

1

#SASGFSAS® GLOBAL FORUM 2020

Paper 4678-2020

How to Make Your First Impressive Web Application with
Stored Processes and a Web Browser

Philip Mason, Wood Street Consultants Ltd.

ABSTRACT
Many organizations are experiencing the value of applications that can be run from a web
browser. We all know that virtually anything is possible using this technology, which will
usually consist of some HTML, CSS, and JavaScript running in the browser, with various
other software running on a server. SAS® has provided the Stored Process Web Application
that lets us connect the web browser to the SAS server, which opens up an enormous range
of potential applications. In the simplest form, we can use a stored process to prompt the
user for some info, run SAS code using that info, and return results to the web browser.
From this simple starting point, this paper shows you how to make a more powerful and
flexible web application. The emphasis is on showing those who know SAS (and nothing
about web technologies) as simply as possible the steps to build a generic web application
that they can use to start building their own web applications.

INTRODUCTION
I have been writing papers and a book around the subject of using Stored Processes in
various ways for many years now. A macro can take a SAS program and provide a way to
generalize it, automate it, make it more flexible, usable in many more situations, and so on.
In the same way a Stored Process raises the capability of any SAS program, including those
already making use of macros. It allows you SAS program to be called not only by other
SAS code but by other programming languages and to deliver output in a wide range of
ways using SAS capabilities like ODS but also extending to using many other kinds of
output.

One of the best ways to make use of SAS Stored Processes is to link your SAS system in
with a web application. We all know that web applications are hugely flexible and powerful
these days. There are frameworks and libraries widely used such as Angular, React,
Bootstrap, GIT, etc. etc. Some of these you might have heard of, and I will be covering an
example making use of some of these. Using a framework and various libraries gives you a
way to leverage the capabilities created by others so you can get something quite powerful
put together relatively quickly. Let’s see what you think.

I’ll try to keep things as simple as possible for the non-web programmer and also keep the
SAS code as simple as possible.

MAKE A PLAN
First thing we should do is work out what kind of web application we would like to create.
You don’t need any special skills to do this so I’ll grab a piece of paper and sketch out the
web application that I would like to create. Then I will start going through the process to try
to create this with application and show you how it’s done.

2

So that is what I will try to create. This application will let you:

• select data from SAS

• run SQL to produce new data

• view tables

o export a table as CSV data

o choose what columns are displayed in table

• view graphs based on selected data

o choose the x & y variables

o choose from a range of graph types

GET YOUR TOOLS READY
Now that we have a target to aim for we need to prepare to start coding. It’s important to
choose good tools to help you in your project since that can help in all kinds of ways.

PICK AN EDITOR

In looking for an editor you should look for one with some of these features:

• understands different languages and will highlight code appropriately, auto-
complete, auto-format code, identify non-matching things, etc.

• has integrated version control, preferably supporting GIT which is the most popular
version control software.

• Has a really good editor with lots of useful shortcuts, multiple programs able to be
open concurrently, etc.

• Automatically can recognize changes in code have been made and prepare it for
testing

• Can manage other tools needed in your environment, such as web server software.
e.g. can start your web server

• Support debugging of various kinds of code

• Integrated help

3

• 3rd party add-ons, which can provide lots of functionality and also indicate that it is
something good which others have bothered to write addons for

• Integration with npm or other library managers, which make it easy to choose
libraries to use and have them loaded automatically

The best tool I have found for doing development has been IntelliJIDEA which does have a
free community version as well as more fully featured paid-for versions. You could also go
with something like NotePad++ or VSCode. This tool is where we will be able to write
almost all our non-SAS code.

The web application that we create is going to be made up of various kinds of web code for
the front end as well as SAS code that will run in the back-end. The SAS code will provide
data that the front end will consume. The front-end and back-end will be connected by the
SAS Stored Process Web Application, which is a web app provided by SAS which allows us
to run Stored Processes in a SAS environment while returning output to a web environment.

For my example I am going to use IDEA.

PICK A FRAMEWORK

This is not strictly necessary as you could just start writing HTML and JavaScript to create
your own web application. However, you can gain a lot by choosing a good framework to
develop within. React is the one I am going to use, as it’s the best one I have found so far
and I have been using most recently. React is created and maintained by Facebook and it is
what Facebook uses. It’s a bit technical for the beginner to understand why react is better
than some other method but trust me and skip the explanation if you don’t understand.
Here are some of its great features:

• Virtual DOM – the Domain Object Model is manipulated in a web application to make
it function. However normal DOM manipulation is slow. The virtual DOM is basically a
way to keep a lightweight copy of the DOM and control its manipulation which results
in huge speed gains.

• One-way data flow – data flows from a parent to child, and cant flow back up which
gives greater control. Read-only properties are used for this, but a child can
communicate with a parent using callback functions.

• Components – web pages are made up of components which define a view or part of
a view. Logic is written in JavaScript and data can be passed around through the app
keeping it our of the DOM.

• JSX – an extension to JavaScript which is similar to HTML. Components are written in
JSX and it is a bit like a combination of HTML and XML. It makes producing
components and using them very easy. React uses Babel to convert JSX to
JavaScript. This means that you can use all the newest features of JavaScript in ES6
in your code, which is a great advantage. e.g.
const elem = <h1>Sales Report</h1>

• Conditional statements – these can be used in JSX and make it much easier to put
logic into your application, e.g. if I have a value for a table variable then show me a
table.

• Lifecycle methods – components in React have a particular lifecycle and you can
execute code at different points in the lifecycle using methods such as
shouldComponentUpdate, componentDidMount, componentWillUnmount,
componentDidUpdate, etc.

The main alternative to react would be Angular. React is made by Facebook but Angular is
made by Google.

4

GET A PACKAGE MANAGER

A package manager is a tool that will automate the management of packages on your
system! It will install, update, configure and remove various packages that you might want
to use in your development. It’s a cornerstone of modern web development and highly
recommended. The one that I use and recommend is NPM which stands for Node Package
Manager and comes with Node.js. It has access to the world’s largest software library with
access to over 800k packages. You can download an installer for your system and make this
available to use.1

One great feature of npm is that it manages dependencies for you. So if you want a graph
package which needs 3 other packages installed in order for it to work, then npm will install
everything in the right way so that it works for you.

Once you have npm installed you will be able to install modules using commands like this:
npm install underscore

CREATE A STARTER REACT WEB APPLICATION

npx is a tool that comes with npm when you install it. It is an npm package runner and will
download a package and then run it. We are going to use an npx command to create a
single page web application example. This is provided by react for programmers so they can
build their application from it as a starting point. We simply issue the following command to
get our React web app setup (I called it data-viewer but you can name it whatever you
like).

npx create-react-app data-viewer
Here is the first part of what I see when I run this from Terminal in IDEA. The process goes
on for some minutes until everything is installed and configured.

After it all finishes I see this.

Now I can go and issue the commands suggested to see the React web application.

1 https://nodejs.org/en/download/

5

MAKE THE BONES OF YOUR WEB APPLICATION
We can now go in and edit app.js (as it says in the web app). That is a JavaScript program
which displays the page we see. We will modify this to have some basic placeholders for
various things we want to appear in our web app.
import React from 'react';
import './App.css';

function App() {
 return (
 <div className="App">
 <h1>Select SAS Data</h1>
 <h2>Library Selector</h2>
 <h2>Table Selector</h2>
 <h1>Run some SQL</h1>
 <hr/>
 <h1>Table Viewer</h1>
 <h1>Graph Viewer</h1>
 </div>
);
}

export default App;
Now we can go through each of these placeholders and replace them with working code to
do what we want. Now we need to work out how we are going to implement each of these
things. Choosing how to do this requires some experience, advice from others or exploring
the various libraries available on npm especially looking for ones that work well with React.
Some libraries are written specifically to work nicely with React, but you can usually make
things work with it. For instance we use a jQuery library called DataTables with React
because it is so good, even though there are other simpler options.

SELECT SOME COMPONENTS
Let’s think about what we need:

• Drop down menu for selecting libraries and tables.

• Text entry area so SQL code can be typed in.

• Something that will let us view data as a table.

• Something that will let us view data as a graph.

There are many packages of code that can be used for these things and we could do a
search for something like “react drop down menu” then searching through the entries to
find something nice to use. You can see a list of great packages here -
https://github.com/brillout/awesome-react-components

Having looked for good but simple packages to do what we need I suggest using:

• Drop down menus are handled well by React Select - https://react-select.com/home
- install using this command:
npm install react-select

6

• Text areas are handled by standard HTML but we can get some advantages using
React Bootstrap - https://react-bootstrap.github.io/components/forms/ This will also
help us layout our page nicely later. Install using this command:
npm install react-bootstrap bootstrap

• Tables can be viewed using the React Data Table Component -
https://adazzle.github.io/react-data-grid/ or https://jbetancur.github.io/react-data-
table-component/?path=/story/general--kitchen-sink - install using this command:
npm install react-data-table-component styled-components

• Graphs can be viewed using React Google Charts -
https://github.com/RakanNimer/react-google-charts - install using this command:
npm i -s react-google-charts

SWITCH TO USING COMPONENTS
Now we can gradually replace our place holder HTML with some real components. We will
make some test data so we can just get each component up and running and see what they
look and work like. After that we can change our test data over to using data supplied by
SAS.

React Select
There are just a few things we need to do in order to make use of this component.

1. Add a line in the code to import the package. This loads it in ready for use. In react
things will just be loaded when needed.
import Select from "react-select";

2. Add a few lines to define some test data. For a select (drop down menu) we need
data that specifies a value and a label (there is more we could specify such as
disabled).
const sasLibraries=[
 {value:"a", label:"Lib A"},
 {value:"b", label:"Lib B"}
];
const sasTables=[
 {value:"a.tab1", label:"Table 1"},
 {value:"b.tab2", label:"Table 2"}
];

3. Replace our placeholder <h1> with a <Select> tag that uses the test data.

<Select options={sasLibraries} />
<Select options={sasTables} />

This produces this select
menu. If we make a
selection, we will be able
to pick up the value
selected in JavaScript

React Bootstrap
There are just a few things needed to make use of React bootstrap. There are lots of
components within bootstrap, so once you do the general things, you need to import
whichever bits you want to use. Its’ good to do this so you only ever send the required code
down to the client.

1. You need to include some CSS which define Style Sheets to be used, since some are
required. This can be done like this.

7

 import 'bootstrap/dist/css/bootstrap.min.css';
2. Next we need to import whichever components of React Bootstrap that we are going

to use. So I am going to use a Row and Column for laying out my page, since
bootstrap is really good at that. The following lines will import the code needed for
that.
import Row from 'react-bootstrap/Row';
import Col from 'react-bootstrap/Col';

3. Then I can wrap code with tags: <Row> <Col> </Col> </Row>. Additionally there
are properties that can be specified with the tags and I will use md=”6” on the Col
tag. Bootstrap divides the screen up into 12 parts across the screen, so 6 means to
use half the screen for that column on medium sized screens (which is the md). I
wont show all the code now, but we will see it all at the end of this section.

4. I’m also going to use React Bootstrap to put in a text area where I can enter some
SQL code to run. I need to import the Form code like this:
import Form from 'react-bootstrap/Form';

5. And then I can put the text area in using this code:
<Form.Label>Run some SQL</Form.Label>
<Form.Control as="textarea" rows="3" />

6. So now we have laid out of screen in 2 columns, we
have 2 drop down menus and an area to enter some
SQL into.

React Data Table Component
To use this we import the package, make some data and then use the component. So the
steps are:

1. Import the package.
import DataTable from 'react-data-table-component';
2. We create an array of objects to describe the columns of the table. And then we

create another array of objects, each of which is a row of data. e.g.
const columns = [
 { selector: 'id', name: 'ID' },
 { selector: 'name', name: 'Name' },
 { selector: 'amount', name: 'Amount' }];
const data = [
 {id: 0, name: 'Phil', amount: 20},
 {id: 1, name: 'Jake', amount: 40},
 {id: 2, name: 'Annie', amount: 60}];
3. Finally we use the component and pass some property values to specify the data and

column definitions.
<DataTable
 title="Table Viewer"
 columns={columns}
 data={data}
/>

This will produce a nice table for us, with many other
properties we can use to customize it more.

React Google Charts
To use React Google Charts we need to do the same as the other packages we have used
above. We import the package, prepare some data in the required form and then use it. So
the steps are:

8

1. Import the package
import { Chart } from "react-google-charts";
2. Make some data we can plot. The data for google charts can be provided in an array,

where the first row has labels to use and then rows follow with the data.
const dataForGraph = [["Age", "Weight"],
 [8, 12], [4, 5.5], [11, 14], [4, 5], [3, 3.5], [6.5, 7]];
3. Finally we use the package and data together to

make a graph.
<Chart
 chartType="BarChart"
 data={dataForGraph}
 width="80%"
 height="400px"
 legendToggle
/>

With each of these packages we have installed we are using them in the simplest way.
There are lots of features and power built into these packages. Later in the build process we
will need to use some more features, such as running SAS code when we make a selection
from a drop-down menu.

NEXT STEPS
Now that we have a basic web application with some dummy data, we need to populate the
components with proper data from SAS and then link things together, so they do
something. So the steps we will follow are:

1. Create SAS Stored Processes that take parameters and return JSON data.

2. Call the Stored Processes using JavaScript. That will enable us to take selections
made from drop down menus or SQL code entered and send to the stored processes
as parameters. The SAS code can use that data, execute and then return results in
JSON form. The JSON data returned is automatically converted into JavaScript
objects which we can make use of.

3. The data returned from stored processes will be fed to the various components to
use, such as the drop-down menus, graph and table. To make this happen we need
to cause functions to run when we make selections. This is typically handled by
handlers that will execute something when something is clicked on or typed in.

MAKE THE SAS STORED PROCESSES
WHAT STORED PROCESS ARE NEEDED?
Let’s work out what stored processes we will need. Wherever we need to get some data
from SAS to populate something in the web application, we will need a stored process to
call.

1. get_libs – will be a stored process that will simply return SAS libraries, which can
then be displayed in the library selection drop down menu.

2. get_tables – will be a stored process that will return tables that belong to a SAS
library. The user will make a selection of a library and that will be passed in as a
parameter. Table names will then be returned that can be used to populate the table
selection drop down menu.

3. get_table_data – will be a stored process that will take a library and table name as
parameters (perhaps combined as lib.table) and return the data for that table. The

9

data will be in a form that can easily be used for the table component that we are
using.

4. get_graph_data – this stored process takes a table as input and returns the data for
it. The data needs to be in a form that is easily consumable by our graph. We have
separate stored processes for the table and graph since the formats differ a bit and it
is simpler to do it this way. Though it would be possible to just use one stored
process and then to manipulate the data in JavaScript.

5. run_sql – will be a stored process that we use to run some SQL code in SAS and
return data that can be used with the graph and table. We will expect the SQL to just
be a select statement without a create table in front of it. In that way we can add a
“create table temp as” in front of the SQL so that we know what table is actually
created. Then we can return the data from that table.

WHAT SHOULD BE OUTPUT?
It is useful to work out what kind of data we will need to be returned. We can get a good
idea of that from the example code we have so far where we have made some test data to
populate the objects. You can also go and look at the documentation for each package we
are using to see what kind of data is needed by them.

In JSON arrays are surrounded by []. Elements in an array are separated by commas. e.g.
[“red”, “green”, “blue”]
Objects are surrounded by { }. Elements in an object consist of a key and a value, and you
can have as many as you want. e.g.
{name: “Phil”, age: 55}
All of the data we are writing out from our stored processes will be in JSON form. This is
really key to the way that we can best create web applications with SAS and JavaScript.
SAS gets the data and provides it to JavaScript which then makes use of it. In that way we
use both for their strengths.

1. get_libs – React-Select which makes our drop down menus basically needs a value
and label for each line that is displayed. So our stored process needs to get data
required and then write it out in JSON form that has value and label in objects that
are easch items in an array. We will use SQL to access the dictionary table for
libraries to get a list of them. Then we can use PROC JSON to write that data out in
the required format.

2. get_tables – This stored process will take a SAS library name as an input parameter.
We will use SQL to access the dictionary table for tables to get a list of them
matching the library that was specified. Then we can use PROC JSON to write that
data out in the required format for React-Select.

3. get_table_data – This will be getting data for the specified table, which is passed as
an input parameter. The data needs to be output in a form that can be used by our
table.

4. get_graph_data – Same as the previous one, but data needs to be easily usable by
graph. This data will be an array made up of arrays. The first array contains labels
for the x and y variables. Other arrays will each have an x and y value.

5. run_sql – This stored process will take some SQL code as a text string as input. That
SQL code will be run and the data returned in a form that can be shown in the table.
In fact we could include code from get_table_data to do this, or use a macro to share
the code between the stored processes. Or from a JavaScript perspective we could
just have this stored process run the SQL and then use the other stored process to
get the data.

10

There are always lots of options and also choices to be made about whether we do more
processing in SAS before sending data to JavaScript or do processing in JavaScript and
therefore not need as much to be done in SAS.

RESTRUCTURING OUR CODE
It is worth restructuring our code from what was provided by the sample React starter app
we based things on. We want to make use of one particular useful feature of react, which is
state management. For that we will convert out App function to a Component. It is quite
simply done and lets us do things like run some code when a component starts or updates.
And we can set properties for the state of a component and then have it render again when
values of those components change. We will make use of this in particular so that when a
user chooses a library we can run a stored process to get the tables in that library, put that
data into the state and then the component will be updated with them.

Some of the key bits of code that we will now have include:
class App extends React.Component {
 constructor(props) {
 // this is so we could pass parameters in - good practice for
components
 super(props);
 this.state={} ; // initialise the state or we get an error

We change from a function to a class, with the same name of App.

We add a contructor section which is run before the component is displayed, so we can get
things ready like loading data.

We add in super(props) which allows us to pass in parameters to this class. It’s good
practice to add this in even if we aren’t yet passing parameters in.

Then we initialize this.state which will hold that state of various properties in our
component. We can add the list of libraries/tables/variables/data and so on to this.state.

We also need to add in a render function, which will be called whenever we need to render
the screen again, like when something changes in the state. The render will start like this:

render() {
 return (<div className="App">
 <Row>

We will change the data being passed in to various components by using it from the state
rather than just from a variable. So it will look like this:

<Select
 options={this.state.sasLibraries}
/>

Finally, at the end we will export the class using some code like this:
export default App ;

At this point we haven’t used any SAS code, so it could all be developed on any computer
with or without SAS. The code is listed in the section at the end showing Source Code.

CODE FOR STORED PROCESSES
Now we are going to create stored processes to take parameters and return JSON data to
feed all the components we are using. You can make stored processes and copy the code in
so you can test these in your own environment. All you need to do is also define any
parameters mentioned as well as pasting the code in, and using other default settings. If
you are unsure of any of this you can look back at my previous papers from the last 10
years where I have covered this many times.

11

get_libs
We don’t need any parameters for this one, since it will just return JSON data for use with
react-select with all the libraries available. Here is the SAS code for the stored process.

proc sql;
 create table info as select distinct libname as value,
libname as label from dictionary.tables where libname ne "WORK";
quit;

proc json out=_webout nosastags pretty;
 export info;
run;

get_tables
We will specify a library and then get a JSON data for use with react-select with all the
tables for that library. So we define a parameter called libname in the stored process. Here
is the SAS code for the stored process.

proc sql;
 create table info as
 select distinct strip(libname)||'.'||memname as value, memname as label
 from dictionary.tables where libname = "&libname";
quit;

proc json out=_webout nosastags pretty;
 export info;
run;

get_variables
We will specify a parameter called memname, which will have the libname and table name
separated by a dot – in the standard SAS fully specified dataset name way. E.g
memname=sashelp.baseball . Here is the SAS code for the stored process.

proc sql;
 create table info as
 select distinct name as value, strip(label)||'
('||strip(name)||')' as label
 from dictionary.columns where strip(libname)||'.'||memname
= "&memname";
quit;

proc json out=_webout nosastags pretty;
 export info;
run;

get_table_data
We will pass in the name of the table we want as a fully specified dataset name with
libname and table name. e.g. memname=sashelp.class. Here is the SAS code for the stored
process. We will also specify a parameter called maxobs which will have a default value of
1000. This will be the maximum number of records we want to bring back as data. Having a
maximum means we cant accidentally get stuck with a very long task of perhaps bringing
millions of records back, unless we override the default value. Here is the SAS code for the
stored process.

proc sql;
 create table data as
 select *

12

 from &memname(obs=&maxobs);
 create table columns as
 select distinct name as selector, name
 from dictionary.columns where strip(libname)||'.'||memname
= "&memname";
quit;

proc json out=_webout nosastags pretty;
 write open object;
 write values "columns";
 write open array;
 export columns;
 write close;
 write values "data";
 write open array;
 export data;
 write close;
 write close;
run;

get_graph_data
For this we will specify the table name which we will call memname (e.g. sashelp.class), x-
axis variable to use which we will call xAxis (e.g. name) and y-axis variable to use which we
will call yAxis (e.g. weight). We will also have a parameter called maxobs which will be the
maximum number of records to bring back and have a default of 1000, to avoid bringing
back too many records unexpectedly. One thing to notice in this stored process is that we
wont make use of PROC JSON since we want some specially laid out JSON returned. This is
very easily achieved with a simple data step to read the data in and write JSON out.

 data _null_;
 file _webout;

 if _n_=1 then
 put '[' / "['&xAxis','&yAxis'],";
 set &memname end=_end;

 if vtype(&xaxis)="C" then
 _&xaxis=quote(strip(&xaxis));
 else _&xaxis=&xaxis;
 put '[' _&xaxis ',' &yaxis ']' @;

 if _end then
 put ']';
 else put ',';
run;

run_sql
This stored process will take some SQL code as an input parameter and return JSON with
the data produced from running the SQL. So we will make a parameter called sqlCode that
will have the SQL to run. e.g. “select * from sashelp.class”. Here is the code for the stored
process.

proc sql;
 create table data as
 %superq(sqlCode);
 create table columns as
 select distinct name as selector, name
 from dictionary.columns where libname = "WORK" & memname="INFO";

13

quit;

proc json out=_webout nosastags pretty;
 write open object;
 write values "columns";
 write open array;
 export columns;
 write close;
 write values "data";
 write open array;
 export data;
 write close;
 write close;
run;

INTEGRATE THE STORED PROCESSES INTO JAVASCRIPT
HOW TO CALL A STORED PROCESS
In JavaScript there are a few ways we can makes calls to a URL and capture the output
returned. We are going to use what I think is the best method within React. We can use a
fetch function to make an AJAX call to run the stored process via the SAS Stored Process
Web Application. That returns a Promise which indicates if it worked or not and allows us to
pick up the data returned. This is all explained at this web page -
https://JavaScript.info/fetch. The nice thing about things that use promises is that we can
make a bunch of asynchronous calls and then define what happens when each of them
finish. We can even use await to pause in execution of JavaScript and wait for an
asynchronous process to complete – effectively making it synchronous.

Here is an example of calling a URL which returns some JSON, like a SAS Stored Process
would. Here we are calling reqres.in which allows us to pass some JSON in and get a
response which returns that JSON. This is great for testing purposes and means that if you
don’t have SAS access on your computer you can still develop the web application without
live data by just passing in some test data you will get back. It is then easy to change over
to your SAS Stored Process web application later.

The other things to note with this JavaScript code is that we are using a promise chain,
which means it will do the fetch, and then if that works does the .then bit after it. Then it
that works it does the next one, and so on. You can also specify a .catch to handle any
errors if you like.
fetch("https://reqres.in/api/users",
 {
 method: "post",
 headers: {'Content-Type': 'application/json'},
 body: JSON.stringify([
 {value: "a", label: "Lib A"},
 {value: "b", label: "Lib B"}])
 })
 // convert the text JSON returned to a object
 .then(response => response.json())
 // putting data in state means that when it changes our page will re-render
 .then(data => {
 this.setState({sasLibraries: data});
 console.log("sasLibraries", data);
 });
Here is an example of a SAS Stored Process being called, and then the response being
converted to an object and that object put into the state. This is exactly what we need to do
with each fetch to a stored process.

14

fetch("http://myserver/SASStoredProcess/do?_program=/User+Folders/phil/Data+Viewer/get
_libs")
 .then(response => response.json
 .then(data => this.setState({ sasLibraries: data });
Here is another example of a SAS Stored Process being called but in this case we are also
passing a parameter to the stored process. The parameter is added to the end of the URL in
the fetch by having an ampersand followed by the parameter name and then the value. In
this example it is equivalent to doing a macro assignment in the stored process like %let
libname=SASHELP;
fetch("http://myserver/SASStoredProcess/do?_program=/User+Folders/phil/Data+Viewer/get
_libs&libname=SASHELP")
 .then(response => response.json
 .then(data => this.setState({ sasLibraries: data });

LINKING ACTIONS TO STORED PROCESS CALLS
Let’s think about how a user would use this application. They would select a library, then a
table and the table would then appear on screen. Before a graph can appear, we would
need to choose an x & y variable, so we need to prompt the user for that information. Then
a user additionally could enter some SQL into the text area which could be run to produce
data and bring it back to show on screen. We really need to add a button so that the user
can enter their SQL and then press “run” to execute it. So, we have identified several things
we need to add to the user interface – button to run the SQL and menus to select x variable
and y variable.

For the button we can use a button component from React-bootstrap. We can add a button
by importing the button component from bootstrap-select2 and using it3.

And for the x & y variables we can again use react-select by giving the component a list of
variables in the table4 from which the user can select one. Of course, you also need a bit of
code to make a menu for the x-axis variable selection, and one for the y-axis5. This will
actually need another stored process that we can call to get a list of variables in a table.

The actions needed to make all this happen would be:

• Load list of libraries when app starts by running get_libs. This can be done as the
web app starts and doesn’t need to be done again when the user makes a selection
or anything.

• When a library is picked load list of tables by running getTables. We can add an
onChange property to call a function when a change is made in the library menu. The
function will run the stored process and pass the data to the tables menu.
<Select
 options={this.state.sasLibraries}
 onChange={this.getTables}
/>

• The function getTables will run the stored process get_table_data to get us a list of
tables in the libname that was selected

2 import Button from 'react-bootstrap/Button';
3 <Button variant={"primary"} block>Run SQL</Button>
4 const sasVariables=[
 {value:"var1", label:"Variable 1"},
 {value:"var2", label:"Variable 2"}
];
5 <Select options={sasVariables} placeholder={"Choose x-axis variable"}/>
<Select options={sasVariables} placeholder={"Choose y-axis variable"}/>

15

getTables = (e) => {
 console.log("e.value",e.value);

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_table_data&libname="+
e.value)
 .then(response => response.json())
 .then(data => this.setState({sasTables: data }));
}
• When a table is picked load a list of variables that are contained in that table by

running get_table_data. That stored process will also run get the stored process to
get the data for displaying in tabular form. Again, we will use the onChange property
to run a function when the user picks something in the list of tables.

<Select
 options={this.state.sasTables}
 onChange={this.getVariables}
/>
• The function getVariables will run the stored process get_variables that will return a

list of SAS variables that can be used for selecting x and y axis variables for the
graph.

getVariables = (e) => {
 console.log("e.value",e.value);

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_variables&memname="+e
.value)
 .then(response => response.json())
 .then(data => this.setState({sasVariables: data }));
 this.getData(e) ;
 // put the selected table into state so we can use it elsewhere too
 this.setState({selectedTable: e.value});
}
• the getData function will call the stored process get_data_columns and get_data,

which are needed to provide the data for displaying a grid of data.
getData = (e) => {
 console.log("e.value",e.value);
 // get column spec of table

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_data_columns&memname=
"+e.value)
 .then(response => response.json())
 .then(data => this.setState({columns: data }));
 // get data of table

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_data&memname="+e.valu
e)
 .then(response => response.json())
 .then(data => this.setState({data: data })) ;
}
• When we have a value entered for the x & y variables, they will run a function either

called setX or setY.
<Select options={this.state.sasVariables} placeholder={"Choose x-axis variable"}
onChange={this.setX}/>
<Select options={this.state.sasVariables} placeholder={"Choose y-axis variable"}
onChange={this.setY}/>
• setX and setY will set the value of the variable selected into state, so it can be used

elsewhere. Then it will get to see if both x and y have been specified. If they have
then it will run the function getGraphData to get the data needed for the graph.

setX = (e) => {
 this.setState({xAxis: e.value});

16

 if (this.state.hasOwnProperty("yAxis")) this.getGraphData() ; // if we have x
& y specified then get graph data
}

setY = (e) => {
 this.setState({yAxis: e.value});
 if (this.state.hasOwnProperty("xAxis")) this.getGraphData() ; // if we have x
& y specified then get graph data
}
• getGraphData will run the stored process get_graph_data, passing in the table name,

x and y axis variable names. It will then get back data needed to make the graph
and assign that to a state variable.

getGraphData = () => {

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_graph_data&memname="+
 this.state.selectedTable+
 "&xAxis="+this.state.xAxis+
 "&yAxis="+this.state.yAxis)
 .then(response => response.json())
 .then(data => this.setState({dataForGraph: data })) ;
}
• When SQL has been entered and a pushbutton is pressed then we run call the

function runSql.
<Form.Label>Run some SQL</Form.Label>
<Form.Control as="textarea" rows="3"
 ref={this.sqlRef}/>
<Button variant={"primary"} block onClick={this.runSql}>Run SQL</Button>
• The function runSql run the SQL code in SAS using the run_sql stored process and

then download the column definition and data needed to display it in the table. By
updating the variables in state will make the new data display in the table on screen.

runSql = () => {
 const sqlCode=this.sqlRef.current.value;
 console.log("sqlCode",sqlCode);

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/run_sql&sqlcode="+sqlCode
)
 .then(response => response.json())
 .then(data => this.setState({
 columns: data.columns,
 data: data.data
 })) ;
}

SUMMARY TABLE
A nice way to summarize what is going on in the JavaScript program is to use a table. We
can see what JavaScript function is used, the React Component, the data used for the
component from this.state, data provided to that component, action called (by selecting
something or clicking), stored process called, data returned from the stored process and
loaded into JavaScript, the state variable set with the info we need, any additional function
also called.

function Compone
nt

state data
source

action stored
process

data returned sets state also
calls

constructor

get_libs list of libnames
available

sasLibraries

render Select sasLibraries getTables

getTables

Get_tables list of tables in a
library

sasTables

17

render Select sasTables getVariables

getData

getVariables

get_variables list of variables in
table

sasVariables

getData

Get_table_data columns spec & data columns

Form.Control this.sqlRef6

Button

runSql

runSql

run_sql columns spec & data columns,
data

DataTable columns, data

Select sasVariables setX

Select sasVariables setY

setX

getGraphDa
ta

xAxis

setY

getGraphDa
ta

yAxis

getGraphData

get_graph_data Data needed for
graph

dataForGra
ph

Chart dataForGraph

CONCLUSION
I hope that I have shown you how you can build up a web application from something quite
simple and progressively add a bit more functionality without making it too complex. Of
course you can do almost anything in JavaScript for a web application. There is a huge
number of different component libraries out there to help you too. So I suggest imagining
something great and start building it from a simple start.

I hope I have also shown that there can be quite a division in coding between SAS and web
technologies. So if you have good SAS programmers, get them to learn how to make stored
processes and deliver output in JSON form. Then they can provide great APIs to web
programmers who can develop the web side of things. You can also easily mix in things like
python and other languages in the backend which can provide JSON data to your web apps.
Or you can link in your SAS systems to existing web applications which perhaps require
feeds from SAS, since you can provide APIs that will directly feed data to those systems
when it is needed. It’s all very flexible really.

SOURCE CODE
Here is the full source code for the web application.
import React from 'react';
import './App.css';
import Select from "react-select";
import 'bootstrap/dist/css/bootstrap.min.css';
import Row from 'react-bootstrap/Row';
import Col from 'react-bootstrap/Col';
import Form from 'react-bootstrap/Form';
import Button from 'react-bootstrap/Button';
import DataTable from 'react-data-table-component';
import Chart from "react-google-charts";

class App extends React.Component {
 constructor(props) {

6 Not really a state variable, but a reference we define so that we can pick up the value entered in the text box.
Gives us a handle to use to address the data in the text box.

18

 super(props); // this is so we could pass parameters in - good practice for
components
 this.sqlRef = React.createRef();
 this.state={
 sasTables: [],
 sasVariables: [],
 } ; // initialise the state or we get an error

 // call Stored Process to get a list of libraries
 fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_libs",
)
 .then(response => response.json())
 .then(data => this.setState({ sasLibraries: data })) ;
 }

 getTables = (e) => {
 console.log("e.value",e.value);

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_table_data&libname="+e.v
alue)
 .then(response => response.json())
 .then(data => this.setState({sasTables: data }));
 }

 getVariables = (e) => {
 console.log("e.value",e.value);

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_variables&memname="+e.va
lue)
 .then(response => response.json())
 .then(data => this.setState({sasVariables: data }));
 this.getData(e) ;
 // put the selected table into state so we can use it elsewhere too
 this.setState({selectedTable: e.value});
 }

 getData = (e) => {
 console.log("e.value",e.value);
 // get column spec of table

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_data_columns&memname="+e
.value)
 .then(response => response.json())
 .then(data => this.setState({columns: data }));
 // get data of table

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_data&memname="+e.value)
 .then(response => response.json())
 .then(data => this.setState({data: data })) ;
 }

 setX = (e) => {
 this.setState({xAxis: e.value});
 if (this.state.hasOwnProperty("yAxis")) this.getGraphData() ; // if we have x
& y specified then get graph data
 }

 setY = (e) => {
 this.setState({yAxis: e.value});
 if (this.state.hasOwnProperty("xAxis")) this.getGraphData() ; // if we have x
& y specified then get graph data
 }

19

 getGraphData = () => {

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/get_graph_data&memname="+
 this.state.selectedTable+
 "&xAxis="+this.state.xAxis+
 "&yAxis="+this.state.yAxis)
 .then(response => response.json())
 .then(data => this.setState({dataForGraph: data })) ;
 }

 runSql = () => {
 const sqlCode=this.sqlRef.current.value;
 console.log("sqlCode",sqlCode);

fetch("https://myserver/SASStoredProcess/users/Phil+Mason/run_sql&sqlcode="+sqlCode)
 .then(response => response.json())
 .then(data => this.setState({
 columns: data.columns,
 data: data.data
 })) ;
 }

 render() {
 return (<div className="App">
 <Row>
 <Col md="6">
 <h1>Select SAS Data</h1>
 <Select
 options={this.state.sasLibraries}
 onChange={this.getTables}
 />
 <Select
 options={this.state.sasTables}
 onChange={this.getVariables}
 />
 </Col>
 <Col md="6">
 <Form.Label>Run some SQL</Form.Label>
 <Form.Control as="textarea" rows="3"
 ref={this.sqlRef}/>
 <Button variant={"primary"} block onClick={this.runSql}>Run
SQL</Button>
 </Col>
 </Row>
 <Row>
 <Col md={6}>
 <DataTable
 title="Table Viewer"
 columns={this.state.columns}
 data={this.state.data}
 />
 </Col>
 <Col md={6}>
 <Select options={this.state.sasVariables} placeholder={"Choose x-
axis variable"} onChange={this.setX}/>
 <Select options={this.state.sasVariables} placeholder={"Choose y-
axis variable"} onChange={this.setY}/>
 {/* When we have values for the xAxis and yAxis then the Chart
component will be called. */}
 {this.state.xAxis &&
 this.state.yAxis &&
 <Chart
 chartType="BarChart"

20

 data={this.state.dataForGraph}
 width="80%"
 height="400px"
 options={{title: "Graph Viewer"}}
 />}
 </Col>
 </Row>
 </div>)
 }
}

export default App ;

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Philip Mason
Wood Street Consultants
phil@woodstreet.org.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

