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ABSTRACT 

The classic superiority test of comparison of two treatment groups seeks to show that they differ on 
a measure of their efficacy. However, when a new treatment has a similar therapeutic action to an 
existing standard treatment, there might be little difference in their efficacy. An equivalence study is 
designed to show that the difference in a measure of efficacy between the new and standard 
treatments is within a pre-specified margin of clinical indifference. In another context, the new 
treatment may offer lower cost and/or better patient compliance but might have a lower efficacy 
than the standard treatment. A non-inferiority study is designed to show that the new treatment is 
not less effective than the standard treatment to within a pre-specified margin of clinical 
indifference. In this paper, we discuss the formulation of tests of hypotheses for equivalence and 
non-inferiority studies in the context of a two-sample design for binary and survival outcomes. For a 
binary outcome, the comparison between the new and standard treatments can be assessed by the 
difference in the probability of response to treatment, the relative risk or odds ratio. For a survival 
outcome, the comparative assessment can be made using survival probabilities or where appropriate, 
the hazard ratio. SAS  POWER and FREQ procedures offer options for performing the tests of 
hypotheses, and assessment of statistical power and sample size for conducting equivalence and 
non-inferiority studies. 

INTRODUCTION 

Consider the situation where two groups, called here treatment (T) and control (C) are compared on 
a response or outcome variable whose distribution has a parameter θ . For a continuous outcome θ  
is typically the mean response, whereas when the outcome variable is binary, θ is a probability. 

Denoting by ,T Cθ θ the group-specific parameters, the objective of a superiority test is to assesses if 
,T Cθ θ are different. Formally, we test 0 : T CH θ θ= versus 1 : .T CH θ θ≠ If the alternative 1H is tenable, 

then the two groups differ in their mean responses, and if ‘bigger is better’  then either treatment is 
better than control ( )T Cθ θ> or control is better than treatment ( )T Cθ θ< .  If the null 0H cannot be 
rejected, then the groups do not differ in their mean responses. The classic two-sample t-test of 0H
versus 1H  is  based on independent normally distributed samples from the treatment and control 
populations. 

There are circumstances where we do not expect the groups to differ substantively. For example, 
when a new drug T has a similar formulation as an existing drug C,  a small difference in ,T Cθ θ
would be clinically inconsequential. An equivalence study is designed to show the difference in 

,T Cθ θ is within a pre-specified margin ∆ (>0) of clinical indifference. Formally, we test 
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0 : T C T CH orθ θ θ θ− ≤ −∆ − ≥ ∆ versus 1 : .T CH θ θ−∆ < − < ∆  If the alternative 1H is tenable, we would 
claim that there is no substantive difference in mean responses of the two drugs because the 
difference is within the margin of indifference. Hence the drugs are declared equivalent. Instead of 
the symmetric indifference zone ( , )−∆ ∆ we may specify it has ( , )L U−∆ ∆ with lower and upper 
margins. 

A third scenario arises when the new drug T is expected to be no worse than the existing standard 
drug C. For example, drug T could offer better patient compliance, lower cost and fewer side-effects 
but might have a lower efficacy than the standard drug C. Thinking of a positive difference 

0T Cθ θ− > as being favorable to T relative to C, a non-inferiority study tests 0 : T CH θ θ− ≤ −∆ versus 

1 : T CH θ θ− > −∆ where ∆ >0 is a pre-specified non-inferiority margin. If the alternative 1H is 
tenable, we would claim that T is not inferior than  C.  

The terms equivalence and non-inferiority apply to different contexts and these names  are 
synchronous with their respective alternative hypothesis 1H . However, the term equality test is used 
to describe the test of 0 : T CH θ θ= versus 1 : .T CH θ θ≠ This makes sense when referring to the null 

0H . When reference is to the alternative hypothesis 1H  the term inequality test is apropos. SAS 
reserves the term superiority for describing a test complementary to non-inferiority. The superiority test 
is cast as 0 : T CH θ θ− ≤ ∆  versus 1 : T CH θ θ− > ∆ where ∆ >0 is a pre-specified superiority margin. 
This is no different than  non-inferiority testing with the margin − ∆ replaced by ∆. 

The focus of this paper is on equivalence and non-inferiority tests comparing two groups, treatment 
to control. Analysis is based on independent samples from each group. When the outcome is binary, 

,T Cθ θ  are relabeled as ,T Cp p for the respective probabilities of a favorable outcome. Tests can be 
formulated in terms of   

(i) risk difference, T Cp p− , 

(ii) relative risk, /T Cp p , or 

(iii) odds ratio, { / (1 )}/{ /(1 )}T T C Cp p p p− − . 

When the outcome is a time-to-event, we will use survival probabilities or where appropriate, the 
hazard ratio to formulate the tests.  

This paper does not discuss an entirely analogous framework for equivalence and non-inferiority 
tests based on response means for continuous outcomes.  

 

DATA LAYOUT -BINARY OUTCOME 

From independent samples we have binomial counts in treatment (T) and Control (C ): 
~ ( , )T T TY BIN N p  and ~ ( , )C C CY BIN N p with observed counts in the layout in Table 1. The row 

totals TN , CN  are fixed by design. 
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TABLE 1: Data Layout 

Group Response 
(Column 1) 

Non-response 
(Column 2) 

Total 

Treatment (Row 1) 11n  12n  1 Tn N=


 
Control (Row 2) 21n  22n  2 Cn N=



 
Total 1n



 2n


 n N=  
  

The favorable response is in column 1. The risk difference T Cd p p= −  is  row 1 minus row 2 
estimated by sample proportions 11 1 21 2

ˆ ˆ/ , /T Cp n n p n n= =
 

. Appendix 1 provides an outline of the 
derivation of score tests for non-inferiority and equivalence. A less computationally heavy approach 
applies the Wald test. However, PROC FREQ carries out these tests. 

 

Non-inferiority Tests based on the Risk Difference 

The test is formulated as 0 : T CH p p− ≤ −∆  versus 1 : T CH p p− > −∆  with a pre-specified positive 
value for the margin ∆.  Figure 1 shows where the test treatment T is better 0T Cd p p≡ − > ; where 
the standard treatment  C is better 0d < , and the indifference zone 0d−∆ ≤ ≤ .  

  

FIGURE 1: Regions of the Risk Difference 

 

Standard C  is better, d <0  −∆  0  Test T  is better, d >0 

0d−∆ ≤ ≤  

 

 

Zone of indifference 

The test statistic is  

 (0)   1/2

1 2

ˆ ˆ

( )( ) )
T Cp p

Z
p q pq

n n

− + ∆
=
 − ∆ + ∆

+ 
  

 

 

 

where ( ,1)p∈ ∆ is the feasible solution to the cubic equation 3 2 0Ap Bp Cp D+ + + = , 

(2) 1 21 , /A n nθ θ= + =
 

, ˆ ˆ1 ( 2) T CB p pθ θ θ= − + + ∆ + + +   , 

( )2 ˆ ˆ ˆ1 2 C T CC p p pθ θ = ∆ + ∆ + + + +  , ˆ(1 ) CD p= −∆ + ∆ . 
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The solution can be obtained from the POLYROOT function in PROC IML. 

An α-level test rejects 0H if the observed 1Z z α−>  where 1z α− is the 100(1− α) percentile of the 
standard normal distribution.  If z ∗ denotes the computed value of Z from the data, the p-value of 
the test is [ ]P Z z ∗> . The non-inferiority test is carried out in PROC FREQ as demonstrated  in the 
following example. 

 

EXAMPLE 1 

Cornely et al, (2012) report on a multicenter double-blind randomized trial comparing fidaxomicin 
as alternative to vancomycin for treatment of Clostridium difficile infection. The two drugs have similar 
efficacy and safety. Patients were 16 years or older, with acute toxin-positive infection. Clinical cure, 
a binary outcome was defined as resolution of diarrhea and no further need for treatment. The pre-
specified margin is 10% to assess non-inferiority of fidaxomicin (Group =1) compared to 
vancomycin (Group =2). In the per-protocol analysis, 198 of 216 patients treated with fidaxomicin 
achieved clinical cure by  end of the monitoring of the study, compared to  213 of 235 patients 
treated with vancomycin.  The input  data set is created by 

data Mycin; 
length group $5.; 
input Group response count total@; 
 do i=1 to 2; 
if i=1 then output; 
if i=2 then do; response=0; count=total-count; 
output; 
 end; 
 end; 
datalines; 
FIDAX 1 198 216 
VANCO 1 213 235 
; 
run; 

proc format; 
value response 1='yes' 0='no'; 
run; 

The entire non-inferiority analysis is called by 

proc freq data=mycin order=data; 
tables group*response/riskdiff(noninf margin=.1 method=fm); 
weight count; 
format response response.; 
run; 
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If is important to specify the MARGIN= and METHOD= options, because the defaults are the 
value ∆=0.2, and the Wald method, described later in Table 3.  First, we must be assured that the 
2×2 table has the test treatment (fidaxomicin) and favorable response (=1) in the north-west cell. 

 

Table of group by response 
group response 

yes no Total 
FIDAX 198 

91.67 
 

18 
8.33 

 

216 
  

 

VANCO 213 
90.64 

 

22 
9.36 

 

235 
  

 

Total 411 
 

40 
 

451 
 

 

The RISKDIFF options request a non-inferiority test, margin ∆=.10 and the Farrington-Manning 
(1990) score test (method=fm).These options carry out the computations in equations (1), (2) 
and implements the test. 

 

TABLE 2: Non-inferiority Analysis based on the Risk Difference 

H0: P1 – P2 <= –Margin    Ha: P1 – P2 > –Margin 
Margin = 0.1    Score (Farrington–Manning) Method 

Risk Difference ASE (F–M) Z Pr > Z Noninferiority  
Limit 

90% Confidence 
Limits 

0.0103 0.0296 3.7207 <.0001 –0.1000 –0.0385 0.0590 
 

The test is significant indicating that we may declare non-inferiority. A test-based two-sided 90% 
confidence interval (CI), (–0.0385, 0.0590) is calculated as ( )0.95 0.950.013 0.0296,0.013 0.0296z z− × + × . 
The CI  lies within the non-inferiority limit (–0.10, 1). 

The Farrington-Manning approach is the preferred choice for non-inferiority tests. Other options 
are available in PROC FREQ which affect the construction of the test statistic, notably how the 
variance ˆ ˆ( )T CVar p p− is estimated. The default is the Wald test statistic. A continuity correction c 
may be requested that improves the large-sample approximation to the normal distribution of the 

test statistic All test-statistics are constructed as 
ˆ ˆ

ˆ ˆ( )
T C

T C

p p c
Z

Var p p
− + ∆ −

=
−

 . 

A summary of these options is shown in Table 3. They are placed in RISKDIFF( options). By default, 
each analysis produces a two-sided 90% confidence interval with lower limit 

.95
ˆ ˆ ˆ ˆ( )T C T Cp p c z Var p p− − − × −  and upper limit .95

ˆ ˆ ˆ ˆ( )T C T Cp p c z Var p p− + + × − . 

Frequency 
Row 
Percent 



Paper 4641-2020 

6 
 

 

 TABLE 3: Methods for Non-inferiority Tests 

RISKDIFF (options) ˆ ˆ( )T CVar p p−   Correction, c 
noninf margin= 
method=wald 
var=sample 1 2

ˆˆ ˆˆ C CT T p qp q
n n

+
 

 
 none 

noninf margin= 
method=wald 
var=sample correct 1 2

ˆˆ ˆˆ C CT T p qp q
n n

+
 

 
 

1 2

1 1
n n

 
+ 

 
½

 

 

noninf margin= 
method=wald 
var=null  

1 2

( )( )p q pq
n n

− ∆ + ∆
+

 

 11 21 1n n np
n

+ + ∆
=   

none 

noninf margin= 
method=wald 
var=null correct 1 2

( )( )p q pq
n n

− ∆ + ∆
+

 

 11 21 1n n np
n

+ + ∆
=   

1 2

1 1
n n

 
+ 

 
½

 

 

noninf margin= 
method=HA correct 

1 2

ˆˆ ˆˆ
1 1

C CT T p qp q
n n

+
− −

 

 
 

1 2min( , )n n
½

 

 

HA=Hauck-Anderson (1986); ˆ ˆˆ ˆ1 , 1T T C Cq p q p= − = − ; 1q p= −  

 

Equivalence Tests based on Risk Difference 

The test is formulated as 0 :| |T CH p p− ≥ ∆ versus the alternative 1 :| |T CH p p− < ∆  with a pre-specified  
margin ∆.  Rewrite as two one-sided tests (TOST): 0 :a T CH p p− ≤ −∆ versus 1 :a T CH p p− > −∆ and 

0 :b T CH p p− ≥ ∆ versus 1 :b T CH p p− < ∆ . Rejection of  both 0aH and 0bH  would mean that the risk 
difference lies in the zone of equivalence, that is, T Cp p−∆ < − < ∆ as in Figure 2. 

  

FIGURE 2: Zone of equivalence 

 
 −∆  0 ∆ 
 
 

T Cp p−∆ < − < ∆  
 

 

Zone of equivalence 

The first component 0aH versus 1aH is the previously discussed non-inferiority test. Apply the test 
statistic Z in equation  (1) with equation (2). We reject 0aH  if 1Z z α−> . Note that it is α, not ½α. 
For the second  component 0bH versus 1bH the test statistic is Z ′ defined by equations (3) and (4). 
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(3)  1/2

1 2

ˆ ˆ

( )( ) )
T Cp p

Z
p q pq

n n

− − ∆′ =
 + ∆ − ∆

+ 
  

 

 

 

where (0,1 )p∈ − ∆  is the feasible solution to the cubic equation 3 2 0Ap Bp Cp D+ + + =  

(4) 1 21 , /A n nθ θ= + =
 

, ˆ ˆ1 ( 2) T CB p pθ θ θ= − + − ∆ + + +  

( )2 ˆ ˆ ˆ1 2 C T CC p p pθ θ = ∆ − ∆ + + + +  , ˆ(1 ) CD p= ∆ − ∆  

Reject 0bH  if observed 1Z z α−′ < − . 

The overall p-value of the equivalence test is [ , ]P Z z Z z′ ′> < where ,z z ′ are the observed values of 
the test statistics. But ( )[ , ] min [ ], [ ]P Z z Z z P Z z P Z z′ ′ ′ ′> < ≤ > < . The overall p-value is taken as the 
larger of the two p-values [ ], [ ]P Z z P Z z′ ′> < . 

This Farrington-Manning score test is implemented in PROC FREQ with the METHOD=FM 
option. Because there are two standard errors computed in the denominators of Z and Z ′ , a test-
based 100(1−2α)% confidence interval for the risk difference (default α=0.05) applies the larger of 
these two standard errors. Evidence of equivalence is declared if the confidence interval lies wholly 
within the equivalence zone (−∆, ∆). 

Returning to Example 1, we will assess the equivalence of fidaxomicin and vancomycin. The margin 
is set at ∆=0.10. The entire equivalence analysis is called by  
 
proc freq data=mycin order=data; 
tables group*response/riskdiff(equivalence margin=.1 method=fm); 
weight count; 
format response response.; 
run; 

 

TABLE 4: Equivalence Analysis based on the Risk Difference 

H0: P1 – P2 <= Lower Margin or >= Upper Margin 
Ha: Lower Margin < P1 – P2 < Upper Margin 

Lower Margin = –0.1   Upper Margin = 0.1   Score (Farrington–Manning) Method 
Risk Difference ASE (F–M) Equivalence Limits 90% Confidence Limits 

0.0103 0.0296 –0.1000 0.1000 –0.0385 0.0590 
 

Two One-Sided Tests (TOST) 
Test Z P-Value 
Lower Margin 3.7207 Pr > Z <.0001 
Upper Margin –3.1614 Pr < Z 0.0008 
Overall     0.0008 
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The Lower Margin Test is 0 :a T CH p p− ≤ −∆ versus 1 :a T CH p p− > −∆ . The Upper Margin Test is 

0 :b T CH p p− ≥ ∆ versus 1 :b T CH p p− < ∆ . The ASE(F-M) refers to the larger of the two standard 
errors. A separate calculation shows a standard error SE=0.0284  (the denominator of Z ′ ), whereas 
SE=0.0296 (the denominator of Z).  The p-value of the test is the larger of the two p-values—here 0.0008. 
Because the 90% CI (–0.0385, 0.0590) lies wholly within the equivalence zone (–0.10, 0.10), we would 
declare equivalence.  

 

General Comments 

Other methods for equivalence testing use similar test statistics as in Table 3,  but we must carry out 
two one-sided tests (TOST) of significance (Schuirmann, 1987). Also, note that for an α-level test  
the critical values are 1z α−± , that is,  α is not halved. Terms such as upper right-sided test and lower-
left sided test, borrow from the direction of the alternative hypotheses. 

An asymmetric equivalence zone, (∆L, ∆U)  is specified as MARGIN=(∆L, ∆U) where ∆L<∆U . It is 
good practice to state the margin because the default  ∆L= –0.2, ∆U= +0.2 may not apply universally 
to all applications. 

 

Non-inferiority Tests based on the Relative Risk 

Using the  relative risk /T Cp p ρ= ,  the non-inferiority test is   0 : 1H ρ ≤ − ∆ versus 1 : 1H ρ > − ∆  
where 0<∆<1. PROC FREQ  uses 0 1ρ = − ∆ as the MARGIN. By default, MARGIN=0.8 . For the 
favorable response, comparing  test treatment to control (standard), we should set 0ρ high. The 
Farrington-Manning score test statistic is 

 (5) 0

2
0

1 2

ˆ ˆ

(1 )(1 )
T C

C CT T

p p
Z

p pp p
n n

ρ

ρ

−
=
 −−

+ 
 

½

 

  

  

where 0T Cp pρ=  and Cp  is the solution to the quadratic equation 2 0Ap Bp C+ + = . The feasible 

solution is 
2 4

2C
B B ACp

A
− − −

= , where  

(6) 0 1 2(1 ), /A n nρ θ θ= + =
 

, 0
ˆ ˆ1 ( )T CB p pθ ρ θ= − + + +   , ˆ ˆ

T CC p pθ= + . 

We reject 0 0:H ρ ρ≤ if 1Z z α−> , for an α-level test. The p-value is [ ]P Z z ∗>  where z ∗ is the 
computed value of Z from the data.  

A test-based 100(1−α)% confidence interval is generated as the region 2
0 0 1{ : ( ) }Q c αρ ρ χ −<  with 

2
0( )Q Zρ = as a function of 0ρ and /( 1)c n n= −  a bias reduction factor that can be optionally 

suppressed. The default is α=0.10. 
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EXAMPLE 2 

For illustration we use the study described in Example 1, but data from the modified intent-to-treat 
(ITT) analysis comparing fidaxomicin as alternative to vancomycin for treatment of Clostridium 
difficile infection. Here 221/252 patients treated with fidaxomicin achieved clinical cure by the end of 
the monitoring of the study, compared to 223/257 patients treated with vancomycin. Create a data 
set (mycin_mITT)to generate the 2×2 table: 

 

Frequency 
Row Pct 

 

 

Table of group by response 
group response 

yes no Total 
FIDAX 221 

87.70 
 

31 
12.30 

 

252 
  

 

VANCO 223 
86.77 

 

34 
13.23 

 

257 
  

 

Total 444 
 

65 
 

509 
 

 

 

With the relative risk as metric, and a margin=0.9 (= 0ρ ) the non-inferiority analysis is called by 

proc freq data=mycin_mITT order=data; 
tables group*response/relrisk(noninf margin=.9 method=fm); 
weight count; 
format response response.; 
run; 

TABLE 5: Noninferiority Analysis based on Relative Risk 

H0: P1 / P2 <= Margin    Ha: P1 / P2 > Margin 
Margin = 0.9    Score (Farrington-Manning) Method 

Relative Risk ASE (F-M) Z Pr > Z Noninferiority 
 Limit 

90% Confidence 
Limits 

1.0107 0.0298 3.2236 0.0006 0.9000 0.9550 1.0699 
 

The estimated relative risk is 1.011. The score test is significant, p-value<.001; we declare non-
inferiority of fidaxomicin. The test-based 90% CI (0.955, 1.07) is contained in (0.90, +∞). To 
suppress the bias reduction factor apply 

tables group*response/relrisk(CL=score(correct=no)) alpha=.10; 

An option to perform the likelihood ratio test is available ( method=LR) as well as the standard 
Wald test ( method=WALD). The latter test statistic is 0

ˆ ˆ[log( / ) log( )]/W T C WZ p p vρ= −  where 
1 1 1 1

11 21 1 2Wv n n n n− − − −= + − −
 

 estimates the variance of ˆ ˆlog( / )T Cp p .The results from either method do not 
change our conclusions. 
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Equivalence Tests based on Relative Risk 

We carry out two one-sided tests of significance (TOST) for the pair of hypotheses, 

0 0:aH ρ ρ≤ versus 1 0:aH ρ ρ> and 0 1:bH ρ ρ≥ versus 1 1:bH ρ ρ< . Rejection of  both 0aH and 0bH  
would mean that the relative risk lies in the zone of equivalence, that is, 0 1ρ ρ ρ< < . In practice pre-
specified equivalence limits would satisfy 0 11ρ ρ< < . The defaults are 0 10.8, 1.25ρ ρ= = . 

The syntax below carries out the score test, with results shown in Table 6.  

proc freq data=mycin_mITT order=data; 
tables group*response/relrisk(equivalence margin=(.90, 1.10) 
     method=FM); 
weight count; 
format response response.; 
run; 

 

TABLE 6: Equivalence Analysis based on the Relative Risk 

H0: P1 / P2 <= Lower Margin or >= Upper Margin 
Ha: Lower Margin < P1 / P2 < Upper Margin 

Lower Margin = 0.9   Upper Margin = 1.1   Score (Farrington-Manning) Method 
Relative Risk Equivalence Limits 90% Confidence Limits 

1.0107 0.9000 1.1000 0.9550 1.0699 
 

Two One-Sided Tests (TOST) 
Test ASE (F-M) Z P-Value 
Lower Margin 0.0298 3.2236 Pr > Z 0.0006 
Upper Margin 0.0323 −2.4024 Pr < Z 0.0081 
Overall       0.0081 

 

Much of the analysis is already shown in Table 5 as a part of the non-inferiority analysis. The overall 
p-value for the equivalence test is the larger of the two p-values for the lower margin test (right-hand 
side), and upper margin test (left-hand side).  

 

Non-inferiority Tests based on the Odds Ratio 

In terms of the odds ratio (OR),  /
/

T T

C C

p q
p q

ω = , the non-inferiority test  is 0 0:H ω ω≤ versus 

1 0:H ω ω> where 0ω <1 is specified.  Here 1T Tq p= − , 1C Cq p= − . The score test is derived in the 
usual way and leads to the test statistic  
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(7) 1/2

1 2

ˆˆ ( )( )

1 1

C CT T

T T C C

T T C C

p pp p
p q p q

Z

n p q n p q

 −−
− 

 =
 

+ 
  

. 

To be operational, replace Cp by an estimator Cp  and take 0

01 ( 1)
C

T
C

p
p

p
ω
ω

=
+ −







, where 

2 4
2C

B B ACp
A

− + −
= is the feasible solution to the quadratic equation 2 0Ap Bp C+ + = , and 

(8) 2 0( 1)A n ω= −


, 1 0 2 0 11 21( 1)( )B n n n nω ω= + − − +
 

, 11 21( )C n n= − + . 

For an α-level test we reject 0 0:H ω ω≤ if the observed 1Z z α−> . The p-value of the test is [ ]P Z z ∗>

where z ∗ is the observed value of the test statistic.  

The formulation with the odds ratio is like the previous discussion using the relative risk. Equations 
(7) and (8) replace equations (5) and (6). However, PROC FREQ does not have an option for 
testing using the odds ratio unlike the RELRISK, but confidence intervals for the OR by the score 
method can be obtained from 

tables group*response/oddsratio(CL=score); 

This constructs a two-sided 100(1−α)% confidence interval for the odds ratio ω  as the region 
2

0 0 1{ : ( ) }Q c αω ω χ −<  with 2
0( )Q Zω = as a function of 0ω and /( 1)c n n= −  a bias reduction factor 

that can be optionally suppressed by  oddsratio(CL=score(correct=no)); 

An equivalence test is formulated as TOST: 0 0:aH ω ω≤ versus 1 0:aH ω ω> and 0 1:bH ω ω≥ versus 

1 1:bH ω ω< where the margins satisfy 0 11ω ω< < .  

 

EXAMPLE 3 

Wellek (2010, Table 6.26 page 191) summarizes results from a randomized trial of a calcium channel 
blocker verapamil and a classic diuretic drug in patients with mild to moderate hypertension 
(Holzgreve et al, 1989). Outcomes were achieving a target diastolic blood pressure response (<90 
mm Hg) at different time points in the course of the trial. The data used here comprise the response 
to any trial medication at 8 weeks, with patients stratified by previous treatment with anti-
hypertensive drugs. In 225 patients who had previous use of anti-hypertensive drugs (Group POS), 
the favorable response was achieved in 108 patients, compared to 63 of 119 patients who had no 
previous use (Group NEG). Our objective is to assess equivalence of the two groups with response 
to treatment. From the cell counts in the VERDI data set the estimated OR  is 0.8205. 
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Frequency 
Row Pct 

 

 

Table of Group by response 
Group response 

yes no Total 
POS  108 

48.00 
 

117 
52.00 

 

225 
  

 

NEG  63 
52.94 

 

56 
47.06 

 

119 
  

 

Total 171 
 

173 
 

344 
 

 

 

Carrying out an equivalence test with margins 0 0.6667ω = and 1 1.500ω = is accomplished by 
performing the calculations for (7) and (8) in a data step, for 0ω  (upper test) and for 1ω (lower test). 
The overall p-value (larger of the two p-values) is 0.18. We cannot reject the null hypothesis and 
declare equivalence. A 90% confidence interval for the OR with the bias reduction factor applied, is 
(0.565, 1.192). This interval is not contained within ( 0ω , 1ω ). 

 

Conditional test based on the odds ratio 

Return to the data layout in Table 1. The row totals are fixed by design: in theory we have binomial 
response counts in treatment (T ) and control (C ): ~ ( , )T T TY BIN N p  and ~ ( , )C C CY BIN N p .  

From elementary probability the  conditional distribution of TY given 1T CY Y Y n= + =


is 

(9) 11 1[ | ]TP Y n Y n= = =


11

11 1 11

1

T C n

T C u
u

N N
n n n

N N
u n u

ω

ω

  
  −  

  
  −  

∑




  

on the domain 1 11 1max(0, ) min( , )C Tn N n N n− ≤ ≤
 

 where the summation in the denominator is over 
this domain. The discrete distribution is called Fisher’s Univariate Noncentral Hypergeometric 
Distribution, or Conditional (Extended) Hypergeometric Distribution.  It is the engine that drives 
calculations of Fisher’s exact test of homogeneity 0 : 1H ω =  in PROC FREQ. SAS function 
PDF(“HYPER”, 11 1, , , ,Tn N N n ω



) and the corresponding CDF and QUANTILE functions can be 
applied to carry out an equivalence test. As with all multi-argument SAS functions, the order of the 
arguments is critically important. 

 

EXAMPLE 3 (CONTINUED) 

Use the margins 0 0.6667ω = and 1 1.500ω =  with observed 11n =108, 1n


=171. The lower test 

0 1 1 1: :H vs Hω ω ω ω≥ < has p-value 11 1 1[ | , ]TP Y n Y n ω≤ =


 <.0006 and the upper test 

0 0 1 0: :H vs Hω ω ω ω≤ > has p-value 11 1 0[ | , ]TP Y n Y n ω≥ =


 =0.2099. 
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Because the discrete conditional hypergeometric distribution is used, in general we cannot guarantee 
an exact α-level significance test. Wellek (2010) has an extensive discussion on constructing a 
randomized decision rule for the equivalence test based on the odds ratio, with the objective of 
having an exact α-level test. The rejection rule for the composite hypothesis, 0 0 1:H orω ω ω ω≤ ≥ , 
rejects 0H  if 1 2Tk Y k< < , and with probability 1γ if 1TY k= , with probability 2γ  if 2TY k= . We 
accept 0H  if 1 2T TY k or Y k< > . Note the strict inequalities. The constants 1 2 1 2, , ,k k γ γ  depend on  
(α, 0ω , 1ω 1, ,T CN N n



). We need to solve 

2

1

1
1 1 0 2 2 0 01

[ | ] [ | ] [ | ]k
T T Tu k

P Y k P Y k P Y uγ ω γ ω ω α−

= +
= + = + = =∑  and  

2

1

1
1 1 1 2 2 1 11

[ | ] [ | ] [ | ]k
T T Tu k

P Y k P Y k P Y uγ ω γ ω ω α−

= +
= + = + = =∑  

with the probabilities in (9). The solution is 1 2110, 113k k= = , 1γ  =.92315, 2γ =.88134. Wellek 
provides SAS programs for  calculations. In real-world applications, randomized rules are not widely 
used. 

A 90% exact confidence interval for the OR is obtained from 

proc freq data=VERDI order=data; 
tables GROUP*response/oddsratio(CL=exact)alpha=.1; 
exact OR; 
*tables GROUP*response/oddsratio(CL=score) alpha=.1; 
*tables GROUP*response/oddsratio(CL=score(correct=no)) alpha=.1; 
*tables GROUP*response/oddsratio(CL=WALD) alpha=.1; 
weight count; 
format response affirm.; 
run; 

The EXACT statement is required for CL=exact. Because the discrete conditional hypergeometric 
distribution is applied to obtain the exact CL, the confidence level is at least 90% , i.e., the interval is 
conservative. Three other types of confidence intervals in Table 7, including the traditional WALD 
are based on asymptotic distribution of the odds ratio estimator. 

 

TABLE 7: Confidence Limits for the Odds Ratio 

Odds Ratio = 0.8205 
Type 90% Confidence Limits 
Exact 0.5511 1.2217 
Score 0.5649 1.1918 
Score (correct=no) 0.5652 1.1911 
Wald 0.5648 1.1919 
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DISCUSSION 

Our focus has been on non-inferiority and equivalence tests for a binary endpoint based on two 
independent samples. We framed the tests based on the risk difference, relative risk and odds ratio 
(Chowdhury et al, 2019a) applying the Farrington-Manning (1990) score test and options available in 
PROC FREQ. If the large sample normal approximation to the test statistic is not tenable, we could 
use exact procedures based on the binomial distribution (Wellek, 2010), or at least make a continuity 
adjustment to the normal approximation. 

Methods for assessing power and sample size are addressed in PROC POWER for the risk 
difference and relative risk but not directly for the odds ratio. Castelloe and Watts (2015) and SAS 
Usage Notes describe the procedures with applications. They also provide details of non-inferiority 
and equivalence tests for a continuous endpoint where the mean difference or mean ratio is the 
effect measure for comparison between two groups. For analyses, PROC TTEST is the natural 
choice.  

Several authors have addressed tests for equivalence and non-inferiority in matched-pair designs 
(Nam, 1997, Tang et al, 2007, Tsong et al, 2013) and crossover designs (Li et al, 2016), framing the 
procedures by score and likelihood ratio tests. Sidik (2003) addresses exact unconditional tests for 
the matched-pairs design.  

Equivalence and non-inferiority studies comparing a new drug (T ) to a control drug (C ) require  
specification of the indifference margin ∆. An appropriate value is based on clinical considerations 
and statistical evidence drawn from historical studies of  C  in  placebo-controlled studies that 
provide information of the effects ,C Pθ θ  in  C  and placebo P.  Regulatory agencies such the FDA 
and EMA may include public health needs in arriving at a judicious value of ∆. Because the control 
condition is an active standard, ∆ should be smaller than the difference in response seen between 
active control and placebo, for example ( )C Pθ θ∆ ≤ −½ .The synthesis-margin approach attempts to 
incorporate this evidence in the current non-inferiority test or corresponding equivalence test, by 
using the estimates of ,C Pθ θ and their variances from studies comparing C  to P.  See Chang (2011, 
Chapter 3) and Liao (2015) for context and examples on how to use some fraction of the evidence 
from the comparison in specifying ∆ for the current study of T and C.  

Finally, a recent paper discusses a three-arm study for non-inferiority using the risk ratio and odds 
ratio (Chowdhury et al, 2019b). Equivalence testing procedures for continuous endpoints from 
independent K-samples, both parametric and nonparametric, as well as from dependent multivariate 
samples are discussed by Wellek (2010) Chapters 7 and 8 together with SAS programs for carrying 
out some daunting calculations. For the statistical analyst the realm of software programs for non-
inferiority and equivalence testing is somewhat limited. Enhancements to the procedures FREQ and 
POWER are forthcoming that would extend their capabilities to handle more complex study 
designs. 
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Non-inferiority and Equivalence Tests for a Survival Endpoint 

We adopt a separate notation for this section. In the context of a time-to-event, subject to right 
censoring, a generic datum on an individual is ( , )T δ  where δ  is the indicator of whether T is the 
actual time to event ( 1)δ = or the censoring time( 0)δ = . Survival data comprise independent 
samples from two groups. Let 1 2,S S denote the survival functions in group 1 (test) and group 2 
(standard), respectively, with corresponding hazard functions 1 2,h h . With the single indicator x =1 
for group 1, x =0 for group 2, the proportional hazards (PH) assumption is 1 2( ) ( )exp( )h t h t xβ=  for 

all t. This leads to ( )1 2( ) ( ) ,S t S t θ= where exp( )θ β= is the hazard ratio (HR). Testing the hypothesis 
of equality, 0 1 2: ( ) ( ),H S t S t=  for all t , is entirely equivalent to 0 : 0H β = . 

Without reference to the PH assumption, PROC LIFETEST performs the log-rank test and its 
variants (Klein & Moeschberger, 2003). PROC PHREG is dedicated to analysis of the PH model 

0( | ) ( )exp( )h t h t=x xβ  where 0( )h t denotes a baseline hazard corresponding to covariates x =0.  

Wellek (2010) citing Freitag (2005) and Freitag et al, (2006) develops an equivalence test and a non-
inferiority test based on the distance metric: 1 2 1 2sup{ 0 :| ( ) ( )|}S S t S t S t− = > −   under the PH 
assumption and continuity of the survival functions. The assumptions provide a neat translation 
from survival to the HR. Martinez et al, (2017) adopt a similar approach for the proportional odds 
survival model. 

Let ∆ >0 denote a specified equivalence margin. The equivalence test is formulated  as testing 
0 1 2:H S S− ≥ ∆   versus 1 1 2:H S S− < ∆  . Under 0H , for at least one t >0, 1 2| ( ) ( )|S t S t− ≥ ∆  whereas 

under 1H we have 1 2| ( ) ( )|S t S t− < ∆  for all t >0. Hence the alternative says that the two survival 
functions are “equivalent” with respect to the maximal difference ∆. 

Next, consider the non-inferiority test. Suppose survival could be slightly worse in group 1 than in 
group 2. With a margin ∆>0 the non-inferiority test is formulated as testing 0 1 2: ( ) ( )H S t S t− ≤ −∆ , 
for at least one  t >0  versus 1 1 2: ( ) ( )H S t S t− > −∆  for all t >0 . Hence the alternative says that survival 
in group 1 is non-inferior to group 2. If 0t t= is fixed, the analogy to the non-inferiority test of two 
proportions is not accidental (da Silva, Logan and Klein, 2008). 

Because higher hazards are indicative of worse survival, under PH, the non-inferiority hypothesis in 
terms of the HR is stated as 0 0:H θ θ≥ versus 1 0:H θ θ< where 0 1θ > is pre-specified.  

Continuity and the PH assumption ensure 1 2 sup{0 1:| |}S S u u uθ− = < < −  . Let  ( ) ,g u u uθ= −

[0,1].u∈ The sign of ( )g u depends on θ ; if θ <1, ( )g u <0;  if θ >1, ( )g u >0. From calculus, 
1 1(1 ) (1 )( ) sup{| ( )|: [0,1]}G g u u θ θ θθ θ θ
− −− −≡ ∈ = − , as a function of (0, )θ ∈ ∞ . ( )G θ  is invariant under 

transformation 1θ θ −→ , strictly decreasing in (0, 1) and strictly increasing in (1,∞). See Figure 3. 

Given the margin ∆, we can get the values θ  satisfying ( )G θ = ∆ . With θ  =(1 )ε+ ,  ε  >0, solve the 

equation 
1 1(1 )(1 ) (1 )ε ε εε ε
− −− − ++ − + = ∆ , using PROC FCMP.  For θ  <1, apply θ  = 1(1 )ε −+ . 
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proc fcmp; 
 function equiv(t); 
 Gt=(1+t)**(-1/t)-(1+t)**(-(1+t)/t); 
return(Gt); 
endsub; 
do del=.05 to .30 by .05; 
t=solve("equiv", {.}, del,.); 
HR=1+t; 
log_HR=log(HR); 
put del= @10 t= @20 HR= @30 log_HR=; 
end; 
format del F5.2 t F6.4 HR F6.4 log_HR F6.4; 
run; 

del= 0.05 t=0.1457  HR=1.1457 log_HR=0.1360 
del= 0.10 t=0.3135  HR=1.3135 log_HR=0.2727 
del= 0.15 t=0.5077  HR=1.5077 log_HR=0.4106 
del= 0.20 t=0.7341  HR=1.7341 log_HR=0.5505 
del= 0.25 t=1.0000  HR=2.0000 log_HR=0.6931 
del= 0.30 t=1.3149  HR=2.3149 log_HR=0.8394 

 

FIGURE 3: Plot of ( )Gθ θ→  with droplines at (1.51, 0.15) and (2.00, 0.25) 

 
  
With these preliminary calculations, the equivalence test expressed in terms of β =log (HR) is 

0 :| | log(1 )H β ε≥ + versus 1 :| | log(1 )H β ε< + . 
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The non-inferiority test (group 1 non-inferior to group 2) is expressed as 0 : log(1 )H β ε≥ + versus 

1 : log(1 )H β ε< +  because favorable survival in group 1 relative to group 2 means β <0, and thus 
smaller β is desirable. 

 

Survival data for hypothesis testing 

From the sample of survival data{( , , ) : 1 }k k kT x k Nδ ≤ ≤ on individuals, let 1 2 Dt t t< < <  denote the 
distinct event times in both groups; at time it  in group j , ijd =# events , ijn =# at risk, i.e., the 

number of individuals who have not had the event or been censored prior to it . Total number of 
events 1 2 ,i i id d d+ = +  and total number at risk 1 2i i in n n+ = + . 

The score function ( )NU β  and information function ( )NI β  from the partial log likelihood are

( )
1

11
1 2

exp( )
( )

exp( )
D i

N i ii
i i

n
U d d

n n
ββ

β+=

  = − 
+  

∑  , 
( )

1 2
21 1

1 2

exp( )
( ) ( )(1 ( ))

exp( )
D Di i i

N i i ii i
i i

d n n
I d f f

n n
ββ β β

β
+

+= =

  = = − 
+  

∑ ∑   

where 1 1 2( ) exp( )/{ exp( ) }i i i if n n nβ β β= + . The maximum (partial) likelihood estimator β̂  is the 

solution to ˆ( ) 0NU β = . If β is the true parameter, from large sample theory (Andersen et al, 1993), 
2 1ˆ( ) (0,{ ( )} )N Normalβ β σ β −− →  and both 1 ( )NN I β− and 1 ˆ( )NN I β−  converge to 2( )σ β  in 

probability. These results are the basis for testing the equality hypothesis 0 : 0H β = versus 1 : 0H β ≠ .  

When applied to a data set,  PROC PHREG gives us the following: 

β̂ , its standard  error estimated by 1/2ˆ{ ( )}I β − , the score statistic 2 2{ (0)} / (0)S N NU Iχ =  and Wald 

statistic 2 2ˆ ˆ
W NIχ β β= ( ) . There is no easy way of generating the function ( )NI β  other than by a 

direct computation from the output statistics (for example, from PROC LIFETEST). 
 
Consider the equivalence test (Wellek, 2010):  Set the margin 0 log(1 )β ε≡ + . An asymptotically valid 

α-level test rejects 0 0:| |H β β≥ if and only if 0
ˆ ˆ ˆ( )| | ( ( ) )N NI C Iαβ β β β>½ ½  where ( )Cα ψ is the square-

root of the 100α percentile of the 2χ distribution with 1 degree of freedom and non-centrality 2ψ . 
The approximation 1( )C zα αψ ψ −≈ − , is excellent for even moderate ψ . Then re-express the test as 

TOST:  (a) Reject 0 0:aH β β≤ −  in favor of 1 0:aH β β> −  if 1
ˆ ˆ( )( )NI z αβ β β0 −+ >½  

 (b) Reject 0 0:bH β β≥  in favor of 1 0:bH β β<  if 1
ˆ ˆ( )( )NI z αβ β β0 −− < −½  

The corresponding  non-inferiority test is 0 0:H β β≥ versus 1 0:H β β<  recognizing that lower 
hazards (log hazards) are desirable. In practice, (b) is the common formulation. When the upper 
confidence limit 1

ˆ ˆ( )NI z αβ β−
−+ ½ is below 0β we may declare non-inferiority. 

The ingredients to carry out the tests are obtained from PROC PHREG. The next example using 
summary results is offered purely for illustration. 
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EXAMPLE 4 

Scagliotti et al, (2008) report on time to event outcomes in a randomized study of cisplatin plus 
pemetrexed (CP) against cisplatin plus gemcitabine (CG) in patients with advanced stage non-small-
cell-lung cancer. CG is the widely used effective treatment (Referent); CP  has similar efficacy, safety 
and a more convenient dose schedule. The objective was to demonstrate that CP is non-inferior to 
CG. We use the results summarized in the article for two endpoints: overall survival (OS) and 
progression-free survival (PFS) in over 1,670 patients. 

The PH model, 1 2( | ) ( )exp( )h t x h t xβ= with a binary covariate x  (x=1 for CP, x=0 for CG) . From 
the published results on the HR and 95% CI, we extracted the estimate β̂ , the information ˆ( )NI β
and constructed a 90% CI for β . The reported adjusted HR for covariates is used as a proxy. The 
calculations are summarized below. 
 

Comparison, 
CP to CG 

Adjusted HR, 95% CI* β̂ =Log(HR), 90% CI ˆ( )NI β  

OS, all patients 0.94, (0.84, 1.05) −0.0619, (−0.1548, 0.0310) 313.669 

PFS, all patients 1.04, (0.94, 1.15) 0.0392, (−0.0452, 0.1236) 380.021 

OS, Squamous 
cell carcinoma 

1.23, (1.00, 1.51)  0.2070, (0.0349, 0.3791)  91.324 

PFS, Squamous 
cell carcinoma 

1.36, (1.12, 1.65) 0.3075, (0.1453, 0.4697) 102.819 

 * Scagliotti et al, (2008), Fig 2. 

The study assumed that CG  would produce at least a 15% reduction in the risk of death over CP. It 
translates to a hazard ratio of CG vs CP=0.85. Invert to get the HR of CP vs CG,  1/0.85 =1.176. 
Hence, the non-inferiority hypothesis in terms of log(HR) is: 0 0 1 0: :H vs Hβ β β β≥ <  where 

0 log(1.176)β = = 0.16212. From a calculation via PROC FCMP the maximal difference in the event-

free survival functions of CP and CG is about 6% (i.e., ∆=0.06). With all patients analyzed, for both 
OS and PFS, we can declare non-inferiority of CP because the upper limit of the 90% CI is below 

0β . The 5% level tests are significant (p<.009), so that 0H can be rejected in favor of 1H . 

Consider the endpoints in the subgroup of patients with squamous cell carcinoma. However, change 
the maximal difference in the two survival functions to 15%;  ∆=0.15 corresponds to 0β =0.4106. 
For OS, we can declare non-inferiority (p<.025) but not for PFS where significantly better survival is 
demonstrated for CG over CP. 

Calculations for non-inferiority and equivalence tests are carried out in a data step together with the 
separate TOST (a) and (b). 
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data PFS; 
z975=QUANTILE("NORMAL",.975); 
z95=QUANTILE("NORMAL",.95); 
/*OS*/  HR=.94; LCL=.84; UCL=1.05; 
/*PFS HR=1.04; LCL=.94; UCL=1.15;*/ 
b=log(HR);  
STDERR=(log(UCL)-log(HR))/z975; 
STDERR_=log(LCL/HR)/z975; 
I=STDERR**(-2); 
l_LCL90=b-z95*STDERR; l_UCL90=b+z95*STDERR; 
 
b0=.1621; 
Z_L=sqrt(I)*(b-b0); 
Z_U=sqrt(I)*(b+b0); 
pv_L=CDF("NORMAL", Z_L); 
pv_U=SDF("NORMAL", Z_U); 
 
psi=sqrt(I)*b0; 
C=quantile("CHISQ",.05, 1, psi*psi); 
C=sqrt(C); 
z_crit=sqrt(I)*abs(b); 
pv_chi=CDF("CHISQ", z_crit**2, 1, psi*psi); 
run; 
 

Remarks 

(1) The tests for non-inferiority and equivalence described here are asymptotically valid α-level tests, 
that is, the size of the test does not exceed the nominal level α. The approximation 1( )C zα αψ ψ −≈ −
is excellent even for small ψ . From simulation studies Martinez et al, (2017) conclude that the actual  
type I error could be well below α. This is likely to happen when 0β  is large, corresponding to a 
large maximal difference ∆  between the survival functions. The PH assumption is important when 
connecting 0β  to  ∆. Practical applications are unlikely to specify ∆ more than 0.15, perhaps much 
smaller. Martinez et al, (2017) analyze the POSM (proportional odds survival model) as an 
alternative to the PH model, and discuss robustness to misspecification of the true model. 

(2) One could argue that in TOST (a), 0NI β(− ) should replace ˆ
NI β( )  and in TOST (b), 0NI β( )

should replace ˆ
NI β( ) .  In general, the limit 2( )σ β  of 1

NN I β− ( ) depends on the design 
characteristics of the study such as, the rate of accrual of subjects, the distribution of entry time, 
survival and censoring distributions from entry and the total follow-up period of the study. Under 
assumptions on these design features, a formula can be derived for 2( )σ β , but  numerical methods 
are needed to evaluate integrals. PROC SEQDESIGN documents some formulae on the cumulative 
expected number of events. 
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(3) Use of the null variance is seen in the non-inferiority test of a single binomial probability p 
against a known standard. The hypothesis test  is 0 0 1 0: :H p p vs H p p− ≤ −∆ − > −∆  where 0p  is 
known and∆ >0 specified . Higher values of p  are favorable. The rejection rule based on  

( )1/2
0

ˆ( ) ( ) /Z p N p p pq= − − ∆ , uses approximate normality to fix the size of the test:  

Type I error = ( )1/2
0 0[ ( ) | ] ( ( ))/P Z p k H k N p p pq> = Φ − + − − ∆ . The largest type I error (under the 

null) is the size of test = ( )kα = Φ −  which gives 1k z α−=  . Hence,  

Reject 0H  if  ( )1/2
0

0 1
0 0

ˆ ( )
( )

( )(1 ( ))

N p p
Z p z

p p α−

− − ∆
− ∆ = >

− ∆ − − ∆
. This default option VAREST=NULL is 

applied in PROC POWER. However, the option VAREST=SAMPLE, would use ˆ ˆ(1 )p p−  in the 
denomination of the above statistic. In PROC FREQ the option is called VAR= and the default is 
VAR=SAMPLE. 

Analogous comments apply to the equivalence test: 0 0 1 0:| | :| | .H p p vs H p p− ≥ ∆ − < ∆  

(4) The information function NI β( )  could be constructed from the output from PROC LIFETEST. 
In general, for all β , NI Dβ( ) ≤¼  where D is the total number of observed events. The function is 

skewed bell-shaped but need not achieve its maximum at ˆβ β= . If 1 2i in n≈  at all event times, then
2(1 )NI e e Dβ ββ −( ) ≈ + , so that the upper bound is at 0.β = In assessing sample size for non-

inferiority trials,  Curtis and Crisp (2008) comment on which variance to use in construction of the 
test statistic based on the log hazard ratio of two exponential distributions of the time to event. They 
argue for applying the variance of the log hazard ratio under the alternative, rather than under the 
null, because the variance is larger under the alternative. This results in a conservative sample size. 
For exponentially distributed events times, the inverse of the variance of the log hazard ratio ˆ

Eβ is 

estimated by 1 2
ˆ

N EI w w Dβ( ) = , where 1 2,w w are proportions of D in groups 1 and 2 ( 1 2 1w w+ = ). 

In conclusion, there are many features to be considered in formulating tests of non-inferiority and 
equivalence for comparing two survival functions. At the design stage, assessment of sample size 
and power is important. Two options in PROC POWER (coxreg, twosamplesurvival) offer some 
support for this effort. 
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APPENDIX 

The score tests for testing non-inferiority or equivalence are obtained from a common origin. 
Consider the two independent samples 11 1 21 2~ ( , ), ~ ( , )T Cn BIN n p n BIN n p

 

 shown in Table 1. The 

log likelihood 11 1 21 2log ( ) log log(1 ) log log(1 )
1 1

CT
T C

T C

ppL n n p n n p
p p

  
= + − + + −  − −   

θ
 

where 

constants are dropped, and ( , )T Cp p ′=θ . The score function is the derivative 
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( ) =U θ (log ( ))L∂
=

∂
θ

θ
 1 2

ˆˆ
,

(1 ) (1 )
C CT T

T T C C

p pp pn n
p p p p

′    −−
   − −     

 

. 

Next, form the Hessian 
2(log ( ))

( )
L∂

= −
′∂ ∂
θH θ

θ θ
( , ) ( , )

,T C T C

T C

U p p U p p
diag

p p
 ∂ ∂

= −  ∂ ∂ 
.  

 
Write 1 1 2 2,n Nw n Nw= =

 

, with 1 2 1w w+ = and obtain the limits in probability as N→∞: 

1 1
1

( , )
{ (1 )}T C

T T
T

U p p
N w p p

p
− −∂

− → −
∂

, 1 1
2

( , )
{ (1 )}T C

C C
C

U p p
N w p p

p
− −∂

− → −
∂

.  

Let 1 1
1 2( ) { (1 )} , { (1 )}T T C Cdiag w p p w p p− − = − − A θ .  

Score tests are constructed for testing a null hypothesis, 0 0: ( )H =c θ 0 . For example, if the relative 
risk is specified as 0ρ , then ( )0 0( ) T Cp pρ= −c θ , a scalar and 0 0{( , ) : }T C T Cp p p pρ= =θ . Continuing 

with this case, 1
0 0 1 1 0 2 2

ˆ ˆ{ ( )} ( ) ( ), ( )T C C CN w n p p w n p pρ− − − − ′ = − − 
½ ½ ½A θ U θ

 

has an asymptotic 

bivariate normal distribution, zero means, zero correlation, and variances  

( )1 1
1 0 0 2(1 ), (1 )C C C Cw p p w p pρ ρ− −− − .  For testing 0 0: ( )H =c θ 0 , form the test statistic 

0

1
0 0 0

( ) ˆ ˆ{ ( )} ( ) ( )T CN U N p pρ− −
′ ∂

= − 
∂  

½

θ

c θ A θ θ
θ

. The asymptotic distribution is normal, mean zero 

and variance 
2
00 0

1 2

(1 )(1 ) C CC C p pp p
w w

ρρ ρ −−
+ 

 
. The standardized statistic is  

0 1 2 0

22
2 0 0 0 100 0

1 2

ˆ ˆ ˆ ˆ( ) ( )

(1 ) (1 )(1 )(1 )

T C T C

C C C CC CC C

N p p Nw w p p
Z

w p p w p pp pp p
w w

ρ ρ

ρ ρ ρρρ ρ

− −
= =
   − + − −−  +  
  

½ ½ .  

This is the same statistic applied in PROC POWER, but the group subscripts (T, C ) are reversed. 

To operationalize, replace Cp  by its MLE 0( ),C T Cp p p pρ= =    , under the null hypothesis, giving us 

equation (5):  0

2
0

1 2

ˆ ˆ
T C

C CT T

p p
Z

p qp q
n n

ρ

ρ

−
=
 

+ 
 

½

 





. To obtain the MLE of Cp  under the constraint, 0T Cp pρ= , 

the log likelihood has a single parameter Cp , that leads to the  estimating equation: 

11 1 0 21 2 0( )(1 ) ( )(1 ) 0C C C Cn n p p n n p pρ ρ− − + − − =
 

. The solution is in equation (6). 

The score tests based on the risk difference and odds ratio are derived in the same manner by 
applying the appropriate constraint 0( ) =c θ 0 . For a survival endpoint, and testing based on the log 
hazard ratio, the score function is obtained from the partial likelihood. 




