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ABSTRACT  

Rare Events and separation are both common analytical challenges encountered when 

working with a binary variable. Problems with convergence of a logistic regression model 

due to complete separation is a particular challenge. Firth’s Penalized Likelihood is a 

simplistic solution that can mitigate the bias caused by rare events in a data set. Called by 

the FIRTH option in PROC LOGISTIC, this method will even converge when there is complete 

separation in a dataset and traditional Maximum Likelihood (ML) logistic regression cannot 

be run. The implementation of the Firth method is straightforward in SAS® and has 

advantages as compared to other potential methods, including Fisher’s Exact test, 

traditional ML logistic regression, and Exact logistic regression. 

This paper briefly introduces the Firth method and discusses the advantages of this method 

compared to other methods. In addition to the introduction, multiple applications of data 

will be used to show SAS® Users when Firth’s Penalized Likelihood method might be a good 

analytic strategy. The applications also will show how to apply Firth’s method and provide 

comparisons between Firth’s method and other methods. 

INTRODUCTION  

Small sample bias due to either a small data set or a rare outcome may create challenges 

when analyzing a binary outcome variable using traditional Maximum Likelihood (ML) 

logistic regression. A phenomenon known as complete separation leads to the non-

convergence of traditional ML logistic regression estimates. Firth’s Penalized Likelihood is a 

solution used to minimize the analytical bias caused by small samples, rare events, and 

complete separation. 

First introduced by David Firth, the Firth regression originally was a solution to mitigate 

small sample bias sometimes found in traditional ML logistic regression (Firth, 1993). 

Subsequently, this method was shown as an effective tool in situations where complete 

separation within the data does not allow for traditional ML logistic regression estimates to 

converge (Heinze & Schemper, 2002). The Firth regression falls under the larger umbrellas 

of penalized likelihood regression techniques, which also include the Least Absolute 

Shrinkage and Selection Operator (LASSO) regression, the Adaptive LASSO, and the Elastic 

Net (Gunes, 2015). 

The theoretical basis behind Firth’s regression is that a penalty term is placed on the 

standard ML function used to generate parameter estimates and standard errors of a logistic 

regression model. Since the penalty term converges towards 0 as the sample size goes to 

an infinite number of observation, Firth regression is ideal for small sample bias (Firth, 

1993). 

This paper will focus on the real-world application of Firth’s Penalized Likelihood regression 

to a variety of data sets with complete separation or data sets that have a high potential for 

small sample bias. For more detailed information on the theory behind Firth regression, the 

Recommended Reading section contains the original papers on this method. 

  



2 

WHAT IS COMPLETE SEPARATION? 

Complete separation, or perfect separation, is the situation where one covariate/explanatory 

variable always or never occurs with the event of interest/outcome variable. Complete 

separation tends to happen more often when an event of interest is a rare event; however, 

complete separation also can occur with non-rare events and even in very large data sets. 

As a healthcare-related example, when examining cancer registry data for prostate cancer 

diagnoses in a population, one would expect that based on biological sex at birth, all of the 

diagnoses are in males and none are in females. Therefore, it can be said that biological sex 

at birth and a prostate cancer diagnosis are complete separable. In the homeowners’ 

insurance industry, when examining the claims for last year, there were no hurricane 

damage claims in the state of Michigan. Therefore, it can be said that living in Michigan and 

submitting an insurance claim for hurricane damage also are completely separable. Finally, 

as applied to genetic data, suppose there is a specific gene that always accompanies a 

disease; therefore, the gene and the disease are completely separable (Wang, 2014). 

While there are some non-statistical strategies that are recommended to reduce the risk of 

having complete separation in a data set (Gim & Ko, 2017), elimination of complete 

separation is not possible in many scenarios and; therefore, a statistical solution such as 

Firth regression is needed. 

Complete Separation or Multicollinearity? 

While complete separation is about the relationship between a covariate/explanatory 

variable and a binary outcome variable, multicollinearity deals with a linear relationship 

between two covariates/explanatory variables. In the situation of multicollinearity, PROC 

LOGISTIC will not print parameter estimates for covariate/explanatory variables that are 

collinear, which makes multicollinearity easy to see in SAS®. However, with complete 

separation, PROC LOGISTIC still generates a parameter estimate (with warning messages), 

even though that estimate is very large or very small and is accompanied with an extremely 

wide confidence interval (Zeng & Zeng, 2019). 

In some cases, a User may run into simultaneous problems with multicollinearity and 

complete separation. There have been additional regression models proposed to handle 

situations where both problems occur in tandem; however, this falls outside of the scope of 

this paper (Shen & Gao, 2008). 

FIRTH REGRESSION COMPARED TO OTHER METHODS 

There are several advantages that make Firth regression an attractive option compared to 

alterative modeling options, including Fisher’s Exact Test, traditional ML logistic regression, 

and Exact logistic regression. 

The most appealing advantage is that the output for Firth regression is almost identical to 

PROC LOGISTIC output for the standard ML logistic regression. The interpretation of the 

findings from Firth regression is straightforward for any User familiar with regular logistic 

regression interpretation. 

While there is potential appeal to the Exact methods, there are several disadvantages of the 

Exact methods. Exact methods are not feasible when a continuously measured 

covariate/explanatory variable is entered into a model. While categorizing a continuous 

explanatory variable is possible, it may not be the most desirable option in many 

circumstances. In addition, the confidence intervals for Exact Logistic regression are very 

wide, particularly when complete separation is present. When there is complete separation, 

Exact Confidence Intervals contain either a 0 lower limit or an infinity upper limit depending 

on the directionality of the complete separation (Heinze, 2006). Finally, Exact methods are 

very computationally intensive and require long run times. Since even large data sets 
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(millions have observations) may have complete separation, Exact methods may require 

more memory than is available from time to time. 

In prior simulation studies, Firth regression was successfully applied to a variety of data 

sets. Type I Error Rates were consistently low and convergence was almost never an issue. 

Firth regression estimates were considered “highly efficient” in the presence of rare events 

or complete separation (Heinze, 2006). 

IMPLEMETING FIRTH REGRESSION IN SAS/STAT® 

Calling Firth regression is very simple in SAS/STAT®. The method is called by adding the 

FIRTH option into the MODEL statement of PROC LOGISTIC. 

Note that there also is a FIRTH option in the MODEL statement of PROC PHREG. This paper 

will not cover any examples using PROC PHREG, but Firth Regression can also be applied in 

the context of survival/duration analysis. 

ILLUSTRATIVE EXAMPLES 

With the exception of Example #4, the data for the first three examples has been simulated 

in order to provide the best possible examples for Firth regression. 

EXAMPLE #1: FIRTH REGRESSION AND COMPLETE SEPARATION 

In this first example, a comparison of two surgical procedures (binary variable PROCEDURE) 

is being analyzed to examine if an association exists between the two procedures and 

subsequent development of a specific complication (binary outcome COMPLICATION). This is 

a retrospective pilot study on 30 cases using the new procedure and 200 cases using the old 

procedure. 

The following code calls PROC FREQ to obtain a 2 x 2 contingency table with column 

percentages and also requests a Chi-Square test, a Fisher’s Exact test, and Relative Risk 

measures (Relative Risk and Odds Ratio): 

   PROC FREQ DATA = SPARSE; 

      TABLE COMPLICATION*PROCEDURE / NOPERCENT NOROW CHISQ FISHER RELRISK; 

   RUN; 

A 2 x 2 contingency table to evaluate the association between PROCEDURE and 

COMPLICATION is shown below: 

COMPLICATION 
PROCEDURE 

New Old Total 

Yes 
0 9 9 

0.00 4.50  

No 
30 191 221 

100.00 95.50  

Total 30 200 230 

Table 1: 2 x 2 Contingency Table 

As shown above in Table 1, 9 out of 200 (4.50%) cases with the Old Procedure had a 

Complication while none of the 30 (0.00%) cases with the New Procedure had a 

Complication. Therefore, Complete Separation exists between the outcome variable 

PROCEDURE and the covariate/explanatory variable COMPLICATION. 
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First, we are going to look at the corresponding output in PROC FREQ, beginning with the 

summarized Chi-Square output as shown below in Table 2: 

Statistic DF Value Prob 

Chi-Square 1 1.4050 0.2359 

… … … … 

WARNING: 25% of the cells may have expected counts less 

than 5. Chi-Square may not be a valid test. 

Table 2: Chi-Square Test Results 

While output is printed for the Chi-Square statistic, the output comes along with a warning 

message, which states that Chi-Square may not be a valid test due to the assumption of 

adequate expected counts not being met. Since the assumption of expected counts is not 

met, a suitable alternative is the Fisher’s Exact test, which also is requested using PROC 

FREQ as shown below: 

Cell (1, 1) Frequency (F) 30 

Left-sided Pr <= F 1.0000 

Right-sided Pr >= F 0.2775 

  

Table Probability (P) 0.2775 

Two-sided Pr <= P 0.6098 

Table 3: Fisher's Exact Test Results 

The Fisher’s Exact test shows that there is not enough evidence to show a statistically 

significant association in the rate of complications between the two procedures (Two-Sided 

P = 0.6098). However, in this case, our PI/Client wants an effect size measurement to go 

along with the P-Value. Since this study is retrospective, then the Odds Ratio (OR) is a good 

measure of effect size. In PROC FREQ, Odds Ratios can be requested through the RELRISK 

option: 

Statistic Value 95% Confidence Limits 

Relative Risk (Column 2) 0.8643 0.8203 0.9106 

One or more statistics not computed – zero cell. 

Table 4: Odds Ratio and Relative Risk Results 

Due to complete separation, an Odds Ratio estimate is not possible. The RELRISK output 

comes along with a warning message that states “One or more statistics not computed – 

zero cell” and warns us of the complete separation. 

Since it is not possible to get an Odds Ratio estimate from PROC FREQ, PROC LOGISTIC is 

an alternative procedure because it also produces Odds Ratio estimates as part of its 

standard output. The following code will produce the Odds Ratio estimate for traditional 

Maximum Likelihood logistic regression: 

.. PROC LOGISTIC DATA = SPARSE; 

.. .. CLASS COMPLICATION(REF = “No”) PROCEDURE(REF = “Old”) / PARAM = GLM; 

…… … .MODEL COMPLICATION = PROCEDURE; 

.. RUN; 
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However, even before looking the Output, there are two separate warning messages printed 

in the log as shown in Output 1: 

WARNING: There is a possibility a quasi-complete separation of data points. 

The maximum likelihood estimate may not exist. 

WARNING: The LOGISTIC procedure continues in spite of the above warning. 

Results are shown based on the last maximum likelihood iteration. Validity 

of the model fit is questionable. 

Output 1: Warning Messages in Log 

In addition, the Output Window has two separate Warning messages written in it as well: 

WARNING: The maximum likelihood estimate may not exist. 

WARNING: The LOGISTIC procedure continues in spite of the above warning. 

Results are based on the last maximum likelihood iteration. Validity of the 

model fit is questionable. 

Output 2: Warning Messages in PROC LOGISTIC Output Window 

Since there are four separate warnings that valid estimates may not exist, we should not 

continue with traditional Maximum Likelihood logistic regression. Exact logistic is historically 

a viable alternative to obtain an Odds Ratio. Exact logistic regression is called by adding the 

EXACT statement into PROC LOGISTIC. Either the PARAM = GLM or PARAM = REF model 

parameterization options must be specified in the CLASS statement to Exact Logistic to run. 

The following code runs the Exact logistic regression: 

.. PROC LOGISTIC DATA = SPARSE; 

.. .. CLASS COMPLICATION(REF = “No”) PROCEDURE(REF = “Old”) / PARAM = GLM; 

... . MODEL COMPLICATION = PROCEDURE; 

 . .. EXACT PROCEDURE / ESTIMATE = ODDS; 

.. RUN; 

From the above code, the Exact Odds Ratio output is as follows in Table 5: 

Parameter  Estimate  95% Confidence Limits P-Value 

PROCEDURE New 0.518 * 0 2.641 0.2775 

Table 5: Exact Logistic Regression Results 

Note that from Table 5 above, the 95% confidence limits have a lower bound of 0, which 

implies a log odds of negative infinity. Therefore, there is no finite confidence interval using 

Exact logistic regression. Firth regression might help with this issue of no finite confidence 

interval. The Firth regression, called by the FIRTH option in the model statement, is run 

using the following code: 

.. PROC LOGISTIC DATA = SPARSE; 

.. .. CLASS COMPLICATION(REF = “No”) PROCEDURE(REF = “Old”) / PARAM = GLM; 

.. .. MODEL COMPLICATION = PROCEDURE / FIRTH; 

.. RUN; 

The Parameter Estimates output of Firth regression is as follows in Table 6: 

Parameter 
 

DF Estimate 
Standard 

Error 

Wald 

Chi-Square 
Pr > ChiSq 

Intercept  1 -3.0036 0.3332 81.2481 < 0.0001 

PROCEDURE New 1 -1.1078 1.4875 0.5547 0.4564 

PROCEDURE Old 0 0 . . . 

Table 6: Firth Regression Parameter Estimates 
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In addition, the Odds Ratio estimates are as follows: 

Effect Point Estimate 
95% Wald 

Confidence Limits 

PROCEDURE New vs Old 0.330 0.018 6.096 

Table 7: Firth Regression Odds Ratio Estimates 

As is shown above, there is finally a finite effect size estimate in addition to finite 95% 

confidence limits. Even with Firth regression, we also conclude that there is not enough 

evidence that the New Procedure has significantly higher Complications (P = 0.4564). This 

first example demonstrates that even with complete separation, Firth regression provides an 

Odds Ratio with a finite 95% confidence interval. 

EXAMPLE #2: WORKING WITH A CONTINUOUS COVARIATE 

In Example #2, the same dataset as Example #1 is used; however, we want to examine the 

effect of age (a continuous covariate/explanatory variable) on the binary outcome 

Complication. While we could categorize age into groups or just run a Two Samples 

Independent T-Test, age will remain a continuously measured variable and logistic 

regression is used for the sake of this example. The breakdown of age by those with and 

without complications is as follows: 

Complication N Mean Standard Deviation 

Yes 9 43.44 5.81 

No 221 44.61 6.12 

Table 8: Descriptive Statistics for Age 

Complication is not completely separated here, rather, it is a rare event with a 3.9% rate of 

complications (9 complications out of 230 cases). It does not appear that there is much of 

an association between age and complication by just looking at the above numbers in Table 

8. 

Since age is a continuously measured variable, Exact methods (Fisher’s Exact Test and 

Exact logistic regression) are not possible; therefore, we will compare the results of 

traditional Maximum Likelihood logistic regression and Firth regression with the following 

code for both, respectively: 

.. /* Maximum Likelihood Logistic Regression */ 

.. PROC LOGISTIC DATA = SPARSE; 

.. .. CLASS COMPLICATION(REF = “No”) / PARAM = GLM; 

.. .. MODEL COMPLICATION = AGE; 

.. RUN; 

 

.. /* Firth Regression */ 

.. PROC LOGISTIC DATA = SPARSE; 

.. .. CLASS COMPLICATION(REF = “No”) / PARAM = GLM; 

..... MODEL COMPLICATION = AGE / FIRTH; 

.. RUN; 

Some amended output to compare the parameter estimates for both Maximum Likelihood 

and Firth regression are as follows: 

Model Estimate 
Standard 

Error 

Odds 

Ratio 

95% Wald 

Confidence Limits 

Wald 

Chi-Square 
P-Value 

Logistic -0.0345 0.0615 0.966 0.856 1.090 0.3159 0.5741 

Firth -0.0246 0.0572 0.976 0.872 1.091 0.1853 0.6669 

Table 9: Comparison of Model Estimates 
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There are a few things of interest in Table 9. The standard error for the Firth regression is 

slightly smaller than the standard error for Maximum Likelihood, which leads to a slightly 

narrower 95% confidence interval for Firth regression. Also, the Odds Ratio is slightly close 

to 1 (the null hypothesis) for Firth regression than for traditional Maximum Likelihood 

logistic regression. 

EXAMPLE #3: LARGE DIFFERENCE IN TWO GROUPS WITH A RARE EVENT 

In this third example, we are using a different dataset, which has a rare event with no 

complete separation of the data. The binary categorical covariate/explanatory variable is 

GROUP while the binary outcome is EVENT. A 2 x 2 contingency table between the EVENT 

and GROUP variable is as follows: 

EVENT 
GROUP 

1 2 Total 

Yes 
4 15 19 

26.67 7.14  

No 
11 195 206 

73.33 92.86  

Total 15 210 225 

Table 10: 2 x 2 Contingency Table 

We want to compare the parameter estimates, 95% confidence intervals, and P-Values for 

Maximum Likelihood logistic regression, Exact logistic regression, and Firth regression. The 

following code shows how to run all three models: 

.. /* Maximum Likelihood Logistic Regression */ 

.. PROC LOGISTIC DATA = SPREAD; 

.. .. CLASS EVENT(REF = “No”) GROUP(REF = “2”) / PARAM = GLM; 

.. .. MODEL EVENT = GROUP; 

.. RUN; 

 

.. /* Exact Logistic Regression */ 

.. PROC LOGISTIC DATA = SPREAD; 

.. .. CLASS EVENT(REF = “No”) GROUP(REF = “2”) / PARAM = GLM; 

.. .. MODEL EVENT = GROUP; 

.. .. EXACT GROUP / ESTIMATE = ODDS; 

.. RUN; 

 

.. /* Firth Regression */ 

.. PROC LOGISTIC DATA = SPREAD; 

.. .. CLASS EVENT(REF = “No”) GROUP(REF = “2”) / PARAM = GLM; 

.. .. MODEL EVENT = GROUP / FIRTH; 

.. RUN; 

The subsequent amended output of this code is shown below in table form: 

Model Estimate 
Standard 

Error 

Odds 

Ratio 

95% Wald 

Confidence Limits 

Wald 

Chi-Square 
P-Value 

Logistic 1.5533 0.6424 4.727 1.342 16.651 5.8465 0.0156 

Exact . . 4.673 0.969 18.436 . 0.0549 

Firth 1.5963 0.6323 4.935 1.429 17.040 6.3744 0.0116 

Table 11: Comparison of Regression Estimates 

There are a few interesting findings from the above Table. While the associations for 

traditional Maximum Likelihood logistic regression and Firth regression are significant, the 

results for Exact logistic regression are not significant. As compared to traditional Maximum 

Likelihood Logistic regression, Firth regression has a slightly higher Odds Ratio, but a 
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slightly smaller standard error and thus a narrower confidence interval. This leads to a 

slightly more significant P-Value in Firth regression; however, both P-values are very 

similar. 

EXAMPLE #4: COMPARISON OF RUN TIMES 

For advanced Users of SAS®, one of the well-known limitations of Exact methods (Fisher’s 

Exact Test and Exact Logistic regression) is that the run times can be lengthy and they can 

use lots of memory. However, less is known whether Firth regression takes much more time 

and uses much more memory than traditional Maximum Likelihood logistic regression. 

In this example using real-world data, the data is being sequentially collected on over 2 

million observations. As we collect each additional 100,000 observations, we are going to 

check the CPU run times of the various models in SAS/STAT® and compare them between 

traditional Maximum Likelihood logistic regression, Exact logistic regression, and Firth 

regression.  

Figure 1 below compares the CPU times, in seconds, between traditional Maximum 

Likelihood logistic regression and Firth regression. Exact logistic regression is missing 

because Exact regression began to have memory size problems at 20,000 observations and 

this example was run on a powerful and robust system. Depending on the model 

specification, memsize can be increased; however, memsize is a finite parameter for 

everyone so eventually there will be no space left to run the Exact method. 

 

Figure 1: Comparison of Runtimes 

While Firth regression has longer run times than traditional Maximum Likelihood logistic 

regression, all run times were less than 40 seconds of CPU time even for a very large 
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dataset of 2 million observations. While there are longer run times for Firth regression, the 

difference in run times is not too large as to cause an inconvenience in running the Firth 

regression with a large dataset. 

Would Firth regression be needed with a large dataset of over 1 million observations? While 

small sample bias is not a concern with these very large datasets, it is possible that 

complete separation can still occur; therefore, Firth regression may be necessary even with 

very large datasets. 

CONCLUSION 

In conclusion, Firth regression is a good alternative to traditional Maximum Likelihood 

logistic regression when there are rare events or when complete separation exists. Firth 

regression produces finite parameter estimates even when complete separation exists. Run 

times and memory required to run Firth regression do not impose a burden to those using 

this method. Finally, Firth regression is very easy to run and interpret for anybody familiar 

with PROC LOGISTIC. 
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