

1

Paper 4713-2020

Twenty Ways to Run Your SAS® Program Faster and Use Less Space
Stephen Sloan, Accenture

ABSTRACT

When we run SAS® programs that use large amounts of data or have complicated
algorithms, we often are frustrated by the amount of time it takes for the programs
to run and by the large amount of space required for the program to run to

completion. Even experienced SAS programmers sometimes run into this situation,
perhaps through the need to produce results quickly, through a change in the data
source, through inheriting someone else’s programs, or for some other reason. This

paper outlines twenty techniques that can reduce the time and space required for a
program without requiring an extended period of time for the modifications. The

twenty techniques are a mixture of space-saving and time-saving techniques, and
many are a combination of the two approaches. They do not require advanced
knowledge of SAS, only a reasonable familiarity with Base SAS® and a willingness

to delve into the details of the programs. By applying some or all of these
techniques, people can gain significant reductions in the space used by their

programs and the time it takes them to run. The two concerns are often linked, as
programs that require large amounts of space often require more paging to use the
available space, and that increases the run time for these programs.

INTRODUCTION

Twenty ways to have your program use less space and time:

1. Use only the variables that you need. DROP and KEEP statements and

DROP= and KEEP= SAS data set options will instruct SAS about which
variables you need. Using DROP= and KEEP= on the input data sets is more
efficient than using them as program statements because they don’t bring

the unneeded variables into the buffer. The DROP= and KEEP= can also be
used on output statements in DATA and PROC steps. Using the DROP= and

KEEP= clauses in the PROC saves a step when compared with creating a data
set in a DATA step, determining which variables to drop or keep, and then
running the PROC. The DROP and KEEP statements can only be used in

DATA steps, while the DROP= and KEEP= data set options can be used in
both DATA steps and PROCs.

2. Use subsetting IF statements or WHERE statements to reduce the number of

observations that are output to the SAS data set. Use WHERE= on the input

SAS data sets where possible to reduce the number of observations brought
into the buffer. WHERE= can also be used in OUTPUT statements, for

example in PROC SUMMARY or PROC SORT. Using the WHERE= clause in the

2

PROC saves a step when compared with creating a data set in a DATA step
using WHERE= and then running the PROC.

3. When outputting a SAS data set from a DATA step or a PROC, use KEEP and
DROP in DATA steps and KEEP= and DROP= in DATA steps or PROCs to

reduce the space requirements. For example, the output from PROC
SUMMARY includes two new variables, _TYPE_ and _FREQ_, and these are
not often used. You can also use KEEP= and DROP= in conjunction with a

WHERE= clause to further restrict the number of observations in the output
data set.

4. Put RENAME= in SET or MERGE statements where possible, or directly in a

PROC step. This avoids the need to act on the variable after it has been

brought into the buffer in a DATA step. It also can eliminate the need for a
separate DATA step to rename the variable before merging with a data set

that has the same variable with a different name.

5. Use the LENGTH command to define the length of character and numeric

variables. This can achieve a significant reduction in the space used by the
program.

6. Numeric variables in SAS data sets have a default length of 8. If the values

of the numeric variable are all integers, you can reduce the space by using
the following table. The third column refers to the absolute value of the
number. Calculate the largest value of the numeric variable, check to make

sure all values are integers by comparing the variable’s value to the value
calculated with the ROUND function, and then, if the variables are all

integers, use the table below to determine the smallest length required. The
chart below can be found in
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/

viewer.htm#numvar.htm.

Significant Digits and Largest Integer by Length for SAS Variables under

Windows

Length in

Bytes

Largest Integer

Represented Exactly

Exponential

Notation

Significant Digits

Retained

3 8,192 213 3

4 2,097,152 221 6

5 536,870,912 229 8

6 137,438,953,472 237 11

7 35,184,372,088,832 245 13

8 9,007,199,254,740,992 253 15

Figure 1. Space occupied by numeric variables.

7. Sometimes character variables imported into SAS from other systems, like

Oracle or Excel, have very large lengths. You can use the following

http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#numvar.htm
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#numvar.htm

3

procedure to get the shortest possible length for your character variable,
although you might want to allow room for growth:

a. Use the LENGTH function to calculate the actual length of the variable

in each observation in the data set.
b. Use the MAX option in PROC SUMMARY to get the largest value of the

length.
c. Use the LENGTH statement to shorten the length of the character

variable to the maximum length.

8. Switch variables from numeric to character if they are integers and range in

value from -9 to 99. The minimum length for numeric variables is 3, so you
can save space if the variable can fit into one or two characters.

9. Switch variables from character to numeric if they are all integers and occupy
more than 3 bytes. For example, the number 1234 would occupy 4 bytes as

a character variable but item 6 above shows it would only occupy 3 bytes as
a numeric variable.

10.Use the options REUSE=YES and either COMPRESS=YES or
COMPRESS=BINARY in an OPTIONS statement to save space during the

program. However, be aware that the COMPRESS=YES or
COMPRESS=BINARY options might increase the amount of time that the

program runs. COMPRESS=BINARY saves even more space than
COMPRESS=YES but also could have a greater impact on run time.

11.If you have a large data set to sort, using the TAGSORT option with PROC
SORT will take up less sort work space, although it will cause the program to

run longer. This is because it only brings in the variables in the BY
statement for sorting, and then goes back and brings the entire observations
into the buffer in the order determined by the PROC SORT.

12.If you have data sets that assign text values to codes, use PROC FORMAT

with the CNTLIN= option to create a format from the data set containing the
codes and associated text values. Doing this takes less time than doing a
SORT and MERGE to create an additional variable in the data set. You can

then use the format you created to translate the codes to the text values by
using the PUT function. If you already know the values required, using a

FORMAT is still faster than a series of IF-THEN-ELSE statements or a CASE or
SELECT sequence.

13.Although WORK SAS data sets will be deleted at the end of the program,
they occupy space while the program is running. Permanent and WORK SAS

data sets that are no longer needed can be deleted while the program is
running by using PROC DELETE or PROC DATASETS. This is especially
important when using SAS EG because WORK files remain while the session

is open, even if the program has finished running.

14.When pulling data from external data bases like Oracle, do as much of the
work as possible in the external data base through your SELECT statement or

4

its equivalent. That way you’re not bringing unneeded variables and
observations into the buffer. The one downside to this method is that you
might have to use two statements instead of one: one statement to process

statements in the data base and one statement to use the SAS features or
join to other SAS data sets after the data has been extracted.

15.Using PROC APPEND to concatenate two SAS data sets takes less time than

concatenating them through a SET statement. Instead of rewriting both data

sets PROC APPEND just writes the data from the data set identified by
DATA= after the observations in the data set identified by BASE=.

16.When using PROC SUMMARY or PROC MEANS, use a CLASS statement if the

data is not sorted by one of the variables under consideration. This will avoid

the time used in a PROC SORT.

17.When using PROCs that allow for a BY statement, such as PROC SUMMARY or
PROC MEANS, use a BY statement for variables by which the data set has
been sorted. This will take up less space during execution, as the PROC will

run separately for each unique value of the BY variable(s). Since the input
data set is already sorted, you will not have to run a PROC SORT before

using the BY statement in the PROC.

18.If you know the data, then put the most commonly-occurring situations at
the start of IF-THEN-ELSE or CASE or SELECT sequences. That way, the
program will only execute the minimum number of comparisons before

moving on to the next commands.

19.If you are not creating or modifying a SAS data set, but are just writing out a
sequential data set, use DATA _NULL_ to avoid creating an unnecessary SAS
data set.

20.If a SAS data set might already be sorted, and has not gone through a PROC

SORT, you could use the PROC SORT option PRESORTED. This will check to
see if the data set is sorted by the variables in the BY statement and will not
sort it if it is already sorted. Since it involves an extra check through the

data set, only use it when you think the data set might be sorted. If the data
set has already been sorted with a SAS PROC SORT, there will be a flag, and

it will not be re-sorted.

CONCLUSION

When faced with the need to make your SAS programs run faster and/or lose less
space, there are some guidelines you can follow. This procedure will give you a
step-by-step guide to reducing both the footprint and the time taken by the

program and will allow you to focus on what you are trying to accomplish with the
program, instead of continuously being interrupted by errors due to lack of space or

taking too much time.

5

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Stephen B. Sloan
Accenture
Data Science Senior Principal

Stephen.b.sloan@accenture.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

