

Paper 4702-2020

SAS® Data-Driven Design: How to Develop More Flexible, Configurable,
Reusable Software through Data Independence of Control Data

Troy Martin Hughes

ABSTRACT
Data-driven design describes software design in which the control logic, program flow, business rules, data
models, data mappings, and other dynamic and configurable elements are abstracted to control data that
are interpreted by (rather than contained within) code. Thus, data-driven design leverages parameterization
and external data structures (including configuration files, control tables, decision tables, data dictionaries,
business rules repositories, and other control files) to produce dynamic software functionality. This hands-
on workshop introduces real-world scenarios in which the flexibility, configurability, reusability, and
maintainability of SAS® software are improved through data-driven design methods, as introduced in the
author’s 2019 book: SAS® Data-Driven Development: From Abstract Design to Dynamic Functionality. This
white paper highlights one of these scenarios, in which malleable comma-separated values (CSV) files—
where the variables and their order can vary—are ingested with the aid of a data dictionary control table.

EXPENSE REPORTS
Consider the use case in which an infinitely unmanageable paper supply company maintains expense
reports as Excel spreadsheets. As companies tend to do, over time, the expense report format—including
both columns and column order—might change. For example, Tables 1 and 2 demonstrate expense reports
having dissimilar formats, as submitted by two salesmen, Jim and Dwight

Table 1. Jim’s Expense Report

Table 2. Dwight’s Expense Report

2

Note that Jim’s expense report includes an Employee column, whereas Dwight’s does not, and that
Dwight’s expense report includes a Justification column, whereas Jim’s does not. Jim’s report can be saved
as Jim_APR.csv so that it can be more readily ingested by SAS software:

Employee,Cost,Expense,Vendor

Jim,4.50,parking,City of Scranton

Jim,65.19,client dinner,Poor Richard's

Jim,4.00,glasses,Rite Aid

Jim,5.00,mustard shirt and tie,Goodwill

Jim,2.00,calculator watch,

Dwight’s report similarly can be saved as Dwight_OCT.csv:
Cost,Expense,Vendor,Justification

7.99,bear spray,Field & Stream,I sometimes encounter bears on my way to work and

need to defend against them when I'm not carrying my nunchucks.

14.99,red Solo cups,Rite Aid,"Michael asked me to buy cups for a urinalysis on Toby

and other employees, but mostly Toby."

47.53,magic supplies,Mel's Magic City,Not for Michael.

57.27,woman's wig,Sally Beauty,You never know when you're going to need to bear a

passing resemblance to someone.

In a traditional, code-driven (i.e., hardcoded) development paradigm, these dissimilar spreadsheets would
need to be ingested with separate SAS programs—because the programs lack flexibility. For example, the
following hardcoded program ingests Jim’s (but not Dwight’s) expense report:

%let exp=/folders/myfolders/datadriven/;

filename f "&exp.jim_apr.csv";

data expenses;

 infile f dsd truncover firstobs=2;

 input employee : $10. cost : dollar11.2

 cost_description : $40. vendor : $30.;

 format employee $10. cost dollar11.2

 cost_description $40. vendor $30.;

run;

The INPUT and FORMAT statements would need to be overhauled to ingest Dwight’s report instead. Data-
driven design, however, can leverage a data dictionary that describes all possible columns (i.e., variables)
that could potentially be ingested. Each expense report can subsequently be queried to detect which
variables appear in the header column, after which those columns can be dynamically ingested. Table 3
demonstrates the data dictionary that describes all anticipated columns, thus including columns found only
in Jim’s report, columns found only in Dwight’s report, and columns found in both reports.

Table 3. Expense Report Data Dictionary

3

Once the data dictionary has been saved as a CSV file, it can be subsequently ingested into a SAS data
set utilizing the INPUT statement within a DATA step. The Excel spreadsheet can be saved as
Expense_report_data_dict.csv:

Header,Name,Type,Inlength,Informat,Length,Format,Label,VarReq,In1,Out1

employee,fname,char,20,,20,,First Name,,,

cost,cost,num,8,dollar11.2,8,dollar11.2,Cost,Y,1,1

expense,cost_description,char,40,,40,,Good or Service,Y,2,2

vendor,vendor,char,30,,30,,Vendor,Y,3,3

justification,justification,char,200,,200,,Justification,Y,4,4

The following data-driven solution (READ_SCHEMA macro) interrogates the data dictionary and uses it to
ingest expense reports:

* read_schema_5.sas;

%macro read_schema_5(schema= /* CSV data dict */,

 csvfile= /* [OPT] CSV file being ingested */,

 missvar= /* [OPT] WARN or ERR to throw except */,

 xtravar= /* [OPT] WARN or ERR to throw except */);

%let syscc=0;

%global ZZinfilePos ZZinfileCSV ZZinputPos ZZinputCSV

 ZZformat ZZlabel ZZputPos zzputCSV ZZlen ZZkeep

 ZZmissVarList ZZxtraVarList;

%local found;

%let ZZinfilePos=truncover;

%let ZZinfileCSV=truncover dsd firstobs=2;

%let ZZinputPos=;

%let ZZinputCSV=;

%let ZZformat=;

%let ZZlabel=;

%let ZZputPos=;

%let ZZputCSV=;

%let ZZlen=;

%let ZZkeep=;

%let ZZmissVarList=; * list of missing variables;

%let ZZxtraVarList=; * list of extra variables;

* read header line if CSVFILE is provided;

%if %length(&csvfile)>0 %then %do;

 filename c "&CSVfile";

 data tempheader;

 length header $32 varnum 3;

 header='err';

 varnum=0;

 infile c dsd truncover firstobs=1 obs=1;

 do while(^missing(header));

 input header : $32. @;

 header=lowcase(header);

 varnum=varnum+1;

 if ^missing(header) then output;

 end;

 run;

 %end;

* read data dictionary schema;

filename fschema "&schema";

data tempschema;

 infile fschema dsd truncover firstobs=2;

 input header : $32. name : $32. type : $5.

 inlength : 8. informat : $32. length : 8.

 format : $32. label : $32. varreq : $3.

 in1 : 3. out1 : 3.;

run;

%if %length(&csvfile)>0 %then %do;

 * join CSV header with data dictionary;

4

 proc sql noprint;

 create table tempheader2 as

 select case

 when missing(b.header) then a.header

 when ^missing(b.header) then b.header

 else ''

 end as header, a.varnum, b.name, b.type,

 b.inlength, b.informat, b.length,

 b.format, b.varreq, b.label, b.in1, b.out1

 from tempheader a

 left join tempschema b

 on lowcase(a.header)=lowcase(b.header)

 order by a.varnum;

 quit;

 data tempheader2 (drop=varnum);

 set tempheader2;

 retain i 0;

 in1=varnum;

 out1=varnum;

 if missing(type) then do;

 i=i+1;

 name='_var_'||strip(put(i,3.));

 type='char';

 inlength=32;

 informat='';

 length=32;

 format='';

 label=header;

 end;

 * enumerate extra variables;

 proc sql noprint;

 select a.header

 into : ZZxtraVarList separated by ','

 from tempheader a

 left join tempschema b

 on lowcase(a.header)=lowcase(b.header)

 where upcase(b.varreq)^='Y';

 quit;

 %let found=False;

 %if %length(&ZZxtraVarList)>0 %then %do;

 %if %length(&xtravar)>=3 %then %do;

 %if "%upcase(%substr(&xtravar,1,3))"="WAR"

 %then %do;

 %put WARNING: Unexpected Column(s) in CSV file: &ZZxtraVarList;

 %if &syscc<4 %then %let syscc=4;

 %let found=True;

 %end;

 %else %if "%upcase(%substr(&xtravar,1,3))"

 ="ERR" %then %do;

 %put ERROR: Unexpected Column(s) in CSV file: &ZZxtraVarList;

 %if &syscc<5 %then %let syscc=5;

 %let found=True;

 %end;

 %end;

 %if &found=False %then %do;

 %put NOTE: Unexpected Column(s) in CSV file: &ZZxtraVarList;

 %end;

 %end;

 * enumerate missing variables;

 proc sql noprint;

 select a.header

 into : ZZmissVarList separated by ','

 from tempschema a

5

 left join tempheader b

 on lowcase(a.header)=lowcase(b.header)

 where upcase(a.varreq)='Y' and b.header is null;

 quit;

 %let found=False;

 %if %length(&ZZmissVarList)>0 %then %do;

 %if %length(&missvar)>=3 %then %do;

 %if "%upcase(%substr(&missvar,1,3))"

 ="WAR" %then %do;

 %put WARNING: Missing Column(s) in CSV file: &ZZmissVarList;

 %if &syscc<4 %then %let syscc=4;

 %let found=True;

 %end;

 %else %if "%upcase(%substr(&missvar,1,3))"

 ="ERR" %then %do;

 %put ERROR: Missing Column(s) in CSV file: &ZZmissVarList;

 %if &syscc<5 %then %let syscc=5;

 %let found=True;

 %end;

 %end;

 %if &found=False %then %do;

 %put NOTE: Missing Column(s) in CSV file: &ZZmissVarList;

 %end;

 %end;

 %end;

%else %do;

 proc sort data=tempschema out=tempheader2;

 by in1;

 where ^missing(in1);

 run;

 %end;

* create informat, infile;

data _null_;

 set tempheader2 end=eof;

 length inpPos $10000 inpCSV $10000 posin 8;

 retain inpPos '' inpCSV '' posin 1;

 inpPos=catx(' ',inpPos,'@' || strip(put(posin,8.))

 || ' ' || strip(name) || ' ' ||

 ifc(upcase(type)='CHAR','$','')

 || ifc(missing(informat),

 strip(put(inlength,8.1)),

 ifc(find(informat,'.'),strip(informat),

 strip(informat)||'.')));

 inpCSV=catx(' ',inpCSV,strip(name) || ' : ' ||

 ifc(upcase(type)='CHAR','$','')

 || ifc(missing(informat),

 strip(put(inlength,8.1)),

 ifc(find(informat,'.'),strip(informat),

 strip(informat)||'.')));

 posin=posin+inlength;

 if eof then do;

 call symputx('ZZinputPos',inpPos);

 call symputx('ZZinputCSV',inpCSV);

 end;

run;

* create outformat, outfile;

proc sort data=tempheader2 out=tempheader3;

 by out1;

 where ^missing(out1);

run;

data _null_;

 set tempheader3 end=eof;

 length ptPos ptCSV form lab len kp $10000 posout 8;

6

 retain ptPos '' ptCSV '' form '' lab '' len ''

 kp '' posout 1;

 form=catx(' ',form,strip(name) || ' '

 || ifc(upcase(type)='CHAR','$','')

 || ifc(missing(format),

 strip(put(length,8.1)),ifc(find(format,'.'),

 strip(format),strip(format)||'.')));

 lab=catx(' ',lab,strip(name) || '=' || '"' ||

 strip(label) || '"');

 ptPos=catx(' ',ptPos,'@' || strip(put(posout,8.))

 || ' ' || strip(name) || ' ' ||

 ifc(upcase(type)='CHAR','$','')

 || ifc(missing(format),

 strip(put(length,8.1)),ifc(find(format,'.'),

 strip(format),strip(format)||'.')));

 ptCSV=catx(' ',ptCSV,strip(name) || ' ' ||

 ifc(upcase(type)='CHAR','$','')

 || ifc(missing(format),

 strip(put(length,8.1)),ifc(find(format,'.'),

 strip(format),strip(format)||'.')));

 len=catx(' ',len,strip(name) || ' '

 || ifc(upcase(type)='CHAR','$','')

 || strip(put(ifn(upcase(type)=

 'CHAR',length,min(length,8)),8.)));

 kp=catx(' ',kp,strip(name));

 posout=posout+length;

 if eof then do;

 call symputx("ZZputPos",ptPos);

 call symputx("ZZputCSV",ptCSV);

 call symputx("ZZformat",form);

 call symputx("ZZlabel",lab);

 call symputx("ZZlen",len);

 call symputx("ZZkeep",kp);

 end;

run;

%mend;

The READ_SCHEMA macro creates several global macro variables that can be subsequently used within
a DATA step to dynamically create SAS statements:

• &ZZPUTPOS – dynamic PUT statement for creating a flat file output file

• &ZZPUTCSV – dynamic PUT statement for creating a CSV output file

• &ZZFORMAT – dynamic FORMAT statement

• &ZZLABEL – dynamic LABEL statement

• &ZZLEN – dynamic LENGTH statement

• &ZZKEEP – dynamic KEEP statement

Thus, the following macro invocation ingests Jim’s report to create the Expenses data set:
%read_schema(schema=&exp.expense_report_data_dict.csv,

 csvfile=&exp.jim_apr.csv,

 missvar=warn,

 xtravar=warn);

filename fin "&exp.jim_apr.csv";

data expenses;

 length &ZZlen;

 infile fin &ZZinfileCSV;

 input &ZZinputCSV;

 format &ZZformat;

7

 label &ZZlabel;

run;

The MISSVAR=WARN parameter specifies that a warning statement will be printed to the log when a
required variable (as specified in the VarReq column of the data dictionary) is missing. Similarly, the
XTRAVAR=WARN parameter specifies that a warning statement will be printed to the log when an extra
variable (i.e., not required) is present. Thus, the current READ_SCHEMA invocation produces the following
statements to the SAS log, indicating the presence of Employee and the absence of Justification:

WARNING: Unexpected Column(s) in CSV file: employee

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.05 seconds

 cpu time 0.05 seconds

WARNING: Missing Column(s) in CSV file: justification

MISSVAR and XTRAVAR can be changed from WARN to ERR to instead generate a runtime error. If
neither WARN nor ERR is specified, a SAS note is printed to the log. Notes, warnings, and runtime errors
by default are color-coded in the log to aid in detection. More useful than merely printing these warnings
and runtime errors to the log, however, SAS automatic macro variables are additionally modified to reflect
exceptions that are encountered. Thus, a warning will modify the value of &SYSCC to 4 and a runtime error
will modify the value of &SYSCC to 5, and these values can be programmatically detected to facilitate
subsequent exception handling and exception reporting (not demonstrated)—a far better solution than
needlessly checking the log after each run of the program.

The benefit of data-driven design is the flexibility that the software provides. For example, the same
READ_SCHEMA macro—without modification—can now be used to create dynamic statements that ingest
Dwight’s expense report:

%read_schema(schema=&exp.expense_report_data_dict.csv,

 csvfile=&exp.dwight_oct.csv,

 missvar=warn,

 xtravar=warn);

filename fin "&exp.dwight_oct.csv";

data expenses;

 length &ZZlen;

 infile fin &ZZinfileCSV;

 input &ZZinputCSV;

 format &ZZformat;

 label &ZZlabel;

run;

Because the LENGTH, INPUT, FORMAT, and LABEL statements are generated dynamically (rather than
hardcoded), they flexibly adapt to any number of variables that are encountered, as well as adapt to
variables that occur in different orders within respective CSV files. Both Jim and Dwight are satisfied
because they can focus on selling paper (or office hijinks) rather than needlessly modifying software.
Finally, if expense reports are modified in the future (e.g., by adding or removing columns), these changes
can be made in the data dictionary only without the need to modify the underlying code or SAS macros.

CONCLUSION
Data-driven design facilitates more flexible, configurable, reusable software—future-proofed software that,
to the extent possible, resists needless future modifications. This text demonstrated the use of data
dictionary control tables that prescribe variables that can be ingested from CSV files. Required variables
can be specified utilizing the VarReq column within the data dictionary, and notes, warnings, and runtime
errors can be automatically generated to identify both missing variables and extra variables within the CSV
files being ingested. Finally, for those cases in which CSV column order can vary, the READ_SCHEMA
macro dynamically ingests columns into the correct variables. Data-driven design benefits not only
developers, who can maintain code more efficiently, but also software end users, who can modify software
results or output based on dynamic input such as parameters and data dictionary control tables.

8

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

REFERENCES
Hughes, T. M. (2019). SAS® Data-Driven Development: From Abstract Design to Dynamic Functionality.

San Diego, California: CreateSpace.

