

1

Internal Use

Paper 4694-2020

Deploying Computer Vision by Combining Deep Learning Action
Sets with Open Source Technology

Jonny McElhinney and Duncan Bain, ScottishPower Energy Retail Ltd;
Haidar Altaie, SAS Institute Inc., UK

ABSTRACT
Whilst early computer vision dates back as far as 1927, it has gained momentum in the last
years due to the developments in the fields of deep learning and artificial intelligence. With
the desire for applying computer vision in ever more general and flexible contexts, the
challenge arises how we can push image processing models to production in a robust way.

This paper focuses on doing Automatic Meter Reading (AMR) using customer-submitted
photos of their meters.

The challenges in this context are two-fold. First, we need to localise the box containing the
digits, and then we must classify each digit with the correct label, 0-9. Many approaches are
available but both of these challenges can be addressed by combining the Deep Learning
action set in SAS® Visual Data Mining and Machine Learning (VDMML) with DLPy and Keras.

However, when applying these models in a real-world business context, an additional
challenge arises, which is how to deploy and keep track of these models in a consistent way.
This paper shows how SAS® and open source tools can be used together to provide a
consistent approach both to creating as well as managing and deploying models.

INTRODUCTION
Computer vision has the potential to be one of the key enabling technologies for the 21st
century. The abundance of image data that is continuously being captured by billions of high
resolution cameras has provided a diverse range of applications and research areas for
computer vision. These include facial expression recognition, medical image analysis, self-
driving cars, upscaling historical black and white footage, Optical Character Recognition
(OCR), and many more.

The prevalence and technological advancements of smart phones in recent years provides a
portable platform for deploying computer vision applications. Low power consumption and
fast processing time are key requirements for any task carried out on handheld embedded
systems. For this reason, despite their high accuracy, deep learning models are not always
the most desirable solution due to their size, computational power requirement, and slow
inference times when compared with traditional image processing techniques. However, for
a task as challenging as natural scene text classification using customer-submitted photos,
detecting and classifying regions of text correctly becomes incredibly difficult.

The quality of customer-submitted photographs varies massively from person to person,
camera to camera, and meter to meter. In the UK, gas meters are typically housed outside
of the premises and are susceptible to superficial damage over time and photographs can be
taken in many different natural light conditions. Electrical meters are often hidden inside in
dark cupboards and therefore the camera flash can be required. Many meter cases are
made of white plastic and therefore reflect a lot of light if the flash is used. There is also a
split between analog and digital counter displays. All these variables make deep learning a
necessity for a robust system that can accommodate all sorts of input images.

2

Internal Use

The deep learning approach adopted for this task is to create a pipeline of three
Convolutional Neural Networks (CNNs) to process a customer-submitted image and return a
meter reading to be entered into the customer database:

1. Detect and extract counter region from customer photo

2. Detect all digits within counter region

3. Classify all digits (from 0-9) and construct output reading

This paper proposes an end-to-end AMR system which can be deployed to mobile devices
using the ONNX (Open Neural Network Exchange) framework. ONNX allows models to be
trained with one framework, converted to ONNX, and deployed with another. ONNX
presents a realistic solution to the task of deploying computer vision models in production.
It also enables the combination of models trained using Keras and models trained within the
SAS® Viya® environment.

PROBLEM OVERVIEW AND BUSINESS VALUE
In the UK, smart meter rollout is taking longer than expected and is unlikely to reach one
hundred percent coverage in the near term. All the while, customers without smart meters
need to submit readings to guarantee accurate billing. This can be challenging for customers
with vision or mobility difficulties and for many customers can lead to disputes in cases with
long term consecutive estimates or incorrectly submitted prior readings. This is particularly
a problem in the UK as electricity meters are usually located inside the premises and so can
only be read by field staff if the customer is home.

SMART METER PENETRATION

Following the Energy Act (2008), the UK government mandated the replacement of all 47
million residential gas and electricity meters by smart meters [1]. Data from the
Department for Business, Energy & Industrial Strategy (BEIS) shows that only around 30%
of domestic meters in operation are smart as of Q3 2019 [2]. The smart meter penetration
rate, shown in Figure 1, can be broken down to 31.3% for electricity meters and 28.3% for
gas meters.

Figure 1. UK Domestic Meters Operated by Large Energy Suppliers

The number of smart meters in operation will continue to steadily rise however a large
percentage of the UK population will remain on traditional meters for the foreseeable future.
Some of the contributing factors for this are; unsuitable DCC network coverage for rural
areas, physical impracticalities of installing smart meters inside some older housing stock,
and the customers’ right to refuse a smart meter being fitted.

3

Internal Use

CUSTOMER IMPACT

Natural language processing of chat contacts shows that:

- in weekly bigram word-clouds, “meter read” is consistently in top 5 topics discussed.

- hexagrams show meter reading related web-chat accounts for almost 30% of
customer contact through that channel and that many of those chats are about the
customer being unable to submit a reading for one reason or another.

If customers fail to supply regular self reads:

- estimates will begin to deviate markedly from historic consumption profiles if
circumstances change in the premises (i.e. occupancy change, lifestyle change).

- incorrect estimates lead to inaccurate billing which drives both customer contact and
complaints.

Photographic reads can make the process simpler for all customers who don’t yet have a
smart meter. Electronically submitting reads that can be checked against the last verified
reading to ensure consistency and identify metering or reading errors.

Additionally, this process would make disputed read resolution much simpler as the
evidence of the correct read as well as other information about the meter such as the serial
number and device type would be captured in the image.

Together these use cases have the potential to remove tens of thousands of contacts per
week across all inbound channels, reducing queue times and allowing customer service
agents to concentrate on value adding tasks.

There are other benefits that can be realized in parallel with the reduction in calls in terms
of app penetration, customer satisfaction, sales opportunity and the halo effect generated
by bringing a leading-edge service to market.

Given the default size of high resolution smartphone images and latency over poor
connections, all the processing needs to be done on the device at the edge, with an opt in to
submit the photo for quality assurance and dispute resolution. This gives the customer the
power to control their data and how it is utilized.

4

Internal Use

SETTING UP THE PROJECT

SOFTWARE REQUIREMENTS

In order to support the functionalities of the computer vision action sets through SAS Deep
Learning features required for this project, we used SAS® Visual Data Mining and Machine
Learning 8.4 in SAS® Viya® 3.4. This enabled us to load data, transform data, compute
statistics, perform analytics and create output to save image data and associated metadata
at scale. Additionally, SAS Visual Data Mining and Machine Learning takes advantage of SAS
Cloud Analytic Services (CAS) to perform what are referred to as CAS actions. Each action is
configured by specifying a set of input parameters. Running a CAS action processes the
action’s parameters and data, which creates an action result. Throughout this project we
leveraged the “deepLearn” CAS action set [3]. This action set consists of several actions that
support the end-to-end preprocessing, developing and deploying deep neural network
models.

One of the key components in this process was the flexibility to use both SAS built models,
and previously created models on Keras through transfer learning. Thus, we leveraged DLPy,
SAS Deep Learning with Python [4]. DLPy is an open-source package, available in the Python
library that data scientists can download to apply SAS Deep Learning algorithms and features
available in SAS Viya to image data. DLPy is a toolset in a Python/Keras-style shell, accessed
via Jupyter Notebook, for the SAS scripting language and the SAS deep learning actions from
SAS Visual Data Mining and Machine Learning, with the look and feel of Python following the
Keras APIs, with a touch of PyTorch flavour. DLPy also includes high-level APIs for predefined
network architectures which have been implemented within this project.

Another essential package to make this possible is the SWAT (SAS Scripting Wrapper for
Analytics Transfer) package [5]. The SAS SWAT package is a Python interface to the SAS
Cloud Analytic Services (CAS) engine. Using SWAT, you can execute CAS actions, then pull
down the summarized data to further process on the client side in Python (also available for
R and Lua languages). The SWAT packages feeds into DLPy and is a required to run it.

In summary, SAS Viya® supports computer vision through 3 key interfaces:

1) SAS® Cloud Analytic Services (CAS) – The engine behind SAS® Viya® which is used
to perform the CAS actions for analytical and deep learning transformations.

2) SAS Scripting Wrapper for Analytics Transfer (SWAT) – The Wrapper that allows us to
program in a Python interface to call the CAS engine.

3) SAS Deep Learning with Python (DLPy) – The Python interface used to apply SAS
Deep Learning algorithms in a Keras-type format. The full library is available on
GitHub, with examples templates and videos.

5

Internal Use

ENVIRONMENT

As Deep learning models tend to be computationally intensive. The requirement for a GPU
(Graphical Processing Unit) is often essential for training and scoring the models, especially
when the models are complex. Unfortunately, GPUs could easily become expensive to run
for a longer period, and the requirements to switch from GPUs to CPUs (Central Processing
Unit) is vital. Illustrated in Figure 2, we were comfortable to build, test and score the model
interchangeably between CPUs and GPUs.

Figure 2. The SAS Deep Learning Platform for storing and modelling on AWS

We were able to deploy the SAS® Viya® stack, alongside the appropriate Python libraries
onto an AWS environment, with both CPUs and GPUs. Specifically running it on Amazon Elastic
Compute Cloud (Amazon EC2). The advantage was that the instance provided a web service
which was secure and resizable. The specific instance type was one of the accelerated
computing instances when using the GPUs, this specifically relevant for high performance
computing for Machine/Deep Learning. Instance p3.8xlarge, which was chosen for this
project, included 4 NVIDIA TESLA V100 GPU’s with 244 GB of memory when the model needed
heavy training and scoring [6]. Alternatively, CPUs were able to be used when the model was
being developed, and GPUs were not required in this elastic, resizable environment. Whilst
using CPUs, we were then able to leverage the CAS engine, which run on an in parallel, in-
memory server, we were still able to train and score models with a sub-sample of the data.

6

Internal Use

AUTOMATIC METER READING
The problem of classifying a meter reading from a customer-submitted photo can be
considered to be OCR for natural scene text. This area of work differs to widely studied
challenges within the scope of OCR due to the complexity and diversity of input images.

Figure 3 shows several examples of UK gas and electricity meters. The variety in meter
styles makes a traditional image processing approach very difficult without creating multiple
different pipelines to accommodate all styles of meters. Even then, there is a reliance on
customers to take high quality photographs in good lighting from similar distances and
angles to ensure reliable performance. These criteria are not conducive to a good customer
experience and therefore a more flexible solution using deep learning is the most realistic
solution.

Figure 3. UK Gas (Top) and Electricity (Bottom) Meters

DOMAIN CHALLENGES

There are many challenges for an AMR system. First is the number of unwanted textual
blocks (barcode, serial number, branding, units of measure, telephone number,
miscellaneous text) surrounding the Region of Interest (ROI), the counter. The first step in
the proposed AMR pipeline is to extract the counter from the input image for further
processing. It is vital that the whole reading is included in the extraction process so that an
error here does not propagate through the system, for example the leading digit being
omitted. A previously adopted approach is to automatically pad all counter detections by
10-20% in width and height to ensure all digits are included.

After isolating the counter within the input image, extracting the reading is not as simple as
classifying all digits within the display and submitting. Readings can contain insignificant
decimal digits that are not required. For example, the top left meter in Fig 3. displays a
reading of 09309.554 but a customer would be expected to enter 09309 when manually
submitting their reading. The proposed system must be able to discard the appropriate
digit(s) if any remain after the counter detection process. One way of addressing this is to
use historical customer readings as a reference of the number of expected significant digits,
in most cases 4 or 5.

7

Internal Use

A challenge unique to AMR within the natural scene text recognition domain is the presence
of digits in a transitional state, or ‘scrolling’ digits, on analog displays. Utility meters
increment as energy is consumed so it is possible to capture a photograph of the reading in
transition, as shown in Figure 4. A widely adopted protocol is to classify a scrolling digit as
the lower of the two digits until the next digit is entirely visible, except for 9 to 0 which
should be classified as 9 until the end of the transition.

The lower registers on the right-hand side increment more frequently as each unit of energy
is counted. This means that a misclassified digit at the end of the reading will produce an
incorrect reading that is much closer to the ground truth value compared to a misclassified
digit in one of the higher registers. Fig. 4 shows the challenge of 4/5 of the digits in
transition and so a misclassification error on one of the higher registers would lead to a
predicted reading that is much more inaccurate. For example, the ground truth reading in
Fig. 4 is 12999 but one digit being misclassified can be the difference between a predicted
reading of 12990 and 13999.

Figure 4. Scrolling Digits

The nature of customer-submitted images also presents a high degree of difficulty. Meters
can be over or under exposed by difficult lighting conditions and motion blur can render
digits unreadable. Artifacts such as dirt, condensation, or superficial damage can occlude
some or all of the digits. A minimum requirement for an image presented to an AMR system
is that a human operator would also be able to transcribe the reading. Figure 5 shows
images that do not meet this requirement due to occluding artifacts or poor lighting.

There is no standardization across meter designs and as a result many training samples of
each different meter type are necessary to guarantee a robust system. Meter displays can
appear in different positions with variations in size, font, and number of digits. Analog
displays typically contain high contrast white digits on a black background, however digital
screens can have a smaller contrast of black digits on a grey background. Digital displays
can use either 7 or 16 segment displays for each digit and some displays have backlights of
different colors.

Figure 5. Low Quality Meter Images

8

Internal Use

ALTERNATE APPROACHES

Several different approaches were researched and tested before selecting the 3-stage CNN
pipeline. This included traditional image processing in OpenCV using Canny edge detection
and contour analysis for counter detection and digit segmentation followed by template
matching for digit classification. Some correct reading predictions were obtained on clean
input images, but it was clear that a deep learning approach would be the best solution to
accommodate the variety of image quality and meter styles in customer-submitted images.

The first deep learning approach was to use off-the-shelf algorithms for the tasks of natural
scene text detection and then classification. This can be done using open source
technologies such as the Efficient and Accurate Scene Text (EAST) detector [7] to localize
areas regions of text and then classifying the text using Google’s open source Tesseract
engine. Results highlighted that whilst off-the-shelf algorithms are straight forward to
implement, the system output is not much better than the traditional image processing
approach and has its own pitfalls. For example, algorithms are trained for generic robust
reading tasks such as identifying text in public spaces on signs. The nature of text and the
environment is very different to the challenge of AMR and therefore the reading can often
be missed in the text detection stage. The inconsistency of the model is shown in Figure 6.

Figure 6. Example EAST Detections

If the reading is found and a classification is made, a lot of post-processing is required to
extract it due to the residual text and numbers printed around the counter display. Digits
are often misclassified due to the variety of fonts and the system fails when presented with
scrolling digits.

Google offers a paid-for Vision API to perform OCR among other tasks on input images. It
performs better in both text detection and classification, but it still requires images to be
high quality with very little motion blur or occluding artifacts around the reading itself. If the
digits are not visible with high contrast the reading will not be detected and it also struggles
to classify scrolling digits.

Conclusions from testing off-the-shelf OCR models for AMR aligned with the findings of Dr.
Adrian Rosebrock [8]:

“The best accuracy will come from training custom character classifiers on specific
sets of fonts that appear in actual real-world images … There is no such thing as a
true ‘off-the-shelf’ OCR system that will give you perfect results.”

9

Internal Use

METHODOLOGY
The pipeline used for our AMR system combines object detection and image classification
CNNs to locate and recognize a customer’s meter reading. Object detection represents the
task of locating the bounding box co-ordinates and category of objects in a given image.
Image classification produces a single highest confidence prediction of the contents of an
image from a pre-defined set of possible classes.

Step 1 of the AMR pipeline uses a single class object detector that is trained to detect
counter displays from a customer image. The assumption of one single counter per image is
used to extract the counter and discard the irrelevant image data from further processing.
Horizontal and vertical padding is employed to reduce the potential for an incomplete
reading to be taken through the rest of the pipeline.

Step 2 uses another single class object detector operating on the extracted counter image
to locate all digits visible on the counter display. This approach was adopted instead of a
multi-digit recognition system due to the potential variation in reading lengths. Digits are
extracted in isolation for individual classification.

Step 3 uses a 10-class image classification model trained on individual digits 0-9. Digits are
classified from left to right and combined to build the output reading which can then be
entered into the customer database. Step 3 also contains logic checks to ensure the
predicted reading is plausible. This is done using model confidence scores from all 3 steps
as well as historical reading data if available.

Figure 7 visualizes each step for processing an image with the AMR pipeline.

Figure 7. System Flow Diagram

10

Internal Use

DATASET

In order to train each of the three deep learning models, lots of labelled images of energy
meters are required. There is no dataset of ScottishPower customer images so as proof of
concept, a publicly available dataset was used. The UFPR-AMR dataset produced by Laroca
et al. [9] contains 2000 labelled images of Brazilian electricity meters and is the largest
publicly available meter dataset. The dataset is for research purposes only and will not be
used in production.

Each image has a corresponding text file containing the reading value and pixel co-ordinates
of the counter display as well as each individual digit in the format [x, y, w, h], shown in
Figure 8. The training data for each of the three models can be extracted from these labels.

Figure 8. UFPR-AMR Dataset Example

YOLO – YOU ONLY LOOK ONCE

Two of the state of the art algorithms for object detection are Mask R-CNN (Region based
CNN) [10] and YOLO [11]. Mask R-CNN is the latest algorithm in the R-CNN family and
carries out region proposal on an image before detecting the objects present within the
proposed regions. It also allows for segmentation of the object within its’ bounding box. The
R-CNN family have high accuracy but a large memory requirement and slow inference time.

YOLO processes an image in a single stage by splitting it into a grid of cells. Each cell
directly predicts a bounding box and predicted class. The result comes from all bounding
box candidates consolidated into a final prediction by a post-processing step. YOLO models
are best suited for real-time applications thanks to their fast inference time but are
considered to be slightly less accurate.

11

Internal Use

Early project work was carried out in Google Colaboratory (Colab) to make use of Google’s
free Tesla K80 GPU for training the models. Both Mask R-CNN and YOLO frameworks were
trained and tested using Keras and Tensorflow. Colab struggled to train the Mask R-CNN
model due to the high memory requirement compared to YOLO but both frameworks
showed impressive performance for our different object detection tasks. The inference time
in Colab is almost 10x faster for the YOLO models, making it the preferred framework for
the AMR pipeline.

DLPy supports both the Faster R-CNN and YOLO frameworks within SAS® Viya. It has a
Keras-like Python interface to build and train deep learning model architectures using the
SAS deep learning action set under the hood. Data can be prepared in native Python and
loaded into CAS before training. The SWAT package makes a connection to CAS from a
Jupyter kernel and lets us execute CAS actions and process results using Python.

SAS Viya supports converting many pre-trained Keras models into SAS®-compatible models
but for this project the two YOLO models for detecting the counters and digits respectively
were built from the ground up using SWAT and DLPy.

Data Preparation for CAS

After loading the UFPR-AMR dataset into SAS® Viya, the dataset must be split into training
and testing sets. The manipulation of the individual text files, shown in Fig. 8, can be
handled in Python before they are loaded into CAS as a CAS table. The images are handled
separately in an ImageTable before being combined into a single table named trainSet.

For the first model, the counter detection model, each image has exactly one labelled
counter. For the second model, the digit detection model, each image has exactly five
labelled digits. Pandas dataframes can be created to store all labelled object information for
each training image.

YOLO models take a 416x416 pixel image for input meaning that the training images must
be resized and therefore the pixel-level co-ordinates will no longer be accurate. The best
way to work around this is to convert the [x, y, w, h] format labels to YOLO format
[x-centre, y-centre, width, height] normalized by the image height/width (between 0 and
1). In normalized format, the labels are aspect ratio independent and remain accurate when
the dimensions of the image are changed.

The training labels for the counter detection model (row 3, Fig. 8) can be simply converted
to YOLO format, loaded into a Pandas dataframe, and then uploaded to a CAS table. The
table YOLO_LABELS is shown in Figure 9.

Figure 9. Pre-Processed Labels CAS Table for Counter Detection

12

Internal Use

The digit detection model labels require more manipulation. This is because the input for
this model is the output of the counter detection model, so the input images are the
cropped counter displays. This means that the training images must be cropped from the
original meter images and the labelled co-ordinates recalculated for the cropped images.
The crops were taken using row 3 of the original labels and a small amount of padding was
added to ensure the training images resembled the output of the counter detection model.
The newly calculated pixel-level labels are visualized in Figure 10.

Figure 10. Digit Detector Model Training Image

The new labels can then be converted into normalized YOLO format and stored in a Pandas
dataframe before being uploaded to a CAS table. The table contains columns _Object0_,
_Object0_x, _Object0_y, _Object0_width, and _Object0_height for all five objects
(digits) in each image. The column _filename_0 must be included in each label table
because it is the key that is also present in the tables that store the training images before
they are combined to make each trainSet.

The images for both counter/digit detection models are prepared for CAS by resizing them
to 416x416 pixels and uploading to a SAS-compatible ImageTable. Figure 11 shows the
prepared RESIZED_IMAGES table containing the _filename_0 key.

Figure 11. RESIZED_IMAGES ImageTable

13

Internal Use

In Figure 12, the SWAT dljoin action is used to combine the YOLO_LABELS table with the
RESIZED_IMAGES table to make the trainSet table used to train the object detection model.
This process is carried out twice to create a trainSet for both counter and digit detection
models.

Figure 12. Using the DLJoin Action to Combine Training Data

Tiny YOLOv2 in DLPy

The Tiny YOLO detector is used in the AMR pipeline since it is better suited for portability
than the full YOLO architecture. Tiny YOLO contains fewer convolutional layers and therefore
less parameters making it smaller in size. There is a trade-off between model size and
performance that is necessary to make the system deployable on mobile devices.

YOLO uses anchor boxes that are generated from the training data to make a prediction of
bounding boxes for each grid cell of an input image – in this case the 416x416 pixel input
image is split into a 13x13 grid of 32x32 pixels. DLPy contains a get_anchors function
which creates a list of pairs of anchors from the trainSet using K-means clustering. Anchor
boxes have particular height-width ratios that the model uses to predict target objects in an
image. The five pairs of anchors generated for this task are all quite similar due to the
consistency in shape of counters and digits in meter images.

The model architecture, or DAG (Directed Acylic Graph), can be built using DLPy’s built-in
Tiny_YoloV2 function or built manually layer-by-layer using CAS actions. The input layer
accepts an image of 416x416x3 which is then passed through many convolutional layers,
batch normalization, and pooling layers before producing an output feature map with a
shape of 13x13x30. The number of filters in the output layer for YOLO models is calculated
as follows:

𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (𝐶 + 5) ∗ 𝐴

(1)

Where C = number of output classes (1), and A = number of anchor boxes (5) to produce
30 filters for each 13x13 cell that the image is split into.

14

Internal Use

Each grid cell contains 5 potential bounding boxes (since there are 5 pairs of anchors) and
each of these bounding boxes has 6 elements. The first 4 elements are the YOLO format co-
ordinates followed by objectness (confidence value that an object exists within the bounding
box) and target class probability (either a counter for model 1, or a digit for model 2). In
total, the 6 elements describing each of the 5 bounding boxes make up the 30 elements
contained in each cell.

Training Tiny YOLOv2

Training any deep learning model from scratch takes a long time and may not produce the
best results. A common approach for object detection networks is to apply transfer learning
by using pretrained weights that are trained on large datasets such as ImageNet. These
weights are transferred into our detection networks and trained on our trainSet data. This
drastically reduces training time and tends to produce better results.

Figure 13 shows the training process for the counter detection model trained for 70 epochs.
The total training time is under 8 minutes using 4 SAS Viya GPUs. DLPy’s model.fit
function uses the dltrain action to train the detector models and over time the loss can be
seen to decrease whilst the Intersection over Union (IOU) metric can be seen gradually
increasing throughout the training process.

 …

Figure 13. Model Training Process

15

Internal Use

Testing Tiny YOLO Output and Deploying

Before the models can be strung together to build the first parts of the AMR pipeline, they
must be tested in isolation to verify that the model training has been successful. Unseen
test images and their labels can be loaded into a CAS table similar to trainSet and passed
to the model to be scored in batch using the model.predict function. This function uses the
dlscore action and provides an average IOU score for the whole test set calculated using
the ground truth labels.

After making predictions on a batch of images, the quickest way to visualize model
performance is to use DLPy’s built-in display_object_detections function. It decodes the
model output and draws the predicted bounding boxes on inference images for quick
verification. The annotated images show the predicted objects as well as the model’s
confidence score. Some results from both counter and digit detection models are shown in
Figure 14. For the final AMR system, counter predictions will be padded by 10% in width
and height to ensure that the leading and trailing digits are included for further processing.
The digit predictions are not padded before being passed to the classifier.

Figure 14. Verifying Tiny YOLO Model Outputs

16

Internal Use

After verifying that the models have been trained successfully, they can be ‘deployed’ or
saved from Jupyter into the SAS Viya environment. DLPy supports deploying the YOLO
models as either SASHDAT, ONNX, or ASTORE (Analytic Store) format using the
model.deploy function. The deployment format depends on the intention of use, SASHDAT
allows models to be loaded quickly and easily into the Jupyter environment from CAS using
the model.from_sashdat function. The model can be saved in ASTORE format if it is to be
scored using SAS Event Stream Processing® (ESP), or ONNX can be used for mobile
deployment or scoring using the ONNX runtime library.

DIGIT CLASSIFICATION AND SYSTEM OUTPUT

The final stage in the pipeline is the digit classification model. A Wide Residual Network
(ResNet) [12] that was originally used for Google’s Street View House Number (SVHN)
dataset was retrained for the AMR digit classification task. The ResNet takes the outputs
from the digit detector model and classifies 32x32 pixel digits as one of ten possible classes.
The predictions are sorted from left to right and an output reading is produced.

It was trained as a Keras model using Google Colab. Keras models can be imported into SAS
Viya as HDF5 files or as ONNX files1. DLPy provides Model.from_keras_model and
Model.from_onnx_model functions to load models into SAS Viya. Once the model has been
converted into SAS-compatible format, it can be deployed as SASHDAT, ONNX, or ASTORE
as above. This means we have built the end-to-end AMR system in the Viya environment
using YOLO models that were built and trained using CAS combined with a classification
model trained externally in Keras and integrated into a SAS-compatible format.

The system output for the UFPR-AMR prototype doesn’t need much pruning because all
images are known to have 5 digit reading outputs. After training on customer images and
productionizing, sanity checks can be put in place using expected number of digits and
checks for false-positive detections using both YOLO and ResNet confidence scores for each
digit.

END-TO-END TESTING
Once all three models are saved in SAS Viya, we can test the performance of the end-to-
end solution by loading them as SASHDAT files and testing them from the Jupyter interface.
This allows us to recreate the process visualized in Figure 7 and make predictions on
individual images from the UFPR-AMR test images. An input image is passed through each
of the three models and an output reading prediction is produced. Confidence scores from
each model are available for debugging purposes, as shown in Figure 15.

Figure 15. Digit Detection and Classification Confidences

1 Our Wide ResNet model could only be imported into Viya in ONNX format using a workaround to deal with
transpose operations.

17

Internal Use

Viya makes it possible to use CAS actions for model predictions in tandem with image
manipulations such as cropping, resizing, or annotating in Python using open source tools
such as OpenCV. This means we can create mockups of what a customer would see when
they take a photo of their own meter. An example system output is annotated on an input
image shown in Figure 15.

Once the logic is in place to handle one image end-to-end, it can be bundled into executable
python scripts to make predictions on individual images or in batch using CAS from the
Jupyter notebook environment. This allows us to simulate the system as a callable service
such as a RESTful API.

Figure 16. System Output Displayed on Input Image

18

Internal Use

DEPLOYMENT ON MOBILE APP
Once all 3 models were created, we can deploy each of the models to an ONNX format in a
simple command, using the following script:

model1.deploy(path=”/opt/sas/viya/config/data/cas/default/public/”,
 output_format=’onnx’)

model2.deploy(path=”/opt/sas/viya/config/data/cas/default/public/”,
 output_format=’onnx’)

model3.deploy(path=”/opt/sas/viya/config/data/cas/default/public/”,
 output_format=’onnx’)

As previously discussed in the paper, the ONNX format allows us to set up for model
deployment, as SAS is a member of the ONNX community, you can train a model in SAS then
export it to ONNX, to leverage the capability of easily moving models between different
frameworks for deployment, as we will demonstrate here. Similarly, you can import an ONNX
model into SAS in an identical fashion.

Converting these 3 Deep Learning Models into a singular mobile application was approached
by using the ONNX format of the models and converting them into TensorFlow using the
ONNX-TensorFlow package [13]. Using this, The TensorFlow Lite converter takes a TensorFlow
model and generates a TensorFlow Lite file (.tflite), The TensorFlow Lite file is then deployed
to a client device (in this case, the mobile app) and run locally using the TensorFlow Lite
interpreter. Following this, we will have all 3 models (Counter Detection, Digit Detection, Digit
Classification) converted into ‘.tflite’ formats, which will run via the Java API for Tensorflow
Lite.

The TensorFlow Lite converter, which converts TensorFlow models into an efficient form, and
can introduce optimizations to improve binary size and performance (Similarly to the SAS
ASTORE format). Its key advantage exists that it allows the Deep Learning models, which are
usually largely sized, to easily and smoothly run at the edge, instead of sending data back
and forth from a server. This method massively increases process performance, specifically
on servers such as mobiles, tablets or any IoT devices.

This process was taken as it’s simpler to deploy onto an Android app using Android Studio. A
similar process could’ve been taken using CORE ML to deploy the models on iOS, using
onnxruntime [14]. Although, it is worth mentioning that deployment into iOS using
TensorFlow Lite is possible.

Finally, being able to deploy such models on the edge has massive potential, specifically on a
mobile phone app. There exists a capability to intelligently analyze the meter image data
while still controlling it on the client-side device with the potential to still open up a controlled
stream of information back to the cloud to retrain the model based on appropriate new
images, and then deploy improved models in inference on the edge. This application will also
provide flexibility for the customer, as the potential exists to run offline and upload the data
when a connection exists whilst maintaining a great performing model with a quick response
time.

19

Internal Use

CONCLUSION
The AMR prototype and deployment process outlined in this paper provides a template for
taking our meter reading solution into production using the SAS Viya platform. It supports
the whole lifecycle of the project, from data preparation and model building to unit testing
and producing the models that can be combined in a single application for mobile
deployment. Viya allows developers to build and train models in Python using DLPy’s high
level of abstraction to utilize the SAS deep learning action set under the hood. It also
supports models trained externally in Python using open source tools such as Keras.

The next step in putting this system in the hands of ScottishPower customers is to acquire
and label customer-submitted images of meters. After that, the steps put in place to train
models using the UFPR-AMR dataset can be replicated with the new training data. By
productionizing this computer vision application using SAS Viya, we can greatly improve the
customer experience in meter reading submissions. This in turn should reduce customer
contacts regarding reading disputes and incorrect bills. The system is the first of its kind
using an end-to-end solution for meter reading submissions in the highly competitive UK
energy retail market.

REFERENCES
[1] Department of Energy & Climate Change, UK Government. 2010. “GB-Wide Smart

Meter Roll Out for the Domestic Sector. Impact Assessment.” Available at
https://www.ofgem.gov.uk/ofgem-publications/63551/decc-impact-assessment-
domesticpdf.

[2] Department for Business, Energy & Industrial Strategy, UK Government. 2019.
“Smart Meter Statistics in Great Britain: Quarterly Report to end September 2019.”
Available at
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/848325/2019_Q3_Smart_Meters_Statistics_Report.pdf.

[3] SAS Software. 2020. “SAS® Visual Data Mining and Machine Learning 8.5: Deep
Learning Programming Guide. Deep Learning Action Set: Syntax”
https://go.documentation.sas.com/?docsetId=casdlpg&docsetTarget=cas-
deeplearn-TblOfActions.htm&docsetVersion=8.5&locale=en

[4] SAS Software. 2020. “Python-DLPy.” https://github.com/sassoftware/python-dlpy

[5] SAS Software. 2020. “Python-SWAT.” https://github.com/sassoftware/python-swat

[6] Amazon Web Services. 2020. “Amazon EC2 Instance Types.”
https://aws.amazon.com/ec2/instance-types/

[7] Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., and Liang, J. 2017. “EAST:
an efficient and accurate scene text detector.” Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (pp. 5551-5560). Available at
http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_EAST_An_Efficient
_CVPR_2017_paper.pdf

[8] Rosebrock, A. 2017. “Using Tesseract OCR with Python.” Available at
https://www.pyimagesearch.com/2017/07/10/using-tesseract-ocr-python/

[9] Laroca, R., Barroso, V., Diniz, M. A., Gonçalves, G. R., Schwartz, W. R., Menotti, D.
2019. “Convolutional Neural Networks for Automatic Meter Reading.” Journal of
Electronic Imaging, vol. 28, pp. 1-14. Available at
https://arxiv.org/pdf/1902.09600.pdf

20

Internal Use

[10] He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. “Mask R-CNN”. Proceedings
of the IEEE international conference on computer vision (pp. 2961-2969). Available
at http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-
CNN_ICCV_2017_paper.pdf

[11] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. “You only look once:
Unified, real-time object detection.” Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 779-788). Available at
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/
Redmon_You_Only_Look_CVPR_2016_paper.pdf

[12] Zegoruyko, S. and Komodakis, N., 2016. “Wide Residual Networks”. arXiv preprint
arXiv:1605.07146. Available at https://arxiv.org/pdf/1605.07146v1.pdf

[13] Open Neural Network Exchange. 2020. ‘Tensorflow Backend for ONNX.’
https://github.com/onnx/onnx-tensorflow

[14] Open Neural Network Exchange. 2020. ‘ONNX to Core ML Converter.’
https://github.com/onnx/onnx-coreml

ACKNOWLEDGMENTS
We would like to acknowledge the continued involvement of the SAS team; Jennifer Major,
Scott Bowler, Emma McDonald, Matteo Landro, Nick Heather, Matthew Stainer and Prashant
Chamarty, thank you to Alexander Koller for setting up the environment and thank you to
Alex Ge, Anthony Kan for supporting the deployment onto the mobile app. We would also
like to acknowledge the SAS DLPy, R&D and Product Management teams for their support
throughout the development period.

This project wouldn’t have been possible without the support of the Data Lab and MBN
Solutions liaising with ScottishPower for their MSc student placement programme. Jessica
Walkenhorst, formerly of ScottishPower, was the supervisor of this project and played an
important role in its success. We would finally like to acknowledge Gail Miller, Cara Tulley,
and Monica Murphy at ScottishPower for the parts they played in creating this project.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Jonny McElhinney
ScottishPower Energy Retail Ltd
j.mcelhinney@scottishpower.com

Duncan Bain
ScottishPower Energy Retail Ltd
duncan.bain@scottishpower.com

Haidar Altaie
SAS UK & Ireland
Haidar.Altaie@SAS.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

