

Paper 4700-2020

Data-Driven Robotics: Leveraging SAS® and Python to Virtually Build
LEGO MINDSTORMS Gear Trains for the EV3 Brick

Troy Martin Hughes

ABSTRACT

LEGO MINDSTORMS Evolution 3 (EV3) represents the third-generation programmable “Brick,” a hand-
held computer developed by the LEGO Group that intelligently drives and forms the cornerstone of LEGO
robotics. Released in 2013, EV3 leverages LEGO Group-built sensors (including haptic, gyroscopic,
ultrasonic, infrared, and others) and servomotors—rotary motors that track speed, degrees, and angle of
rotation—to interpret, interact with, and respond to environmental and user stimuli. Although EV3 robotics
locomotion begins with large and medium LEGO servomotors, gears and gear trains facilitate complex
actions, movements, and the increase of speed or torque. To this end, this paper introduces LEGO gears
and simple gear trains, and includes SAS® code that programmatically identifies how (and how well) LEGO
gears mesh with each other in a two-dimensional (2D) plane. Data-driven software evaluates a table of 41
LEGO gears and programmatically determines where on a virtual 9x9 LEGO stud plane the gears can be
placed to mesh. Moreover, by modifying additional tables, the 9x9 stud plane can be replaced with other
LEGO Technic beams (or other bricks) to demonstrate where gears can be placed. Additionally, a FUZZ
parameter enables the user to specify the number of millimeters of gap or overlap permitted between gears.
This data-driven design maximizes software flexibility and configurability, providing dynamic output to meet
the needs of different users by modifying tables and parameters only—not code. Finally, the interoperability
of data-driven design is showcased in that equivalent SAS and Python code are included, both of which
rely on the same parameters and control tables. For more information, please consult the unabridged 69-
page text (https://communities.sas.com/t5/SAS-Communities-Library/Data-Driven-Robotics-Leveraging-
SAS-and-Python-Software-to/ta-p/641990) and the 30-minute 4K video (https://youtu.be/rvFS0rj6ml4).

INTRODUCTION

Given that gears must mesh well with each other to transfer motion efficiently and with minimal friction, gear
size and placement is critical within robotics, and within machinery in general. In addition to transferring
power, gear trains are commonly employed to “gear up” (i.e., increase the speed while reducing torque) or
“gear down” (i.e., decrease the speed while increasing torque) output gears. For example, automobile
transmissions use a low gear (high torque/low speed) to overcome inertia when starting, then use higher
gears (lower torque/higher speed) once momentum has been achieved. Although compound gear trains
operate in three-dimensional (3D) space, this text evaluates only simple gear trains—those in which each
axle contains only one gear. Moreover, only simple gear trains (i.e., having parallel axles) are evaluated.

This software showcases data-driven software design, in which the list of LEGO gears and their respective
attributes is maintained within a comma-separated values (CSV) file that promotes interoperability and
flexibility. Thus, were the LEGO Group to add (or remove) gears from its inventory, as it has done in both
2019 and 2020, these modifications could be made to the CSV file without necessitating any changes to
the underlying code. Software (and control data) interoperability is demonstrated in that both the SAS and
Python versions of the program rely on the same control table of gear attributes, and read the same LEGO
beam files that contain X-Y positions for axle/shaft holes. This interoperability facilitates master data
management (MDM) because only one copy of each control table must be is maintained.

This text demonstrates data-driven software design and its application to robotics design. Moreover, to
LEGO builders, this text includes a comprehensive listing (via the REPORT procedure) of the ways in which
LEGO gears can interact with each other—even those uncommon, non-orthogonal angles—and how well
the gears mesh. The dimensions of several angled “studless” LEGO beams are included as CSV files, and
end users are able to create additional CSV files to demonstrate how gears can be placed on additional
LEGO beams. Finally, goodness of fit for gear pairings can be modified via the FUZZ parameter, which
specifies the sensitivity (in millimeters) of the gap or overlap between gears. This configurability especially
enables LEGO builders to discover tighter-fitting gear pairings required for higher-torque power transfer.

https://communities.sas.com/t5/SAS-Communities-Library/Data-Driven-Robotics-Leveraging-SAS-and-Python-Software-to/ta-p/641990
https://communities.sas.com/t5/SAS-Communities-Library/Data-Driven-Robotics-Leveraging-SAS-and-Python-Software-to/ta-p/641990
https://youtu.be/rvFS0rj6ml4

2

LEGO GEARS

Figure 1 demonstrates the LEGO gears most commonly employed in Technic™ and MINDSTORMS® sets,
including gear version (e.g., v1, v2) where gears have been improved over time. All gears are subsequently
described in Table 1. Only the final (i.e., color) photo demonstrates gear scale and relative sizes.

8-tooth spur v1 8-tooth timing 8-tooth spur v2

(frictionless)

8-tooth spur v2

12-tooth bevel 12-tooth double

bevel with arm

12-tooth double

bevel with axle

12-tooth double

bevel

14-tooth bevel 16-tooth spur with

two-sided clutch

16-tooth spur v2 16-tooth spur v1

16-tooth spur with

clutch v1

20-tooth bevel 20-tooth bevel

with pinhole

16-tooth spur with

clutch v2

3

20-tooth double

bevel

24-tooth crown v2 24-tooth crown v1 20-tooth double

bevel with clutch

24-tooth spur v1 24/16 spur compound

differential

24-tooth spur

(clutch)

24-tooth spur v2

28-tooth bevel

differential

(closed)

28-tooth double

bevel

28-tooth crown

differential

28-tooth bevel

differential (open)

28-tooth double

bevel with pinhole

40-tooth spur 36-tooth double

bevel

28-tooth turntable

4

56-tooth turntable

(studded)

knob wheel 60-tooth turntable 56-tooth turntable

(studless)

worm screw

(short)

worm screw with

two bushes

worm screw

(long) v2

worm screw

(long) v1

140-tooth ring (aka banana) gear with all spur, bevel, double bevel, crown, clutch, and

differential gears

5

Figure 1. Common LEGO Gears

Table 1 enumerates LEGO gears and their attributes, including gear type (i.e., orientation of teeth), number
of teeth, gear diameter (i.e., pitch circle), thickness, and whether the gear connects with other gears at 180
degrees (i.e., inline) or 90 degrees (i.e., perpendicular to the primary axle). Spur gears connect to each
other with parallel axles, whereas bevel, double bevel, crown gears, knob wheels, and worm gears each
facilitate perpendicular transfer of power. Double bevel, crown gears, and knob wheels can flexibly connect
either perpendicularly or inline; however, knob wheels can connect only with other knob wheels, so their
flexibility is diminished and they are not included in the programmatic gear train evaluation.

Note that the compound differential gear has both 16- and 24-tooth spur gears, so the gear is included
twice in the table to facilitate programmatic evaluation of both gears. For all gears, clicking on the Part
Number URL opens the gear’s webpage on Bricklink.com, whose historical catalog of LEGO
attributes was essential in the creation of this text, and whence many of the pictured gears were
purchased.

Gear Type Teeth Shaft Type Part No Release

Years

Diameter

(mm)

Thickness

(mm)

Inline

Mesh

90-Degree

Mesh

1 spur (v1) 8 axle 3647 1977-

2016

8 8 yes no

2 spur (v2) 8 axle 10928 2008-

2020

8 8 yes no

3 spur 8 frictionless 11955 2013-

2019

8 8 yes no

4 timing 8 axle 32060 1997-

2006

16 8 no no

5 bevel 12 axle 6589 1993-

2020

12 4 no yes

6 double bevel 12 axle 32270 1999-

2020

12 8 yes yes

7 double bevel arm

with axle

12 pinhole 24014 2016-

2019

12 8 yes yes

8 double bevel arm 12 pinhole 41666 2002-

2003

12 8 yes yes

9 bevel 14 axle 4143 1980-

2002

14 3 no yes

10 spur (v1) 16 axle 4019 1979-

2016

16 8 yes no

11 spur (v2) 16 axle 94925 2006-

2020

16 8 yes no

12 spur with clutch (v1) 16 axle 6542 1993-

2014

16 8 yes no

13 spur with clutch (v2) 16 axle 6542b 2009-

2016

16 8 yes no

14 spur with two-sided

clutch

16 pinhole 18946 2015-

2020

16 8 yes no

15 spur with compound

differential

16 axle 6573 1994-

2019

16 32 yes no

https://www.bricklink.com/v2/catalog/catalogitem.page?P=3647
https://www.bricklink.com/v2/catalog/catalogitem.page?P=10928
https://www.bricklink.com/v2/catalog/catalogitem.page?P=11955
https://www.bricklink.com/v2/catalog/catalogitem.page?P=32060
https://www.bricklink.com/v2/catalog/catalogitem.page?P=6589
https://www.bricklink.com/v2/catalog/catalogitem.page?P=32270
https://www.bricklink.com/v2/catalog/catalogitem.page?P=24014
https://www.bricklink.com/v2/catalog/catalogitem.page?P=41666
https://www.bricklink.com/v2/catalog/catalogitem.page?P=4143
https://www.bricklink.com/v2/catalog/catalogitem.page?P=4019
https://www.bricklink.com/v2/catalog/catalogitem.page?P=94925
https://www.bricklink.com/v2/catalog/catalogitem.page?P=6542
https://www.bricklink.com/v2/catalog/catalogitem.page?P=6542b
https://www.bricklink.com/v2/catalog/catalogitem.page?P=18946
https://www.bricklink.com/v2/catalog/catalogitem.page?P=6573

6

Gear Type Teeth Shaft Type Part No Release

Years

Diameter

(mm)

Thickness

(mm)

Inline

Mesh

90-Degree

Mesh

16 bevel 20 axle 32198 1999-

2020

20 8 no yes

17 bevel 20 pinhole 87407 2010-

2020

20 8 no yes

18 double bevel 20 axle 32269 1999-

2020

20 8 yes yes

19 double bevel with

two-sided clutch

20 pinhole 35185 2018-

2020

20 8 yes yes

20 spur (v1) 24 axle x187 1977-

1998

24 8 yes no

21 spur (v2 24 axle 3648 1993-

2020

24 8 yes no

22 spur (clutch) 24 axle 60c01 1997-

2018

24 8 yes no

23 crown (v1) 24 axle 3650a 1977-

1997

24 8 yes yes

24 crown (v2) 24 axle 3650b 1985-

2016

24 8 yes yes

25 spur with compound

differential

24 pinhole 6573 1994-

2019

24 32 yes no

26 double bevel 28 axle 46372 2019-

2019

28 8 yes yes

27 double bevel 28 pinhole 65413 2020-

2020

28 8 yes yes

28 crown differential 28 pinhole 73071 1980-

1994

28 32 yes yes

29 bevel differential

with open center

28 pinhole 62821a 2008-

2016

28 32 no yes

30 bevel differential

with closed center

28 pinhole 62821b 2009-

2019

28 32 no yes

31 turntable 28 8x8 mm

square

99009c01 2012-

2019

28 24 yes no

32 double bevel 36 axle 32498 2002-

2020

36 8 yes yes

33 spur 40 axle 3649 1977-

2019

40 8 yes no

34 turntable 56 24 mm

circle

48452cx1 2004-

2016

56 24 yes no

35 turntable with studs 56 24 mm

circle

2856c01 1990-

2003

56 44 yes no

36 turntable 60 24 mm

circle

18939c01 2015-

2020

60 24 yes no

https://www.bricklink.com/v2/catalog/catalogitem.page?P=32198
https://www.bricklink.com/v2/catalog/catalogitem.page?P=87407
https://www.bricklink.com/v2/catalog/catalogitem.page?P=32269
https://www.bricklink.com/v2/catalog/catalogitem.page?P=35185
https://www.bricklink.com/v2/catalog/catalogitem.page?P=x187
https://www.bricklink.com/v2/catalog/catalogitem.page?P=3648
https://www.bricklink.com/v2/catalog/catalogitem.page?P=60c01
https://www.bricklink.com/v2/catalog/catalogitem.page?P=3650a
https://www.bricklink.com/v2/catalog/catalogitem.page?P=3650b
https://www.bricklink.com/v2/catalog/catalogitem.page?P=6573
https://www.bricklink.com/v2/catalog/catalogitem.page?P=46372
https://www.bricklink.com/v2/catalog/catalogitem.page?P=65413
https://www.bricklink.com/v2/catalog/catalogitem.page?P=73071
https://www.bricklink.com/v2/catalog/catalogitem.page?P=62821a
https://www.bricklink.com/v2/catalog/catalogitem.page?P=62821b
https://www.bricklink.com/v2/catalog/catalogitem.page?P=99009c01
https://www.bricklink.com/v2/catalog/catalogitem.page?P=32498
https://www.bricklink.com/v2/catalog/catalogitem.page?P=3649
https://www.bricklink.com/v2/catalog/catalogitem.page?P=48452cx1
https://www.bricklink.com/v2/catalog/catalogitem.page?P=2856c01
https://www.bricklink.com/v2/catalog/catalogitem.page?P=18939c01

7

Gear Type Teeth Shaft Type Part No Release

Years

Diameter

(mm)

Thickness

(mm)

Inline

Mesh

90-Degree

Mesh

37 ring gear 11x11

curved rack

140 136 mm

circle

24121 2016-

2019

168 8 no no

38 knob wheel 1 axle 32072 1998-

2020

16 8 yes yes

39 worm screw (v1) 1 frictionless 4716 1985-

2017

32 . no yes

40 worm screw (v2) 1 frictionless 32905 2009-

2019

32 . no yes

41 worm screw (short) 1 frictionless 27938 2017-

2020

16 . no yes

42 worm screw with

bushes

1 bushes 15457 2014-

2014

24 . no yes

Table 1. SAS Report Created by GEAR_REPORT Macro and Derived from Gears.csv

The report in Table 1 is derived from Gears.csv, which should be saved as:

Gear Type,Teeth,Hole,Part Number,Years Active,Diameter (mm),Thickness (mm),180

Degrees / Inline,90 Degrees / Perpendicular

spur (v1),8,axle,3647,1977-2016,8,8,yes,no

spur (v2),8,axle,10928,2008-2020,8,8,yes,no

spur,8,frictionless,11955,2013-2019,8,8,yes,no

timing,8,axle,32060,1997-2006,16,8,no,no

bevel,12,axle,6589,1993-2020,12,4,no,yes

double bevel,12,axle,32270,1999-2020,12,8,yes,yes

double bevel arm with axle,12,pinhole,24014,2016-2019,12,8,yes,yes

double bevel arm,12,pinhole,41666,2002-2003,12,8,yes,yes

bevel,14,axle,4143,1980-2002,14,3,no,yes

spur (v1),16,axle,4019,1979-2016,16,8,yes,no

spur (v2),16,axle,94925,2006-2020,16,8,yes,no

spur with clutch (v1),16,axle,6542,1993-2014,16,8,yes,no

spur with clutch (v2),16,axle,6542b,2009-2016,16,8,yes,no

spur with two-sided clutch,16,pinhole,18946,2015-2020,16,8,yes,no

spur with compound differential,16,axle,6573,1994-2019,16,32,yes,no

bevel,20,axle,32198,1999-2020,20,8,no,yes

bevel,20,pinhole,87407,2010-2020,20,8,no,yes

double bevel,20,axle,32269,1999-2020,20,8,yes,yes

double bevel with two-sided clutch,20,pinhole,35185,2018-2020,20,8,yes,yes

spur (v1),24,axle,x187,1977-1998,24,8,yes,no

spur (v2,24,axle,3648,1993-2020,24,8,yes,no

spur (clutch),24,axle,60c01,1997-2018,24,8,yes,no

crown (v1),24,axle,3650a,1977-1997,24,8,yes,yes

crown (v2),24,axle,3650b,1985-2016,24,8,yes,yes

spur with compound differential,24,pinhole,6573,1994-2019,24,32,yes,no

double bevel,28,axle,46372,2019-2019,28,8,yes,yes

double bevel,28,pinhole,65413,2020-2020,28,8,yes,yes

crown differential,28,pinhole,73071,1980-1994,28,32,yes,yes

bevel differential with open center,28,pinhole,62821a,2008-2016,28,32,no,yes

bevel differential with closed center,28,pinhole,62821b,2009-2019,28,32,no,yes

turntable,28,8x8 mm square,99009c01,2012-2019,28,24,yes,no

double bevel,36,axle,32498,2002-2020,36,8,yes,yes

spur,40,axle,3649,1977-2019,40,8,yes,no

turntable,56,24 mm circle,48452cx1,2004-2016,56,24,yes,no

turntable with studs,56,24 mm circle,2856c01,1990-2003,56,44,yes,no

turntable,60,24 mm circle,18939c01,2015-2020,60,24,yes,no

ring gear 11x11 curved rack,140,136 mm circle,24121,2016-2019,168,8,no,no

knob wheel,1,axle,32072,1998-2020,16,8,yes,yes

https://www.bricklink.com/v2/catalog/catalogitem.page?P=24121
https://www.bricklink.com/v2/catalog/catalogitem.page?P=32072
https://www.bricklink.com/v2/catalog/catalogitem.page?P=4716
https://www.bricklink.com/v2/catalog/catalogitem.page?P=32905
https://www.bricklink.com/v2/catalog/catalogitem.page?P=27938
https://www.bricklink.com/v2/catalog/catalogitem.page?P=15457

8

worm screw (v1),1,frictionless,4716,1985-2017,32,N/A,no,yes

worm screw (v2),1,frictionless,32905,2009-2019,32,N/A,no,yes

worm screw (short),1,frictionless,27938,2017-2020,16,N/A,no,yes

worm screw with bushes,1,bushes,15457,2014-2014,24,N/A,no,yes

The following code creates Table 1 by invoking the GEAR_REPORT macro (saved within the
Lego_gear_combinations.sas file, included in Appendix A), and must be modified to reference the user’s
path:

%let loc=/folders/myfolders/legos/; * USER MUST CHANGE LOCATION;

%let gearfile=&loc.gears.csv;

%include "&loc.lego_gear_combinations.sas";

%gear_report(csvfile=&loc.gears.csv, rptpath=&loc, rptfile=gear_report.html);

LEGO MODULARITY AND STANDARD UNIT OF MEASUREMENT

The standard unit of measurement (i.e., “stud”) for LEGO bricks is 8mm, which forms the basis of interaction
among not only gears, axles, pins, and bushes, but also beams and other LEGO bricks. For example, a
five-stud beam is 40mm in length—five studs at 8mm a piece—and contains five holes through which axles
can pass. Figure 2 demonstrates beams ranging from five studs (i.e., 40mm) to 15 studs (i.e., 120mm).

Figure 2. 5-, 7-, 9-, 11-, 13-, and 15-Stud Studless Beams

Thus, six eight-tooth gears can occupy six consecutive (i.e., inline) holes within a studless beam. This same
distance (48mm) can be traversed with two 24-tooth spur (or crown or clutch) gears. Figure 3 demonstrates
these two gear trains. Note that in both cases, because the first and last gears in each gear train have the
same number of teeth, the gear trains have a 1:1 gear ratio in which both torque and speed remain constant.

Figure 3. Six 8-Tooth Spur Gears Versus Two 24-Tooth Spur Gears

9

Gear trains that lie inline with LEGO beams (as depicted in Figure 3) can be conceptualized and designed
more readily because gear placement can be determined by “counting the holes” that lie along the beam.
Gear train design becomes more complex, however, when gears interact at angles that are non-orthogonal
to their underlying beams. For example, Figure 4 demonstrates the placement of a 12-tooth double bevel
gear in the upper-left hole of a 9x9 stud matrix of beams, and a 24-tooth spur gear in the third column and
second row. This non-orthogonal pairing of two gears is less apparent than orthogonal pairings, which are
either horizontal or vertical. Too often, non-orthogonal gear pairings are discovered by LEGO builders
through trial and error in a tedious and inefficient fashion.

Figure 4. Non-Orthogonal Pairing of 12-Tooth Double Bevel and 24-Tooth Spur Gears

Where turntables are utilized, and because they cannot be attached with an axle (like other gears), non-
orthogonal pairings are even more complex and less likely to be discovered or implemented. For example,
Figure 5 demonstrates the pairing of a 28-tooth turntable and a 40-tooth spur gear in the fourth column and
fourth row. Note that the 9x9 matrix of beams must be expanded in the upper-left corner to accommodate
attachment of the turntable.

Figure 5. Non-Orthogonal Pairing of 28-Tooth Turntable and 40-Tooth Spur Gear

10

These and other non-orthogonal gear pairings were the rationale for this text; their discovery should be
comprehensive and efficient rather than haphazard, and their catalog should be complete and persistent.
This text provides not only a comprehensive listing of all (inline) LEGO simple gear trains but also the
methodology and code to create this listing programmatically. In seconds, the software analyzes millions
of potential gear-pairing permutations to evaluate which will produce viable gear trains, irrespective of the
angle of gear alignment, and with respect to the goodness of fit (i.e., gap or overlap) of the two gears.

SETUP AND INVOCATION

The SAS program Lego_gear_combinations.sas (see Appendix A) contains four macros:

1. GEAR_REPORT – generates an HTML report of gears and attributes, as previously described

2. CREATE_RECTANGLE – generates a CSV file that includes LEGO stud positions (into which gear
axles can be placed) within a virtual matrix of LEGO axle holes

3. GEAR_TRAIN_REPORT – executed by EVAL_COORDS to create the HTML gear train report

4. EVAL_COORDS – evaluates goodness of fit for all gears for all stud positions

CREATE_RECTANGLE can be used to generate a 9x9 stud grid that models nine 9-stud beams. In this
demonstration, SAS University Edition is utilized so the program is saved to the Legos folder
(..\SASUniversityEdition\myfolders\legos\) and is invoked with the following code:

%let loc=/folders/myfolders/legos/; * USER MUST CHANGE LOCATION;

%let gearfile=&loc.gears.csv;

%include "&loc.lego_gear_combinations.sas";

%create_rectangle(csvfile=&loc.coords_rectangle_9x9.csv,width=9, height=9);

The EVAL_COORDS macro (as well as the subsequent EVAL_COORDS Python function) has the following
parameters:

• GEARFILE – The path and file name of Gears.csv.

• BEAMFILE – The path and file name of the stud positions (i.e., axle hole X and Y coordinates in
millimeters) being analyzed. CREATE_RECTANGLE generates rectangular matrix files, although
additional CSV files are included in subsequent subsections for several LEGO L beams and angled
beams. Each row contains X and Y stud positions (in millimeters) delimited by a comma, so “16,8”
(without quotes) references the hole two studs to the right and one stud down (of the origin, which
may or may not be explicitly included as one of the X-Y values in the CSV file).

• FUZZ – The number of millimeters (integer or decimal) of gear overlap or gear gap that will be
discovered. At 1mm overlap, gear axles can be bent sufficiently to increase friction beyond a
useable level, and at a 1mm gap, axles can be sufficiently loose such that they slip in higher torque.

• HOLE – FIRST directs that only the first hole encountered in the BEAMFILE file will be used for the
position for the primary gears in each gear train analysis. Thus, when FIRST is indicated, the
secondary gear will be (virtually) attempted in every position listed in the BEAMFILE file, whereas
the primary gear will remain stable in the first position. For example, if the 9x9 matrix is utilized, the
first position generated will be 0,0, thus all gear trains analyzed will have the primary gear at position
0,0 and only the secondary gear position will vary.

ALL directs that both the primary and secondary gears will be virtually fitted in all X-Y positions
found in the BEAMFILE file, thus ALL effectively directs a cartesian join of positions be performed.
FIRST is more useful when a matrix (like 9x9) is being analyzed, whereas ALL is more useful when
specific LEGO beams or frames are being analyzed.

• VERBOSITY – VERBOSE (any Zork fans?) indicates that all specific gears will be evaluated and
thereby listed in the gear train analysis report. For example, although the 28-tooth double bevel,
28-tooth double bevel with pinhole, and 28-tooth crown differential will each connect identically with

11

other gears (when forming an inline simple gear train), each of these gears will be listed separately
in the VERBOSE HTML report.

BRIEF, conversely, lists gears uniquely by number of teeth only. Thus, these three distinct 28-tooth
gears will be represented only once as a generic “28-tooth” entry in the HTML report, rather than
multiple entries that additionally describe other attributes. BRIEF should almost always be selected.

• RPTPATH – Path of the HTML gear train analysis report.

• RPTFILE – File name (and extension) of the HTML gear train analysis report.

With the 9x9 stud grid created, the EVAL_COORDS macro ingests and analyzes the Gears.csv control
table with respect to the underlying rectangular grid of beams:

%eval_coords(gearfile=&loc.gears.csv,

 beamfile=&loc.coords_rectangle_9x9.csv,

 fuzz=.5,

 hole=first,

 verbosity=verbose,

 rptpath=&loc,

 rptfile=Lego_gear_trains_9x9_1stpos_brief.html);

This invocation creates a 786-line HTML report, the first few lines of which are demonstrated in Table 2.

Primary Gear Gear

1 (X)

Gear

1 (Y)

Secondary Gear Gear

2 (X)

Gear

2 (Y)

Angle

(degrees)

between gears

Gap (+) or

Overlap (-)

in mm

Gear

Ratio

1 8-tooth spur

(frictionless)

0 0 8-tooth spur

(frictionless)

1 0 0.0 0.000 1:1

2 0 0 8-tooth spur (v1) 1 0 0.0 0.000 1:1

3 0 0 8-tooth spur (v2) 1 0 0.0 0.000 1:1

4 0 0 24-tooth crown (v1) 2 0 0.0 0.000 3:1

5 0 0 24-tooth crown (v2) 2 0 0.0 0.000 3:1

6 0 0 24-tooth spur (clutch) 2 0 0.0 0.000 3:1

7 0 0 24-tooth spur (v1) 2 0 0.0 0.000 3:1

8 0 0 24-tooth spur (v2 2 0 0.0 0.000 3:1

9 0 0 24-tooth spur with

compound

differential (pinhole)

2 0 0.0 0.000 3:1

10 0 0 40-tooth spur 3 0 0.0 0.000 5:1

Table 2. Demonstration of VERBOSE mode for VERBOSITY Parameter

Note that in VERBOSE mode, each type of 8-tooth gear is matched with every other type of 8-tooth gear,
thus resulting in three different lines in which the frictionless 8-tooth gear is paired with 8-tooth gears. In

12

BRIEF mode, which is demonstrated in all subsequent examples, only one generic “8-tooth” gear is listed
so the number of gears being tested dramatically decreases and output readability is improved.

In this sample invocation, the FUZZ parameter specifies that only gear pairings that are within 0.5mm from
a theoretical perfect mesh will be identified. For example, two eight-tooth gears (each having a radius of
4mm for a combined 8mm) placed in adjoining holes (8mm apart) form a perfect mesh with neither gap nor
overlap. FUZZ enables less-than-perfect gear pairings to be detected and utilized, as a slight amount of
mesh disparity is often tolerable when gears are utilized in low-torque conditions. As torque is increased,
however, gear pairings in which a gap exists may cause the gears to slip and, in some cases, this slip can
damage or destroy one or both gears.

The disparity between two gears is calculated by subtracting the sum of the radii for each of the two gears
from the distance between the gear axle centers (i.e., the hypotenuse from the coordinates of the primary
gear to the secondary gear). For example, the two gear trains in Figure 3 each have no disparity because
they mesh perfectly. However, the non-orthogonal gears demonstrated in Figure 4 do not mesh perfectly,
as the sum of their radii is 18mm whereas the distance between their axle holes is 17.889mm. For most if
not all purposes, this negligible overlap is unnoticeable, and absent analysis, many LEGO builders might
be unaware of this overlap.

Similarly, the non-orthogonal pairing of gears in Figure 5 may appear to be a perfect mesh, and for all
purposes may be, but mathematically this pairing produces an infinitesimal overlap. The sum of the radii of
the gears is 34mm whereas the distance between their axle holes is 33.941mm. To put this 0.059mm
overlap in perspective, this snugness is less than one percent of the thickness of the 8mm LEGO stud.

EVAL_COORDS creates the Matching_coords data set that includes all gear pairings that match the
minimum FUZZ requirement, and which includes the following variables:

• Gear1 – primary gear (number of teeth, gear type, and shaft type if not “axle”) being analyzed

• Xmm_start – horizontal position (measured in millimeters) of primary gear

• Ymm_start – vertical position (measured in millimeters) of primary gear

• Xstud_start – horizontal position (measured in 8mm studs) of primary gear

• Ystud_start – vertical position (measured in 8mm studs) of primary gear

• Gear2 – secondary gear (number of teeth, gear type, and shaft type if not “axle”) being analyzed

• Xmm – horizontal position (measured in millimeters) of secondary gear

• Ymm – vertical position (measured in millimeters) of secondary gear

• Xstud – horizontal position (measured in 8mm studs) of secondary gear

• Ystud – vertical position (measured in 8mm studs) of secondary gear

• Gear_distance – sum of center distance radii (in millimeters) of both gears

• Stud_distance – distance (in millimeters) between the two axle holes, from the primary gear center
to the secondary gear center

• Theta – the angle (in degrees) between the primary gear and secondary gear

• Gap_overlap – when positive, the gap between two gears, and when negative, the overlap
between two gears

• Ratio – the gear ratio of number of teeth on the secondary gear (i.e., driven gear) to the number of
teeth on the primary gear (i.e., drive gear), in which ratios greater than one increase the torque of
the secondary gear and ratios smaller than one increase the speed of the secondary gear

When FUZZ is set to 0, only perfect gear pairings are included—those that are both the strongest and most
efficient—in which the Gear_distance equals the Stud_distance. A positive Gap_overlap value indicates
that a gap exists between the gears, and gear pairings with small gaps can be useful. Negative Gap_overlap

13

values represent gears that overlap subtly, which are less useful because they tend to cause bunching and
friction. As demonstrated in both Figures 4 and 5, however, non-orthogonal, imperfect pairings are often
utilized, and many can perform well under high-speed and high-torque circumstances.

The following invocation now demonstrates all gear trains in which the FUZZ is 1mm and VERBOSITY is
BRIEF:

%eval_coords(gearfile=&loc.gears.csv,

 beamfile=&loc.coords_rectangle_9x9.csv,

 fuzz=1,

 hole=first,

 verbosity=brief,

 rptpath=&loc,

 rptfile=Lego_gear_trains_9x9_1stpos_brief.html);

Table 3 demonstrates the results of the REPORT procedure within EVAL_COORDS, showing 184 gear
trains. This analysis is recreated utilizing Python in a subsequent section that demonstrates interoperability.

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

1 8-tooth 0 0 8-tooth 1 0 0.0 0.000 1:1

2 0 0 24-tooth 2 0 0.0 0.000 3:1

3 0 0 40-tooth 3 0 0.0 0.000 5:1

4 0 0 56-tooth 4 0 0.0 0.000 7:1

5 0 0 8-tooth 0 1 90.0 0.000 1:1

6 0 0 16-tooth 1 1 45.0 -0.686 2:1

7 0 0 28-tooth 2 1 26.6 -0.111 3.5:1

8 0 0 56-tooth 4 1 14.0 0.985 7:1

9 0 0 24-tooth 0 2 90.0 0.000 3:1

10 0 0 28-tooth 1 2 63.4 -0.111 3.5:1

11 0 0 36-tooth 2 2 45.0 0.627 4.5:1

12 0 0 40-tooth 0 3 90.0 0.000 5:1

13 0 0 60-tooth 3 3 45.0 -0.059 7.5:1

14 0 0 56-tooth 0 4 90.0 0.000 7:1

15 0 0 56-tooth 1 4 76.0 0.985 7:1

14

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

16 12-tooth 0 0 20-tooth 2 0 0.0 0.000 1.666:1

17 0 0 36-tooth 3 0 0.0 0.000 3:1

18 0 0 12-tooth 1 1 45.0 -0.686 1:1

19 0 0 24-tooth 2 1 26.6 -0.111 2:1

20 0 0 40-tooth 3 1 18.4 -0.702 3.333:1

21 0 0 20-tooth 0 2 90.0 0.000 1.666:1

22 0 0 24-tooth 1 2 63.4 -0.111 2:1

23 0 0 60-tooth 4 2 26.6 -0.223 5:1

24 0 0 36-tooth 0 3 90.0 0.000 3:1

25 0 0 40-tooth 1 3 71.6 -0.702 3.333:1

26 0 0 56-tooth 3 3 45.0 -0.059 4.666:1

27 0 0 60-tooth 2 4 63.4 -0.223 5:1

28 16-tooth 0 0 16-tooth 2 0 0.0 0.000 1:1

29 0 0 8-tooth 1 1 45.0 -0.686 1:2

30 0 0 20-tooth 2 1 26.6 -0.111 1.25:1

31 0 0 36-tooth 3 1 18.4 -0.702 2.25:1

32 0 0 16-tooth 0 2 90.0 0.000 1:1

33 0 0 20-tooth 1 2 63.4 -0.111 1.25:1

34 0 0 28-tooth 2 2 45.0 0.627 1.75:1

35 0 0 40-tooth 3 2 33.7 0.844 2.5:1

36 0 0 56-tooth 4 2 26.6 -0.223 3.5:1

37 0 0 36-tooth 1 3 71.6 -0.702 2.25:1

15

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

38 0 0 40-tooth 2 3 56.3 0.844 2.5:1

39 0 0 56-tooth 2 4 63.4 -0.223 3.5:1

40 20-tooth 0 0 12-tooth 2 0 0.0 0.000 1:1.666

41 0 0 28-tooth 3 0 0.0 0.000 1.4:1

42 0 0 60-tooth 5 0 0.0 0.000 3:1

43 0 0 16-tooth 2 1 26.6 -0.111 1:1.25

44 0 0 60-tooth 5 1 11.3 0.792 3:1

45 0 0 12-tooth 0 2 90.0 0.000 1:1.666

46 0 0 16-tooth 1 2 63.4 -0.111 1:1.25

47 0 0 24-tooth 2 2 45.0 0.627 1.2:1

48 0 0 36-tooth 3 2 33.7 0.844 1.8:1

49 0 0 28-tooth 0 3 90.0 0.000 1.4:1

50 0 0 36-tooth 2 3 56.3 0.844 1.8:1

51 0 0 60-tooth 4 3 36.9 0.000 3:1

52 0 0 60-tooth 3 4 53.1 0.000 3:1

53 0 0 60-tooth 0 5 90.0 0.000 3:1

54 0 0 60-tooth 1 5 78.7 0.792 3:1

55 24-tooth 0 0 8-tooth 2 0 0.0 0.000 1:3

56 0 0 24-tooth 3 0 0.0 0.000 1:1

57 0 0 40-tooth 4 0 0.0 0.000 1.666:1

58 0 0 56-tooth 5 0 0.0 0.000 2.333:1

59 0 0 12-tooth 2 1 26.6 -0.111 1:2

16

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

60 0 0 28-tooth 3 1 18.4 -0.702 1.166:1

61 0 0 40-tooth 4 1 14.0 0.985 1.666:1

62 0 0 56-tooth 5 1 11.3 0.792 2.333:1

63 0 0 8-tooth 0 2 90.0 0.000 1:3

64 0 0 12-tooth 1 2 63.4 -0.111 1:2

65 0 0 20-tooth 2 2 45.0 0.627 1:1.2

66 0 0 24-tooth 0 3 90.0 0.000 1:1

67 0 0 28-tooth 1 3 71.6 -0.702 1.166:1

68 0 0 56-tooth 4 3 36.9 0.000 2.333:1

69 0 0 40-tooth 0 4 90.0 0.000 1.666:1

70 0 0 40-tooth 1 4 76.0 0.985 1.666:1

71 0 0 56-tooth 3 4 53.1 0.000 2.333:1

72 0 0 56-tooth 0 5 90.0 0.000 2.333:1

73 0 0 56-tooth 1 5 78.7 0.792 2.333:1

74 28-tooth 0 0 20-tooth 3 0 0.0 0.000 1:1.4

75 0 0 36-tooth 4 0 0.0 0.000 1.285:1

76 0 0 8-tooth 2 1 26.6 -0.111 1:3.5

77 0 0 24-tooth 3 1 18.4 -0.702 1:1.166

78 0 0 36-tooth 4 1 14.0 0.985 1.285:1

79 0 0 8-tooth 1 2 63.4 -0.111 1:3.5

80 0 0 16-tooth 2 2 45.0 0.627 1:1.75

81 0 0 28-tooth 3 2 33.7 0.844 1:1

17

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

82 0 0 60-tooth 5 2 21.8 -0.919 2.142:1

83 0 0 20-tooth 0 3 90.0 0.000 1:1.4

84 0 0 24-tooth 1 3 71.6 -0.702 1:1.166

85 0 0 28-tooth 2 3 56.3 0.844 1:1

86 0 0 40-tooth 3 3 45.0 -0.059 1.428:1

87 0 0 36-tooth 0 4 90.0 0.000 1.285:1

88 0 0 36-tooth 1 4 76.0 0.985 1.285:1

89 0 0 60-tooth 2 5 68.2 -0.919 2.142:1

90 36-tooth 0 0 12-tooth 3 0 0.0 0.000 1:3

91 0 0 28-tooth 4 0 0.0 0.000 1:1.285

92 0 0 60-tooth 6 0 0.0 0.000 1.666:1

93 0 0 16-tooth 3 1 18.4 -0.702 1:2.25

94 0 0 28-tooth 4 1 14.0 0.985 1:1.285

95 0 0 60-tooth 6 1 9.5 0.662 1.666:1

96 0 0 8-tooth 2 2 45.0 0.627 1:4.5

97 0 0 20-tooth 3 2 33.7 0.844 1:1.8

98 0 0 36-tooth 4 2 26.6 -0.223 1:1

99 0 0 12-tooth 0 3 90.0 0.000 1:3

100 0 0 16-tooth 1 3 71.6 -0.702 1:2.25

101 0 0 20-tooth 2 3 56.3 0.844 1:1.8

102 0 0 56-tooth 5 3 31.0 0.648 1.555:1

103 0 0 28-tooth 0 4 90.0 0.000 1:1.285

18

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

104 0 0 28-tooth 1 4 76.0 0.985 1:1.285

105 0 0 36-tooth 2 4 63.4 -0.223 1:1

106 0 0 56-tooth 4 4 45.0 -0.745 1.555:1

107 0 0 56-tooth 3 5 59.0 0.648 1.555:1

108 0 0 60-tooth 0 6 90.0 0.000 1.666:1

109 0 0 60-tooth 1 6 80.5 0.662 1.666:1

110 40-tooth 0 0 8-tooth 3 0 0.0 0.000 1:5

111 0 0 24-tooth 4 0 0.0 0.000 1:1.666

112 0 0 40-tooth 5 0 0.0 0.000 1:1

113 0 0 56-tooth 6 0 0.0 0.000 1.4:1

114 0 0 12-tooth 3 1 18.4 -0.702 1:3.333

115 0 0 24-tooth 4 1 14.0 0.985 1:1.666

116 0 0 40-tooth 5 1 11.3 0.792 1:1

117 0 0 56-tooth 6 1 9.5 0.662 1.4:1

118 0 0 16-tooth 3 2 33.7 0.844 1:2.5

119 0 0 60-tooth 6 2 18.4 0.596 1.5:1

120 0 0 8-tooth 0 3 90.0 0.000 1:5

121 0 0 12-tooth 1 3 71.6 -0.702 1:3.333

122 0 0 16-tooth 2 3 56.3 0.844 1:2.5

123 0 0 28-tooth 3 3 45.0 -0.059 1:1.428

124 0 0 40-tooth 4 3 36.9 0.000 1:1

125 0 0 24-tooth 0 4 90.0 0.000 1:1.666

19

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

126 0 0 24-tooth 1 4 76.0 0.985 1:1.666

127 0 0 40-tooth 3 4 53.1 0.000 1:1

128 0 0 40-tooth 0 5 90.0 0.000 1:1

129 0 0 40-tooth 1 5 78.7 0.792 1:1

130 0 0 56-tooth 0 6 90.0 0.000 1.4:1

131 0 0 56-tooth 1 6 80.5 0.662 1.4:1

132 0 0 60-tooth 2 6 71.6 0.596 1.5:1

133 56-tooth 0 0 8-tooth 4 0 0.0 0.000 1:7

134 0 0 24-tooth 5 0 0.0 0.000 1:2.333

135 0 0 40-tooth 6 0 0.0 0.000 1:1.4

136 0 0 56-tooth 7 0 0.0 0.000 1:1

137 0 0 8-tooth 4 1 14.0 0.985 1:7

138 0 0 24-tooth 5 1 11.3 0.792 1:2.333

139 0 0 40-tooth 6 1 9.5 0.662 1:1.4

140 0 0 56-tooth 7 1 8.1 0.569 1:1

141 0 0 16-tooth 4 2 26.6 -0.223 1:3.5

142 0 0 60-tooth 7 2 15.9 0.241 1.071:1

143 0 0 12-tooth 3 3 45.0 -0.059 1:4.666

144 0 0 24-tooth 4 3 36.9 0.000 1:2.333

145 0 0 36-tooth 5 3 31.0 0.648 1:1.555

146 0 0 8-tooth 0 4 90.0 0.000 1:7

147 0 0 8-tooth 1 4 76.0 0.985 1:7

20

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

148 0 0 16-tooth 2 4 63.4 -0.223 1:3.5

149 0 0 24-tooth 3 4 53.1 0.000 1:2.333

150 0 0 36-tooth 4 4 45.0 -0.745 1:1.555

151 0 0 60-tooth 6 4 33.7 -0.311 1.071:1

152 0 0 24-tooth 0 5 90.0 0.000 1:2.333

153 0 0 24-tooth 1 5 78.7 0.792 1:2.333

154 0 0 36-tooth 3 5 59.0 0.648 1:1.555

155 0 0 56-tooth 5 5 45.0 0.569 1:1

156 0 0 40-tooth 0 6 90.0 0.000 1:1.4

157 0 0 40-tooth 1 6 80.5 0.662 1:1.4

158 0 0 60-tooth 4 6 56.3 -0.311 1.071:1

159 0 0 56-tooth 0 7 90.0 0.000 1:1

160 0 0 56-tooth 1 7 81.9 0.569 1:1

161 0 0 60-tooth 2 7 74.1 0.241 1.071:1

162 60-tooth 0 0 20-tooth 5 0 0.0 0.000 1:3

163 0 0 36-tooth 6 0 0.0 0.000 1:1.666

164 0 0 20-tooth 5 1 11.3 0.792 1:3

165 0 0 36-tooth 6 1 9.5 0.662 1:1.666

166 0 0 12-tooth 4 2 26.6 -0.223 1:5

167 0 0 28-tooth 5 2 21.8 -0.919 1:2.142

168 0 0 40-tooth 6 2 18.4 0.596 1:1.5

169 0 0 56-tooth 7 2 15.9 0.241 1:1.071

21

Primary

Gear

Gear 1

(X)

Gear 1

(Y)

Secondary

Gear

Gear 2

(X)

Gear 2

(Y)

Angle (degrees)

between gears

Gap (+) or

Overlap (-) in

mm

Gear

Ratio

170 0 0 8-tooth 3 3 45.0 -0.059 1:7.5

171 0 0 20-tooth 4 3 36.9 0.000 1:3

172 0 0 60-tooth 7 3 23.2 0.926 1:1

173 0 0 12-tooth 2 4 63.4 -0.223 1:5

174 0 0 20-tooth 3 4 53.1 0.000 1:3

175 0 0 56-tooth 6 4 33.7 -0.311 1:1.071

176 0 0 20-tooth 0 5 90.0 0.000 1:3

177 0 0 20-tooth 1 5 78.7 0.792 1:3

178 0 0 28-tooth 2 5 68.2 -0.919 1:2.142

179 0 0 36-tooth 0 6 90.0 0.000 1:1.666

180 0 0 36-tooth 1 6 80.5 0.662 1:1.666

181 0 0 40-tooth 2 6 71.6 0.596 1:1.5

182 0 0 56-tooth 4 6 56.3 -0.311 1:1.071

183 0 0 56-tooth 2 7 74.1 0.241 1:1.071

184 0 0 60-tooth 3 7 66.8 0.926 1:1

Table 3. Simple Gear Trains with 1mm FUZZ Parameter Specified

For comparison, had this analysis been run with VERBOSITY=VERBOSE, it would have produced 1,285
distinct gear trains rather than 184, demonstrating the advantages of specifying VERBOSITY=BRIEF.

Utilizing this table, LEGO builders can quickly look up combinations of gears to determine how they can
mesh, in what stud positions the gears should be placed, and what resultant angle and gear ratio will be
produced. Beyond 1mm FUZZ, gears are either too loose to mesh or too tight to turn so these extremes
are omitted. In the next section, the analysis of gear train placement on additional LEGO beams is
demonstrated.

ANALYZING GEAR TRAIN PLACEMENT ON SPECIFIC LEGO BEAMS

The benefits of data-driven design have already been demonstrated, in that as the LEGO Group adds or
modifies its inventory of gears, these changes can be made to the Gears.csv file; thereafter, the software
can be rerun without the necessity to modify any code. Data-driven design further benefits the analysis of
LEGO beams and frames because these dimensions can be encoded in CSV files and referenced with the

22

BEAMFILE parameter. The following examples enumerate specific beams and their dimensions, and
subsequently include analysis reports. All analyses specify HOLE=ALL and VERBOSITY=BRIEF.

Figure 6 demonstrates the LEGO beams and frames that will be analyzed. The stud positions (i.e., X-Y
coordinates listed in the beam CSV files) correspond to the placement and directionality of the beams as
they appear in Figure 6. All fixed axle holes (which do not allow an axle to rotate) appear in red circles in
Figure 6 and are not included in the CSV files.

Figure 6. LEGO Studless L Beams and Angle Beams (with Axle Holes Circled)

This section has been redacted from this abridged version of the text, but is available at
https://communities.sas.com/t5/SAS-Communities-Library/Data-Driven-Robotics-Leveraging-SAS-
and-Python-Software-to/ta-p/641990.

CONTROL DATA INTEROPERABILITY WITH PYTHON

Each of the control tables referenced previously (including the Gears.csv file, 9x9 matrix, and various LEGO
beam files) is saved in a canonical file format—the CSV file—that promotes interoperability across systems,
applications, and programming languages. This data-driven design promotes interoperability, which
facilitates MDM principles because only one version of each control table must be maintained. Thus, both
the SAS and Python instances of software can rely on the same underlying tables, and if a control table
must be modified, both instances of software remain synchronized with these updated control data.
Moreover, both the SAS and Python programs rely identical parameters (and arguments), as previously
described.

The Python program does not generate the gears or gear train analysis reports, but rather creates a list of
lists (reports_list) that developers can further exploit for analysis or reporting purposes. Rather, the output
produced lists the total number of theoretical gear train permutations evaluated and the number of
acceptable gear trains that were discovered. The program follows:

import csv

import math

3x7 double bent angle beam

3x7 angle beam

4x6 angle beam

4x4 angle beam

3x5 L beam

2x4 L beam

https://communities.sas.com/t5/SAS-Communities-Library/Data-Driven-Robotics-Leveraging-SAS-and-Python-Software-to/ta-p/641990
https://communities.sas.com/t5/SAS-Communities-Library/Data-Driven-Robotics-Leveraging-SAS-and-Python-Software-to/ta-p/641990

23

from operator import itemgetter

path='C:/Users/Juan Carlos/cosas/SAS/SASUniversityEdition/myfolders/legos/'

gears='gears.csv'

def create_rectangle(csvfil, width, height):

 with open(csvfil, 'w', newline='') as f:

 fnames=['x','y']

 writer=csv.DictWriter(f,fieldnames=fnames)

 for y in range(0,height):

 for x in range(0,width):

 writer.writerow({'x':x*8, 'y':y*8})

create_rectangle(csvfil=path+'coords_rectangle_9x9.csv',width=9, height=9)

def eval_coords(gearfile, beamfile, fuzz, hole, verbosity, rptpath, rptfile):

 # 1) type, 2) teeth, 3) shaft, 4) partNO, 5) years,

 # 6) diam, 7) thick, 8) 180, 9) 90

 counter=0

 results_list=[]

 results_counter=0

 with open(gearfile) as gears:

 reader=csv.reader(gears)

 temp_list=list(reader)

 gear_list=[]

 gear_set=set()

 for gear in temp_list:

 if gear[0].lower().split()[0] in ('spur','double','crown','turntable'):

 if verbosity.lower() == 'verbose':

 gear_list.append(gear)

 else:

 if gear[1] not in gear_set:

 gear_set.add(gear[1])

 gear_list.append(gear)

 with open(beamfile) as holes:

 reader=csv.reader(holes)

 hole_list=list(reader)

 for hole_1st in hole_list:

 for hole_2nd in hole_list:

 for gear_1st in gear_list:

 gear1=gear_1st[1] + '-tooth'

 if verbosity.lower() == 'verbose':

 gear1=gear1 + ' ' + gear_1st[0]

 if gear_1st[2].lower() != 'axle':

 gear1=gear1 + ' (' + gear_1st[2] + ')'

 for gear_2nd in gear_list:

 gear2=gear_2nd[1] + '-tooth'

 if verbosity.lower() == 'verbose':

 gear2=gear2 + ' ' + gear_2nd[0]

 if gear_2nd[2].lower() != 'axle':

 gear2=gear2 + ' (' + gear_2nd[2] + ')'

 gear_distance=(int(gear_1st[5])/2) + (int(gear_2nd[5])/2)

 stud_distance=math.sqrt(((float(hole_2nd[0])-

 float(hole_1st[0]))**2)

 + ((float(hole_2nd[1])-

 float(hole_1st[1]))**2))

 gap_overlap=round(stud_distance-gear_distance,3)

 if not(hole_1st[0] == hole_2nd[0] \

 and hole_1st[1] == hole_2nd[1]):

 counter += 1

24

 if gap_overlap >= (0 - fuzz) and gap_overlap <= fuzz:

 if hole_1st[0] == hole_2nd[0]:

 theta=90.0

 else:

 theta=round(math.degrees(math.atan((

 float(hole_2nd[1])-float(hole_1st[1]))

 /(float(hole_2nd[0])-float(hole_1st[0])))),1)

 if gear_1st[1] == gear_2nd[1]:

 ratio='1:1'

 elif int(gear_1st[1]) < int(gear_2nd[1]):

 ratio=str(round(float(gear_2nd[1]) /

 float(gear_1st[1]),3)) + ':1'

 else:

 ratio='1:' + str(round(float(gear_1st[1])

 / float(gear_2nd[1]),3))

 results_list.append([gear1,float(hole_1st[0])/8,

 float(hole_1st[1])/8,

 gear2,float(hole_2nd[0])/8,

 float(hole_2nd[1])/8,

 theta,gap_overlap,ratio])

 results_counter+=1

 if hole.lower() == 'first':

 break

 print('Permutations: %s Gear Matches: %s' %(counter, results_counter))

A sample invocation of the program follows, which recreates the 9x9 matrix demonstrated in Table 3:

eval_coords(gearfile=path+gears,

 beamfile=path+'coords_rectangle_9x9.csv',

 fuzz=1,

 hole='FIRST',

 verbosity='BRIEF',

 rptpath=path,

 rptfile='FILE.html')

Note that as no reports are generated by the Python program, the RPTPATH and RPTFILE parameters are
functionless placeholders only. Notwithstanding, the Results_list list of lists contains the data represented
in Table 3 and can be utilized for subsequent analysis or reporting.

CONCLUSION

Gear trains are essential within robotics and other machinery and facilitate the transfer of power as well as
the increase or decrease of speed or torque. This text examined LEGO gear trains that can be constructed
virtually by meshing two LEGO gears inline within a 9x9 matrix of axle holes. A comprehensive list of all
LEGO gear trains, including gear type, number of teeth, position, angle, and gear ratio is included and
should be used as a reference by LEGO builders. Moreover, the dimensions of additional LEGO beams
are provided in separate CSV files that can be evaluated to assess where gear trains should be positioned,
and builders can evaluate other LEGO beams by creating CSV files with beam dimensions. This data-
driven software design maximizes software flexibility and configurability because only control tables and
parameters—rather than code—must be modified by end users to produce these dynamic results. Finally,
data-driven design also facilitates control data interoperability (and master data management) because
equivalent SAS and Python instances of the software can rely on the same underlying control tables and
parameters.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes

E-mail: troymartinhughes@gmail.com

25

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

LEGO® bricks, MINDSTORMS®, and Technic™ are registered trademarks of the LEGO Group, who in no
way endorses or contributed to this work.

Other brand and product names are trademarks of their respective companies.

REFERENCES

Hughes, T. M. (2019). SAS® Data-Driven Development: From Abstract Design to Dynamic Functionality.
San Diego, California: CreateSpace.

26

APPENDIX A. LEGO_GEAR_COMBINATIONS.SAS

/* print report of all gears and their attributes */

%macro gear_report(csvfile= /* path+file+ext */,

 rptpath= /* path for report */,

 rptfile= /* file+ext */);

data gear_report;

 infile "&gearfile" truncover dsd firstobs=2 delimiter=',';

 length type $50 teeth 8 hole $20 partNO $10 years $10

 diameter 8 thickness 8 deg180 $3 deg90 $3;

 input type : $50. teeth : 8. hole : $20. partNO : $10.

 years : $10. diameter : 8. thickness : 8.

 deg180 : $3. deg90 : $3.;

 label type='Gear Type' teeth='Teeth' hole='Shaft Type'

 partNO='Part No' years='Release Years'

 diameter='Diameter (mm)' thickness='Thickness (mm)'

 deg180='Inline Mesh' deg90='90-Degree Mesh';

run;

ods html path="&rptpath" file="&rptfile";

proc report data=gear_report nocenter nowindows nocompletecols

 style(report)=[foreground=black backgroundcolor=white

 background=black] style(header)=[font_size=2 background=black

 backgroundcolor=black foreground=white]

 style(column)=[backgroundcolor=very light grey];

 column obs type teeth hole partNO years diameter thickness deg180 deg90;

 define obs / computed '#';

 compute obs;

 obs_pvt+1;

 obs=obs_pvt;

 call define("_c1_",'style','style=[backgroundcolor=black

 foreground=white]');

 endcomp;

 compute partNO / char length=100;

 partNOurl='https://www.bricklink.com/v2/catalog/catalogitem.page?P='||partNo;

 call define(_col_,'URL',partNOurl);

 endcomp;

run;

ods html close;

%mend;

/* creates a rectangular matrix of stud holes (in mm)

as measured from upper-left stud center in 8mm increments

[24,8] corresponds to a hole 3 that is studs to the right

and 1 stud down from the [0,0] origin */

%macro create_rectangle(csvfile= /* path+file+ext */,

 width= /* (in studs) of simulated beam */,

 height= /* (in studs) of simulated beam */);

data _null_;

 file "&csvfile" dsd dlm=',';

 length x y 3;

 do y=0 to (&height-1)*8 by 8;

 do x=0 to (&width-1)*8 by 8;

 put x y;

 end;

 end;

run;

%mend;

%macro gear_train_report(rptpath= /* report path */,

 rptfile= /* report file name+ext */,

27

 perm= /* calculated # of permutations */);

ods html path="&rptpath" file="&rptfile";

title "&rptfile";

title2 "Permutations Tested: &perm";

proc report data=matching_coords nocenter nowindows nocompletecols

 style(report)=[foreground=black backgroundcolor=white

 background=black] style(header)=[font_size=2 background=black

 backgroundcolor=black foreground=white]

 style(column)=[backgroundcolor=very light grey];

 column obs gear1 xstud_start ystud_start gear2 xstud ystud theta gap_overlap

ratio;

 define obs / computed '#';

 define gear1 / group order=data;

 define xstud_start / display 'Gear 1 (X)';

 define ystud_start / display 'Gear 1 (Y)';

 define gear2 / display;

 define xstud / display 'Gear 2 (X)';

 define ystud / display 'Gear 2 (Y)';

 define theta / display;

 define gap_overlap / display;

 define ratio / display;

 compute obs;

 obs_pvt+1;

 obs=obs_pvt;

 call define("_c1_",'style','style=[backgroundcolor=black foreground=white]');

 endcomp;

run;

ods html close;

%mend;

/* Gears.csv has a header row and must have the following columns:

- Gear type (which includes version parenthetically)

- Number teeth (excluded for knob wheels and worm screws)

- Hole Type (e.g., axle, frictionless, pinhole, N/A)

- LEGO Part Number

- Range of part production years (YYYY-YYYY)

- Diameter (in mm)

- Thickness (in mm)

- Inline meshing (yes - if the gear works inline like spur gears)

- Perpendicular meshing (yes - if the gear can round a corner) */

%macro eval_coords(gearfile= /* gears CSV file */,

 beamfile= /* beams CSV file of axle hole coords */,

 rptpath= /* path for HTML gear train analysis */,

 rptfile= /* file name+ extension for analysis */,

 hole=FIRST /* FIRST to test one hole, or ALL for all */,

 fuzz= /* distance (mm) gear radii can differ from hypotenuse */,

 verbosity=verbose /* VERBOSE or BRIEF for gear distinction */);

* evaluate available gears;

%local nobs holes x y;

data gears;

 infile "&gearfile" truncover dsd firstobs=2 delimiter=',';

 length type $50 teeth 8 hole $20 partNO $10 years $10

 diameter 8 thickness 8 deg180 $3 deg90 $3;

 input type : $50. teeth : 8. hole : $20. partNO : $10.

 years : $10. diameter : 8. thickness : 8.

 deg180 : $3. deg90 : $3.;

 if lowcase(type)=:'spur' or lowcase(type)=:'double bevel' or

 lowcase(type)=:'turntable' or lowcase(type)=:'crown' then output;

run;

%if "%lowcase(&verbosity)"="verbose" %then %do;

 proc sort data=gears;

 by teeth type hole;

28

 run;

 %end;

%else %do;

 proc sort data=gears nodupkey;

 by teeth;

 run;

 %end;

data _null_;

 set gears end=eof;

 if eof then call symputx('nobs',strip(put(_n_,8.)),'l');

run;

* ingest beam structure that houses gears in pinholes;

data holes1 (rename=(xmm=xmm_start ymm=ymm_start xstud=xstud_start

ystud=ystud_start)) holes2; * two data sets so join can be performed;

 length xmm ymm 8;

 infile "&beamfile" truncover dsd firstobs=1 delimiter=',' end=eof;

 input xmm : 8. ymm : 8.;

 xstud=xmm/8;

 ystud=ymm/8;

 format xmm ymm xstud ystud best8.3;

 if eof then call symputx('holes',put(_n_,8.),'l');

run;

%put NOBS: &nobs;

data matching_coords (drop=counter i j pi type teeth diameter thickness deg180

deg90 hole partNO years);

 pi=constant("pi");

 if _n_=1 then do;

 length i counter 8;

 retain counter 0;

 i=0;

 do until(eof1);

 set gears end=eof1;

 i=i+1;

 array arrtype[&nobs] $50 _temporary_;

 arrtype[i]=strip(type);

 array arrteeth[&nobs] 8 _temporary_;

 arrteeth[i]=teeth;

 array arrhole[&nobs] $20 _temporary_;

 arrhole[i]=hole;

 array arrpartNO[&nobs] $10 _temporary_;

 arrpartNO[i]=partNO;

 array arryears[&nobs] $10 _temporary_;

 arryears[i]=years;

 array arrdiam[&nobs] 8 _temporary_;

 arrdiam[i]=diameter;

 array arrthick[&nobs] 8 _temporary_;

 arrthick[i]=thickness;

 array arrdeg180[&nobs] $3 _temporary_;

 arrdeg180[i]=deg180;

 array arrdeg90[&nobs] $3 _temporary_;

 arrdeg90[i]=deg90;

 end;

 end;

 length gear1 $50 gear2 $50 gear_distance stud_distance theta gap_overlap 8

 ratio $8;

 format gear1 $50. gear2 $50. gear_distance 8.3 stud_distance 8.3 theta 8.1

 xstud best8.3 ystud best8.3 xmm best8.3 ymm best8.3 gap_overlap 8.3

 ratio $8.;

 label gear1='Primary Gear' gear2='Secondary Gear'

 gear_distance='Proposed distance (mm) between gear axles'

 stud_distance='Actual distance (mm) between gear axles'

 theta='Angle (degrees) between gears'

 xstud='Studs right' ystud='Studs down' xmm='Studs right' ymm='Studs down'

29

 gap_overlap='Gap (+) or Overlap (-) in mm'

 ratio='Gear Ratio';

 set holes2 end=eof2;

%if "&hole"="first" %then %do;

 do p=1 to 1;

 %end;

%else %do;

 do p=1 to &holes;

 %end;

 set holes1 point=p;

 do i=1 to dim(arrtype); * loop through primary gears;

 gear1=put(arrteeth[i],8.)||'-tooth';

 %if "%lowcase(&verbosity)"="verbose" %then %do;

 gear1=catx(' ',gear1,arrtype[i],ifc(lowcase(arrhole[i])^=

 'axle','('||strip(arrhole[i])||')',''));

 %end;

 do j=1 to dim(arrtype); * loop through secondary gears;

 gear2=put(arrteeth[j],8.)||'-tooth';

 %if "%lowcase(&verbosity)"="verbose" %then %do;

 gear2=catx(' ',gear2,arrtype[j],ifc(lowcase(arrhole[j])^=

 'axle','('||strip(arrhole[j])||')',''));

 %end;

 gear_distance=arrdiam[i]/2 + arrdiam[j]/2; * add radii;

 stud_distance=sqrt((xmm_start-xmm)**2 + (ymm_start-ymm)**2); * hyp;

 gap_overlap=stud_distance-gear_distance;

 if not(xmm=xmm_start and ymm=ymm_start) then counter+1;

 if gap_overlap >= (0-&fuzz) and gap_overlap <= &fuzz then do;

 if xmm=xmm_start then theta=90;

 else theta=atan((ymm-ymm_start)/(xmm-xmm_start))*180/pi;

 if arrteeth[i]=arrteeth[j] then ratio='1:1';

 else if arrteeth[i]<arrteeth[j] then

 ratio=substr(strip(put(arrteeth[j]/arrteeth[i],best8.3)),1,5)

 || ':1';

 else ratio='1:' ||

 substr(strip(put(arrteeth[i]/arrteeth[j],best8.3)),1,5);

 output;

 end;

 end;

 end;

 end;

 if eof2 then do;

 call symputx('counter',counter,'g');

 put counter;

 end;

run;

%put PERMUTATIONS: &counter;

%gear_train_report(rptpath=&rptpath, rptfile=&rptfile, perm=&counter);

%mend;

