local area unemployment rate (UERate_C, grand mean centered).  

In Model A, only the intercept was specified as a random effect while slopes of all 

predictors were specified as fixed effects. In Model B, we assume that linear slopes of 

Year_1 and Year_2 could vary across dropouts.   
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In both Model A and B, we assume that the receipt of GED will change the wage-

experience of a dropout immediately from the time of his receipt of GED. This might not 

occur in reality. In Model C, we extend the Model B by including the estimation of individual 

change point of his wage trajectory as a function of the time of his receipt of GED (some 

delay).  
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Both Model A and B can be easily fit in SAS using the MIXED procedure. An MIXED script 

for Model A and B can be written as 

   *  Model A: Similar specification as in Murnane and colleagues (1999); 
   PROC MIXED Data= wages_Y2  Method=ml noclprint noinfo COVTEST; 

   class id; 

  model LNW_Y =  Year_1 Year_1*Year_1 year_2 year_2*year_2  

black  black*Year_1 

  black* Year_2  HGC_9 UERATE_C / solution notest outpm = mc; 

   random intercept   / subject=id type=un; 

   RUN; 

*  Model B: Model A + Random effects of linear slopes before and after GED; 
PROC MIXED Data= wages_Y2  Method=ml noclprint noinfo COVTEST; 

  class id; 

  model LNW_Y =  Year_1 Year_1*Year_1 year_2 year_2*year_2  

black  black*Year_1 

  black* Year_2  HGC_9 UERATE_C / solution notest outpm = mc; 

  random intercept Year_1 year_2 / subject=id type=un; 

RUN; 

The scripts begin by calling the MIXED procedure and wages_Y2 dataset, followed by 

specifying the fixed effect part of PGCM using MODEL statement and random effect part 

using RANDOM statement.  

We then use the NLMIXED procedure to fit Model B again to make sure we can get the 

same results with two different SAS procedures. In PROC NLMIXED, we begin by specify the 

starting values for the estimation of all unknown parameters using the PARMS statement. 

Starting values can be difficult to generate, but are important for obtaining convergence 

within a reasonable time. We obtained the starting values by using results from fitting Model 

B with the MIXED procedure. We also tried different number of quadrature points used in 

the estimation (we chose QPOINTS = 20). The next few lines of the script define the 
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outcome variable, its distribution, and how the random effects should be included in the 

model. 

For an unstructured covariance matrix for random effects, we use Cholesky-root 

reparameterization. That is, if Ф is a p x p positive definite matrix, you can find an upper 

triangular matrix T such that Ф =Т′Т, so that is a type of square root of Ф. For a 3 x 3 

matrix, it can be shown the following: 
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We re-parameterized the unstructured matrix with the above Cholesky root. Based on 

the mathematical relationship between the UN and CHOL structures, we then compute the 

variances and the covariance in the UN structure accordingly. Cholesky-root re-

parameterizations generally have better numerical behaviors than the UN structure, and are 

useful when the program failed to converge or was experiencing a long run time. 

   * Model B: Duplicate above analyses, but using NLMIXED ; 

   PROC NLMIXED DATA = Wages_Y2 MAXITER = 2000 NOAD QPOINTS = 20 GCONV = 0; 

 * Initial values; 

   PARMS G00 = 1.70 G10 = 0.06 G20 = -0.003  G30 = 0.03 G40 = -0.003 

   G01 = 0  G11 =  -0.02   G31 = 0 

   G50 = 0.04 G60 = -0.01 

   s2e= 0.08  

   t11 = 0.7  

   t21 = 0 t22 = 0.01    

   t31 = 0 t32 = 0 t33 = 0.01  

    ; 

 * Define the piecewise mean trajectory; 

   y_pred =   (G00+ G01*black + u0) + (G10 +G11*black + u1)*year_1  

+ G20 * year_1* year_1   

    + G50* HGC_9 + G60* UERATE_C  

    + (G30 + G31*black + u2)* year_2   

+ G40*year_2*year_2    ; 

    MODEL LNW_Y ~ normal(y_pred,s2e); 

 * Cholesky decomposition of the covariance matrix of random effects; 

 phi11 = t11*t11; 

 phi21 = t21*t11; 

 phi22 = t21*t21 + t22*t22; 

 phi31 = t31*t11; 

 phi32 = t31*t21 + t32*t22; 

 phi33 = t31*t31 + t32*t32 + t33*t33; 

 

   RANDOM u0 u1 u2 ~ normal([0, 0, 0],[phi11, 

phi21, phi22,  

phi31, phi32, phi33] ) subject=id; 
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*Recover parameters of the covariance matrix of random effects; 

  ESTIMATE 'phi11' t11*t11; 

  ESTIMATE 'phi21' t21*t11; 

  ESTIMATE 'phi22' t21*t21 + t22*t22; 

  ESTIMATE 'phi31' t31*t11; 

  ESTIMATE 'phi32' t31*t21 + t32*t22; 

  ESTIMATE 'phi33' t31*t31 + t32*t32 + t33*t33; 

 

   RUN;  

Adjusting the above script for Model B with estimation of change point as a function of 

another time-varying predictor (Model C) is straight. We assume the simple function form 

and the function form is known. We added a parameter (gamma) to denote the individual 

change point as a function of the time the dropout obtained the GED. This non-linear model 

cannot be specified with the MIXED procedure, but can be specified with the NLMIXED. 
 

*  Model C: Model B + Estimation of unknown change points as a function of time at 

which GED was obtained; 
   PROC NLMIXED DATA = Wages_Y2 MAXITER = 2000 NOAD QPOINTS = 20 GCONV = 0; 

 * Initial values; 

   PARMS G00 = 1.70 G10 = 0.06 G20 = -0.003  G30 = 0.03 G40 = -0.003 

   G01 = 0  G11 =  -0.02   G31 = 0 

   G50 = 0.04 G60 = -0.01 

   s2e= 0.08  

   t11 = 0.22  

   t21 = 0 t22 = 0.04    

   t31 = -0.01 t32 = -0.01 t33 = 0.04  

   gamma = 0.8; 

 * Gammai denotes the random knot; 

   Gammai = Gamma ; 

 * Define the piecewise mean trajectory; 

   y_pred =   (G00+ G01*black + u0)  

+ (G10 +G11*black + u1)*year_1  

+ G20 * year_1* year_1   

     + G50* HGC_9 + G60* UERATE_C; 

 

   IF (year_2 > Gammai)   THEN DO; 

     y_pred =   (G00+ G01*black + u0)  

+ (G10 +G11*black + u1)*year_1  

+ G20 * year_1* year_1   

     + G50* HGC_9 + G60* UERATE_C  

     + (G30 + G31*black + u2)* (year_2 - gammai)  

+ G40 * (year_2 - gammai) * (year_2 - gammai)   

; 

        END; 

 

    MODEL LNW_Y ~ normal(y_pred,s2e); 

 * Cholesky decomposition of the covariance matrix of random effects; 

 phi11 = t11*t11; 

 phi21 = t21*t11; 

 phi22 = t21*t21 + t22*t22; 

 phi31 = t31*t11; 

 phi32 = t31*t21 + t32*t22; 

 phi33 = t31*t31 + t32*t32 + t33*t33; 

 

   RANDOM u0 u1 u2 ~ normal([0, 0, 0],[phi11,phi21, phi22, phi31, phi32, 

phi33] ) subject=id; 
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*Recover parameters of the covariance matrix of random effects; 

  ESTIMATE 'phi11' t11*t11; 

  ESTIMATE 'phi21' t21*t11; 

  ESTIMATE 'phi22' t21*t21 + t22*t22; 

  ESTIMATE 'phi31' t31*t11; 

  ESTIMATE 'phi32' t31*t21 + t32*t22; 

  ESTIMATE 'phi33' t31*t31 + t32*t32 + t33*t33; 

 

RUN;  

In Model D, we follow the similar specification as in Singer and Willett (2003): log wage 

is a linear function of potential labor market experience. The specification of Model D is as 

below 
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Similarly, in Model E, we extend the Model D by including the estimation of individual 

change point of his wage trajectory as a function of the time of his receipt of GED (some 

delay).  
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The SAS script for the Model D and E are similar as Model B and C, which is contained in 

Appendix A. 

RESULTS 

Table 2 displays estimated parameters (and standard errors) and goodness of fit from 

Model A to C and Table 3 for Model D and E. 
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Results of Model A indicate that a White male who dropped out school in 9th Grade and 

who lives in a community with an unemployment rate at average level (about 7%) is 

predicted to earn $5.67 (exp(1.736)) per hour (in 1990 dollars) upon entry into the labor 

market after dropping out of school. Before GED attainment, he experiences a real wage 

increase of almost 6.2% during the first year after leaving school and the increase rate will 

decrease slightly over years (negative slope of quadratic term). The linear rate of 

subsequent wage growth of GED White recipients increased by approximately 2.3% over the 

predicted rate in the absence of the credential. At work force entry, there was no racial 

differences in wages, but racial disparities increase over time because wages for Black 

dropouts increase at a slower rate. There was no race difference in the wage benefit from 

GED attainment. 

Results from Model B in Table 2 indicate the impact of the GED and race differences in 

the impact of the GED tell basically the same story as those from Model A. From Model B, 

we also found there were significant individual variations among dropouts in the initial 

wages and annual increase before GED receipt. The variation in the impact GED receipt is 

not statistically significant or only marginally significant.  

Results from Model C in Table 2 indicate the impact of the GED on wage trajectories is 

not taking effect right at the time when dropout boys obtained their GEDs. On average, 

about one year after the GED receipt, the linear rate of wage growth increased by 

approximately 3.9% over the predicted rate in the absence of the credential. 

 Model A Model B Model C 

Fixed Effects    

Intercept 1.736(0.014)*** 1.734(0.014)*** 1.737(0.014)*** 

Years Since Dropout 0.062(0.005)*** 0.064(0.006)*** 0.064(0.006)*** 

(Years Since Dropout)*(Years 
Since Dropout) 

-0.002(0.0005)*** -0.003(0.0006)*** -0.003(0.0006)*** 

Knot - GED    1.000(0.002)*** 

Years Since GED or Knot 0.023(0.009)** 0.033(0.009)*** 0.038(0.001)*** 

(Years Since GED or Knot) * 
(Years Since GED or Knot) 

-0.002(0.001)+ -0.003(0.001)** -0.004(0.002)** 

Black 0.002(0.024) 0.000(0.023) 0.002(0.023) 

Black* (Years Since Dropout) -0.025(0.005)*** -0.024(0.006)*** -0.023(0.006)*** 

Black*(Years Since GED or 
Knot) 

0.011(0.007) 0.008(0.011) 0.005(0.013) 

Grade at Dropout 0.042(0.007)*** 0.038(0.006)*** 0.038(0.006)*** 

Unemployment Rate -0.012(0.002)*** -0.012(0.001)*** -0.012(0.002)*** 

Variance Components    

Level-1 0.087(0.002)*** 0.075(0.002)*** 0.075(0.002)*** 

Level-2: Intercept 0.053(0.003)*** 0.049(0.004)*** 0.048(0.004)*** 

Years Since Dropout  0.001(0.0002)*** 0.001(0.0002)** 

Years Since GED or Knot  0.0016(0.002) 0.003(0.002+ 

Intercept & (Years Since 
Dropout) 

 -0.001(0.001) -0.001(0.001) 

Intercept & (Years Since GED 
or Knot) 

 -0.003(0.0014)+ -0.004(0.002)* 
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(Years Since Dropout) & (Years 
Since GED or Knot) 

 -0.000(0.001) -0.001(0.001) 

Goodness-of-fit    

Deviance statistics 3331.2 3100.7 3096.9 

AIC 3355.2 3134.7 3132.9 

BIC 3412.7 3216.1 3219.1 

Note:  GED = General Educational Development. +  p <.10, * p <.05, ** p <.01, *** p <.001. 

Table 2. Parameter Estimates (standard errors) from Fitted PGCV Predicting Log of 

Hourly Wages (N=888): Murnane et al. (1999) vs. Our Model 

Table 3 reports the results from Model D and E. The impact of the GED and race 

differences in the impact of the GED tell basically the same story as in Table 2. Similarly, 

Table 3 also indicates the impact of the GED on wage trajectories is not taking effect right 

at the GED receipt. On average, about one year after the GED receipt, the linear rate of log 

wage trajectory increased by approximately 3.9% over the predicted rate in the absence of 

the credential. 

 Model D Model E 

Fixed Effects   

Intercept 1.769(0.012)*** 1.770(0.012)*** 

Years Since Dropout 0.041(0.003)*** 0.041(0.003)*** 

Knot - GED   1.000(0.020)*** 

(Years Since GED or Knot) 0.013(0.006)* 0.014(0.007)* 

Black -0.009(0.023) 0.008(0.023) 

Black* (Years Since Dropout) -0.022(0.006)*** -0.021(0.006)** 

Black* (Years Since GED or Knot) 0.010(0.011) 0.006(0.013) 

Grade at Dropout 0.039(0.006)*** 0.039(0.007)*** 

Unemployment Rate -0.013(0.002)*** -0.013(0.002)*** 

Variance Components   

Level-1 0.076(0.002)*** 0.076(0.002)*** 

Level-2: Intercept 0.050(0.005)*** 0.049(0.004)*** 

Years Since Dropout 0.0014(0.0002)*** 0.001(0.0002)*** 

Years Since GED or Knot 0.0014(0.002) 0.003(0.002)+ 

Intercept & (Years Since Dropout) -0.002(0.001)+ -0.001(0.001) 

Intercept & (Years Since GED or Knot) -0.003(0.0014)* -0.004(0.002)* 

(Years Since Dropout) & (Years Since GED or Knot) -0.000(0.001) -0.001(0.001) 

Goodness-of-fit   

Deviance statistics 3142.2 3139.8 

AIC 3172.2 3171.8 

BIC 3244.0 3248.4 

Note:  GED = General Educational Development. +  p <.10, * p <.05, ** p <.01, *** p <.001. 

Table 3. Parameter Estimates (standard errors) from Fitted PGCV Predicting Log of 

Hourly Wages (N=888): Singer et al. (2005) vs. Our Model 
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Table 2 and 3 also indicate that the effects of two other substantive predictors – highest 

grade completed and local area unemployment rate – remains similar across all five models. 

Dropouts who stay in school longer earn higher wages on labor force entry and each more 

year longer is associated with a 4.2% higher in wage. Results from these models also 

indicate that a 1% increase in the local unemployment rate is associated with a 1.2% 

decrease in wage. 

Goodness of fit index reported in Table 2 shows that PGCM with multiple random effects 

can substantially improve fit (Model B vs. A). The deviance statistics test suggested that our 

proposed model (Model C) is significantly better than Murnane and colleagues’s model 

(Model A) and Model B. Results in Table 3 shows that our proposed Model E is better than 

Singer and Willett’s Model D.  The comparison of AIC statistics also suggest that our models 

are better than their models. Though BIC giving the nod to Model D over E, they are roughly 

comparable  

CONCLUSION AND DISCUSSION 

In both health and behavioral sciences, researchers are quite often interested in not only 

the intra-individual change over time but also the inter-individual differences in these 

changes. The models of nonlinear change such as piece-wise growth curve model (PGCM) 

might be required to provide more accurate, complete, and easily interpretable description 

of how individual change over time and inter-individual differences in such change.  

The major challenge in applying the PGCM is to specify the change points. This paper 

expanded on previous literature on change points in PGCM. We provide models to specify 

the individual change point as a function of a time-varying predictor and illustrate these 

models using an empirical example to demonstrate how to estimate these models in SAS 

and its impact on other features that describe the growth profiles.  

We reanalyze data published by Murnane et al. (1999) related to the benefit of obtaining 

GED for male dropouts and hypothesize that individual change point of his wage trajectory 

is a function of the time of his receipt of GED. Our results demonstrate that about one year 

after the GED receipt, male dropouts’ wage profile shifted from first phase linear or non-

linear growth to second phase growth with significantly higher growth rate.  The delay in the 

increased wages resulting from GED acquisition is consistent with Murnane et al.’s 

justification of economic benefits from obtaining a GED. The GED recipients use the 

credential to gain access to a significant amount of postsecondary education or training earn 

wages that are considerably higher than those GED recipients who do not. A large 

percentage of GED recipients avail themselves of improved access to postsecondary 

education and training that the indirect effects of the credential on subsequent wages are a 

substantial part of the total effect for the average GED recipient.  

Though the specification of PGCM with individual change points as a function of the time 

of GED acquisition has minimal impact on the growth rates before the change points in our 

empirical example, the magnitude of growth rates after the change points and its variation 

across the subjects are different from the conventional PGCM with change point specified a 

priori. This lead to a more optimal descriptions of the growth pattern in the wage data and 

provide the further empirical support for Cameron and Heckman (1993) argument about 

that to the extent school dropouts derive labor market economic benefits from obtaining a 

GED, the benefits come primarily through the mechanism of improving access to 

postsecondary training and education. 

Currently, there are only a few program, in addition to NLMIXED, that can be used to fit 

PGCM with individual specific change point and with multiple random effects. Though some 

R packages (e.g., FitMM and BayesianPGMM) were developed to estimate the unknown 

change point and some SEM-based software can be used to fit PGCM with random change 

points, most of them requires some degree of balance in measurement schedules and it 
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cannot predict the change point using time-varying predictors. As we have illustrated, PROC 

NLMIXED is a useful procedure to fit this kind of PGCM. It allows us to fit different shape of 

non-linear growth and models with more than one random effect or even with multiplicative 

random effects. Additionally, NLMIXED allows for flexibility in timing basis and allow 

individual have a unique time values at each assessment.    

The estimation of PGCM with unknown change points, in general, to be more challenging 

with respect to model convergence as well as the accuracy and precision of estimated model 

parameters, irrespective of the estimation approach used. It is recommended that careful 

consideration of practical and substantive implication should be made before incorporating 

any complexity into these models. 

PGCM with individual change point as a function of other factors provide a flexible 

framework for researchers and practitioners that allow them to characterize individual 

pathways that exhibits distinct phases of development. This is very useful for practitioners 

who are seeking to know when the treatment takes effect and measure the effectiveness of 

treatment or intervention. It can also be used for healthcare professional and police makers 

who want to know when individual may need to seek professional services for mental or 

health disability. 
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