
 

 

1 

Paper 4638-2020 

Cracking Cryptic Doctors’ Notes with SAS® PRX Functions 

Amy Alabaster, Kaiser Permanente; Mary Anne Armstrong, Kaiser Permanente 

 

ABSTRACT  

SAS® programmers analyzing complex free text data, like that present in the electronic 

medical record, likely find basic string functions insufficient or unwieldy for extracting 

meaningful data points from highly variable text sources. In addition to coded data like 

diagnoses, a patient’s medical record consists of doctors’ notes, test results, and reports 

with immense provider variation in text—cryptic abbreviations and typos are only the 

beginning. Perl regular expressions tackle many text problems like those encountered by 

programmers analyzing the medical record, and SAS uses this powerful tool with a suite of 

functions and call routines. This paper reviews the basics of implementing Perl regular 

expressions in SAS using SAS functions like PRXPARSE, CALL PRXSUBSTR, PRXMATCH, 

PRXCHANGE, and CALL PRXNEXT. Text examples draw from several medical specialties. 

Topics covered include managing variation within single words (like typos), locating multiple 

keywords with varying distance between words, finding multiple iterations of a target 

phrase, breaking up text by words or sentences, dealing with negation, and managing very 

long regular expressions. Practical considerations for getting started with a natural language 

processing project and balancing false positives versus false negatives are discussed. 

INTRODUCTION  

This paper introduces one of many SAS tools available to analyze free text variables – the 

PRX functions which use Perl regular expressions. PRX functions are enormously powerful 

and flexible and can be used seamlessly within your DATA step – no special software 

required. We cover the basics of the required syntax – forewarning, there is a small learning 

curve – and move on to simple and intermediate examples. The examples draw from 

medical research but can be easily applied to other industry-specific analysis of large text 

fields. 

QUICK START GUIDE TO USING PERL REGULAR EXPRESSIONS 

IN SAS 

The PRX in SAS PRX- functions stands for Perl Regular eXpressions. Regular expressions (or 

RegEx) are used across many platforms, including SAS, and are composed using a sequence 

or pattern of characters. This pattern can then be searched for within a body of text. Perl is 

one popular syntax used to write regular expressions. RegEx can use typical characters (A-

Z, 1-9) or special metacharacters that define ideas like: 

• Wild card characters… e.g. \d = any digit 

• Iterations of a character or character class… e.g. \d+ = 1 or more digit 

• Position within a text string… e.g. \bdigit = ‘digit’ at the beginning of a word boundary 

• Grouping and alternation… e.g. digit(s|al) = ‘digits’ OR ‘digital’ 

A RegEx is the pattern of characters you need to locate within a string. They have their own 

syntax. In SAS, PRX functions and call routines do the actual locating. They are the 

packaging that wraps around the RegEx, and as with any SAS function, they also have their 



2 

own syntax. Before we discuss the packaging though, we’ll review the Perl syntax used to 

define a RegEx.  

METACHARACTERS 

Regular expressions take advantage of several different kinds of special characters.  

Error! Reference source not found. shows a (non-comprehensive) list of common 

metacharacters, their descriptions, and examples of what can be found and not found while 

using them. Note that all metacharacters are case sensitive. 

Metacharacter Definition Example 

Wildcards 

\d any digit (0-9) \d\d matches two digits in temp of 98 

but not the single digit in age 5 years 

\w any word character (A-Za-z0-

9_) 
\w\w\w\w\w matches Smith but not 

O’hare 

\W any non-word character \w\w\W\w\w matches he is and 11:32 

\s any whitespace character \s matches a space, a tab, but not ¶ 

(paragraph symbol) 

.(period) any character p.k.m.n matches pokemon, pokiman 

and pok%m$n but not pokemn 

\b word boundary toxic\b is found in toxic looking or 

looks toxic[even at end of string] but 

not toxicology 

Grouping and alternation 

| alternate choices temp|fever matches the beginning of 

temp of 102 or fever of 102 

() groups characters* combin(ed|ing)matches combined 

and combining, but not combination 

[xyz] match any character in 

brackets 

m[ie]r[ea]na matches mirena or 

merana 

[^xyz] match any character not in 

brackets 

temp[^:] is found in temperature of 

101 but not temp: 101  

Repetition 

? match character or group 1 or 

0 times (greedy) † 

mirr?ena matches mirena or mirrena 

gen(eral)? matches gen or general 

* match 0 or more times 

(greedy)† 

temp.*\d\d\d matches temp of 101 

or temperature measured to be 101 

or temp101 

+ match 1 or more times 

(greedy) † 

temp.+\d\d\d matches temp of 101 

or temperature measured to be 101 

but not temp101 

{n,m} match at least n, but not more 

than m times (greedy) † 

temp.{0.20}\d\d finds matches of 

two digits between 0 and 20 

characters away from temp 

*? Match 0 or more times (lazy) ‡ temp.*?\d\d\d matches temp of 101, 

from the phrase ‘temp of 101 or 102’ 

 



3 

Using special characters literally 

\ escape character: match a 

literal { } [ ] ( ) ^ $ . | * + ? 

\ 

\d\d\.\d only matches 98.6 while 

\d\d.\d matches 98.6 or 98#6 

Delimiters 

/…/ delimit the start and end of 

the RegEx 

/temp.*\d\d\d?/ 

/…/i the i after delimiters makes 

RegEx case insensitive 

/uppercase/i matches uppercase 

and UPPERCASE 

 
Table 1. A non-comprehensive list of special characters used in regular expressions 

A note about parenthesis 

* Grouping characters is useful for alternating choices, as shown in the Table 1 example. In 

addition to grouping, parenthesis also define what’s known in RegEx as a capture buffer. For 

example, in the RegEx /(temp.*)(\d\d\d?)/ capture buffer – first () – 1 includes the 

characters temp through the 0 or more characters .*. Capture buffer 2 – second () – 

includes the two or three digits, presumably the temperature data that we’re most 

interested in capturing for analysis purposes. Some PRX functions act specifically on capture 

buffers to extract pertinent characters (see pages 7-8 for an example). 

A note about greedy and lazy repetition factors 

† Greedy repetition factors return the longest match possible. So in /temp.*\d\d/ - where 

you are searching for the word ‘temp’ followed by the greedy .* (0 or more of any 

character) followed by \d\d (2 numbers): even if 2 numbers are found within a few 

characters, if 2 numbers are found again 100 characters later, the larger match will apply. 

E.g. it matches the entirety of ‘temp of 98.2, age of 27’. 

‡ Lazy repetition factors return the shortest match possible. So, using /temp.*?\d\d/ the 

function would identify a match of only the phrase ‘temp of 98’, instead of ‘temp of 98.2, 

age of 27’  in the above example. This is important when you need to pull out a specific 

value or determine the length of a key phrase. All repetition factors can be either greedy or 

lazy. Adding ? to any repetition factor makes it lazy. 

You can imagine from the examples above that there are often many solutions to a RegEx 

problem. Those new to building regular expressions may find the tool available at 

https://regex101.com useful for seeing how RegEx work in action and for troubleshooting 

tricky patterns. 

PRX FUNCTIONS AND CALL ROUTINES 

As mentioned earlier, PRX functions and call routines are specific to SAS and do the work to 

locate a RegEx of interest and output information such as position and length. This paper 

will cover a selection of (but not all) PRX functions that have been particularly useful in 

health research.  

Table 2 summarizes the syntax and role of the PRX functions and call routines that will be 

discussed in this paper. Much of this information is borrowed from the SAS 9 Perl Regular 

Expressions tip sheet on the SAS support website. Additional details for each function will be 

described in the examples in the next section. 

https://regex101.com/
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf


4 

Function or 

Call Routine 

Syntax What it does 

PRXPARSE regex-id = prxparse(perl-

regex) 

Compile Perl regular expression perl-

regex and return regex-id to be used 

by other PRX functions. RegEx is stored 

in regex-id variable, but note if you 

print out regex-id it’ll just print ‘1’. 

CALL 

PRXSUBSTR 

call prxsubstr(regex-id, 

source, pos, len) 

After using prxparse, searches in 

source for regex-id, and if found 

returns starting position pos and length 

len of previously defined perl-regex. 

Else returns pos=0 and len=0. 

PRXMATCH pos = prxmatch(regex-id | 

perl-regex, source) 

Searches in source for perl-regex or 

previously defined regex-id and returns 

starting pos if found, else 0. 

PRXPOSN text = prxposn(regex-id, n, 

source) 

After a call to prxmatch or 

prxchange, prxposn returns the text 

of capture buffer n*. If n is 0, prxposn 

returns the entire match. 

CALL 

PRXNEXT 

call prxnext(regex-id, start, 

stop, source, pos, len) 

Use this call routine iteratively to find 

multiple iterations of your perl-regex. 

Searches in source between positions 

start and stop (initially set to 1, and 

length(source) respectively). Returns 

pos and len. Also resets start to pos+ 

len+1 so another search can easily 

begin where the last search left off. 

PRXCHANGE new-string = 

prxchange(regex-id | perl-

regex, times, old-string) 

Search and replace times number of 

times in old-string and return modified 

string in new-string. If the value 

of times is -1, then matching patterns 

continue to be replaced until the end 

of old-string is reached. See example 

for special perl-regex syntax. 

Table 2. Syntax and description of PRX Functions and Call Routines, color coded for clarity 

* See note under Table 1 about capture buffers. 

 

A BASIC SAS PROGRAM FOR DEFINING AND USING A REGULAR EXPRESSION 

The following program uses PRXPARSE to define a regular expression that will be used to 

search for a phrase describing temperature or fever. It then uses CALL PRXSUBSTR to 

return the starting position and length of the matched phrase. The results are printed and 

shown in Output 1. 

A few notes: 

• In the first step, prxparse defines the RegEx and assigns the result to the regex-id re. 

Since the search pattern is the same for every observation, best programming practice 

suggests only defining the RegEx once, and using retain to fill in the result through the 

entire dataset. It is in the next step, when we use call prxsubstr that the source 

note_text is searched for a match in each observation. 



5 

• Since the perl-regex is a character string, remember to surround it in quotations. Also 

remember to use the forward slash delimiters at the beginning and end of perl-regex, 

and inside the quotations. 

• Placing an i between the ending delimiter and the ending quotation makes the entire 

perl-regex case insensitive. 

• The RegEx described here looks for the keyword fever or temp, followed by three digits. 

The period . is used to denote that from 1-30 of any character can be between the 

fever/temp keyword and the three digits. The ? denotes that the repetition factor {1,30} 

is a lazy repetition factor – it finds the shortest match possible. 

Here is the full code: 

data notes; 

  input note_text $80.;  

  datalines; 

  Fever up to 101 today as well increased fussiness x 2days 

  Parents came into ED after temp this morning at home 101 

  Vomit x 1 yesterday. No known fever at home 

  ; 

run; 

 

data parse; 

  set notes; 

  if _N_ = 1 then do; 

      re=prxparse("/(fever|temp).{1,30}?\d\d\d/i"); 

     end; 

  retain re; 

  call prxsubstr(re, note_text, pos, len); 

run; 

 

proc print data=parse; run; 

 

Obs  note_text                                                 re  pos  len 

  1  Fever up to 101 today as well increased fussiness x 2days  1    1   15 

  2  Parents came into ED after temp this morning at home 101   1   28   29 

  3  Vomit x 1 yesterday. No known fever at home                1    0    0 

Output 1. Output from PROC PRINT following PRXPARSE and PRXSUBSTR 

The material in this ‘Quick Start Guide’ is mostly borrowed from our previous SAS 

proceedings paper (Alabaster 2018). Other excellent guides on regular expressions and PRX 

functions have been written by SAS programmers, including Ron Cody (2004), David Cassell 

(2005), Richard Pless (2005), and Kenneth Borowiak (2007). Check out the reference 

section of this paper for more information about their papers. 

MORE REAL RESEARCH EXAMPLES USING PRX FUNCTIONS  

Below are examples drawn from real health research projects covering topics like managing 

variation within single words (like typos), locating multiple keywords with varying distance 

between words, finding multiple iterations of a target phrase, breaking up text by words or 

sentences, dealing with negation, and managing very long regular expressions. 

DEFINING SEVERAL TARGET REGEX USING PRXPARSE 

For a recent research project, our client wanted to look for evidence within operative notes 

that an intrauterine device (IUD) perforated a patient’s uterus. The term IUD could be used 

in the note, or the specific type of IUD, like Mirena or Paragard. The study ultimately 

required many RegEx, but below we describe two which capture the following concepts: 



6 

1. Discussion of embedded IUD 

2. The word IUD discussed in close context with anatomy not normally associated with an 

IUD (e.g. abdomen, peritoneal cavity, fimbra) 

The following regular expressions (and those throughout this section) use common syntactic 

tools. We allowed for a lot of flexibility in our keywords to allow for variation and typos. 

• Variation in keywords (e.g. IUD or Intrauterine device or Mirena) captured using 

grouping () and alternation | metacharacters 

• Differences in spelling captured using brackets [AB] (e.g iu[ds] for IUD or IUS), 

wildcards (especially for vowels known to be big sources of typos), and optional 

characters ? (e.g. m.rr?.nn?a for Mirena, Merana, or Mirrenna). 

• Pairs of keywords (e.g. IUD and embed) allowed to be separated using a min and max 

distance, . wildcard with {#,#} 

• We broke up several long RegEx for ease of reading with return and tab keys. Since the 

RegEx syntax reads these literally, the filler |xxx is inserted to mark where breaks are to 

occur, and the alternation | metacharacter is placed at the start of the new line. The use 

of the | alternation metacharacter helps to ensure that fillers and tabs are 

inconsequential (it’s just a choice that will not ever be matched in the text) 

The following program parses a concatenated note dataset for two different regular 

expressions: 

data parse; 

  set concat; 

  if _N_ = 1 then do; 

re1=prxparse("/(iu[ds]|int.{0,3}ut.r.n.{1,2}d|m.rr?.nn?a|xxx 

   |p.r.gau?rd).{1,100}[ie]mbed/i"); 

re2=prxparse("/(iu[ds]|int.{0,3}ut.r.n.{1,2}d|m.rr?.nn?a|xxx    

   |p.r.gau?rd).{1,50}(abdom[ei]n|oment(um|al)|pelvi[sc]|fimbra)/i"); 

  end;   

  retain re1 re2; 

run; 

USE CALL PRXSUBSTR AND SUBSTR FUNCTIONS TO EXTRACT A TARGET PHRASE 

Taking advantage of templated notes 

For another research project, our client needed to gather information about young infants 

presenting to the emergency department with fever. Among the many variables they wished 

to collect were items that could only be found in free text notes. For instance, they wanted 

to know whether a patient was well-appearing or ill-appearing at presentation. While 

doctors’ notes are highly variable, they often use note templates with common headings 

and subheadings. An infant’s appearance is often found under the subheading ‘General:’ or 

‘Constitutional:’. Below are three notes that contain the needed text: 

Note 1: General Appearance: Alert and non-toxic.  Appears in no acute distress. ?Eyes: 

PERRL, lids and conjunctiva normal, EOM intact ?ENT:  Hearing grossly normal, external 

ears and nose normal ? Fever of 100.5 at home rectally 

Note 2: GENERAL: well appearing, no acute distress, well hydrated ?HEAD: normocephalic 

and anterior fontanelle open, flat ?EYES: normal eye exam ?EAR: TMs clear bilaterally 

?NOSE: normal external appearance ? Fever 2 days 

Note 3: Const: dehydrated, ill-appearing  ? Eyes: pupils equal and reactive,  lids, 

conjunctiva nl  ?ENT: bilateral TM's and external ear canals normal, normal and patent, 

mucous membranes moist, pharynx normal without lesions ? Temperature 99 at home 



7 

The client requested all text from the start of the general/constitutional subheading until the 

next subheading. Since in our system paragraph breaks show up as a ‘?’, we wrote a RegEx 

that pulls all text from the specified keyword until the next paragraph break, or ‘?’. 

Here are some features of the RegEx re3 below: 

• The first capturing group in () matches the keywords general or constitutional. 

However, the (eral) and (itutional) are optional, by use of the ? repetition factor. 

• There is a single optional whitespace (again, using ?). 

• The next capturing group () matches a colon :, the word appear, or a dash -. 

Remember that the | indicates alternate choices. 

• A ? in a RegEx typically indicates a zero or one repetition factor. However, using the 

escape character \ (see table 1), it denotes a literal ‘?’. The brackets [] combined with a 

carrot [^] indicate that any character except the character in brackets should be 

matched. Combined with a * repetition factor this denotes that we want zero or more 

characters until we reach a literal ?. 

Here is the code: 

data parse; 

  set concat; 

  if _N_ = 1 then do; 

re3=prxparse("/(gen(eral)?|const(itutional)?) ?(:|appear|-)[^\?]*/i"); 

  end;   

  retain re3; 

run; 

 

Now that our RegEx for the general/constitutional subheading text is defined using 

PRXPARSE, we now want to locate the desired text in the body of the notes and do 

something with the match. For this project, we are going to extract the text using the 

position and length of the match and print out the results: 

   data substring; 

    set parse; 

    call prxsubstr(re3, notes, pos, len); 

    length gen_string $ 500; 

    if pos NE 0 then gen_string=substr(notes, pos, len); 

   run; 

 

   proc print data=substring(where=(gen_string NE '')); var gen_string; run; 

 

Obs gen_string 

  1 General Appearance: Alert and non-toxic.  Appears in no acute distress.                                                              

  2 GENERAL: well appearing, no acute distress, well hydrated                                                                                     

  3 Const: dehydrated, ill-appearing   

 

Output 2. Output from PROC PRINT following CALL PRXSUBSTR and SUBSTR 

 

EXTRACT A NUMBER FROM A TARGET PHRASE USING PRXMATCH AND PRXPOSN 

Temperature measured in a doctors office or at the hospital is usually recorded in a 

structured data field in the medical record and is easily extractable. However, for our 

research project studying young febrile patients, the researchers also wanted to know if the 

patient had a fever at home before presenting to the medical center. This information is 

only available in free text notes. The notes used for the last example above on page 6 



8 

contain information about temperatures measured at home. Our goal in the next example is 

to extract the numeric temperature into a numeric variable. 

In the following code, the RegEx is first defined: 

• It looks for the keyword fever or temp. Temperature will also be matched as it contains 

the keyword ‘temp’. 

• The matched pattern also must contain two or three digits. The ? makes the third digit 

optional.  

• To allow for one digit following a decimal, we have to use the escape \ character to 

match a literal period \.. This and a final digit \d are wrapped in parentheses () and 

followed by a ? to make the decimal point and last digit optional. 

• The period ., the any character wildcard, followed by the {1,30} repetition factor allows 

for between 1 and 30 characters between the fever/temp keyword and the two or three 

digits.  

• ? is used again, this time to denote that the repetition factor is lazy. We want the 

shortest match possible. 

data parse; 

  set notes; 

  if _N_ = 1 then do; 

      re4=prxparse("/(fever|temp).{1,30}?(\d\d\d?(\.\d)?)/i"); 

     end; 

  retain re4; 

run; 

 

In the next code block, we first find the starting position of the match (if any) using 

PRXMATCH. If the starting position is greater than 0 (in other words, there is a match), we 

use PRXPOSN to extract the text containing the number. The second argument to PRXPOSN 

specifies which capture buffer should be extracted. We want the whole number, which is all 

the text contained in the second set of parenthesis () above. The optional decimal and digit 

are a third capture buffer because they are also enclosed in parenthesis, but these are also 

contained within the second capture buffer. See the note in the quick start guide about 

capture buffers for more info. Finally, we convert the text into a numeric variable: 

data extract; 

  set parse; 

  pos=prxmatch(re4, notes); 

  if pos >0 then num_string=prxposn(re4, 2, notes); 

  temp_num=input(num_string, 5.1); 

run; 

 

proc print data=extract; var re4 pos num_string temp_num; run; 

   

 

Obs     re   pos    num_string  temp_num 

  1     1     189    100.5    100.5 

  2     1    0             .  

  3     1     221    99       99 

 

Output 3. Output from PROC PRINT following PRXPARSE, PRXMATCH, AND PRXPOSN 

 

  



9 

DEFINING WORDS WITHIN A REGEX 

There are times that instead of looking for a target phrase within a certain range of 

characters, you want to look within a certain number of words. For example, when we were 

looking for evidence of removal of an IUD within notes, we searched for keywords related to 

the word ‘removed’. However, finding the word ‘removed’ was insufficient, because right 

before the word removed, could be the word ‘not’. We needed to find negation words near 

the target keywords. 

Find negation within five words before or after a keyword 

The goal for the next example is to find evidence of IUD removal while avoiding negation 

terms. In this example, we’ll assume negation terms usually come before our keyword (e.g. 

‘without removal’ or ‘not actually removed’). We will first capture keywords for ‘removal’ 

and five words preceding that keyword. Then, within the matched text, we will look for a 

negation term.  

There are many ways to define a word with RegEx. The code you use will depend on if 

whether your word is made up of only alphabet characters [a-z], alphanumeric characters 

[a-z0-9] or \w, or alphanumeric characters and some punctuation [\w’-]. A word will have 

one or more of the desired characters, so you need the one or more repetition factor, +, e.g. 

\w+. To capture multiple words, you need to decide what you will allow between the words. 

(\w+\s+){1,5} captures 1-5 words each followed by one or more whitespace characters. 

(\w+\W+){1,5} captures 1-5 words each followed by one or more non-word characters. The 

former example would avoid punctuation and is good if you want a group of words within a 

sentence. The latter example is more flexible and will capture a group of words containing 

punctuation, quotation marks, etc.  

In the following code, we first define our RegEx as in previous examples. We are searching 

for the word removed or removal remov(ed|al), and capturing up to five preceding words. 

A second RegEx defines negation words separated by the alternation character |: 

data iud_notes; 

  input notes $80.;  

  datalines; 

  IUD was removed intact 

  After discussing we proceeded without IUD removal 

  IUD strings not seen, so could not easily be removed today 

  Mirena IUD removed without difficulty 

  Here to discuss her IUD 

  ; 

run; 

 

data parse; 

  set iud_notes; 

  if _N_ = 1 then do; 

re5=prxparse("/(\w+\W+){0,5}remov(ed|al)/i"); 

re6=prxparse("/not|without/i"); 

  end;   

  retain re5 re6; 

run; 

 

We again use CALL PRXSUBSTR and the SUBSTR function to extract text containing our 

RegEx for removal re5. We then search within the extracted text contained in the 

remov_str variable for the second RegEx re6 with negation words. An indicator variable 

iud_matched is created if it meets the Boolean criteria of no match found (position returned 

from PRXMATCH=0). 
 



10 

 

 

 

   data match; 

    set parse; 

       call prxsubstr(re5, notes, pos, len); 
    length remov_str $ 100; 

    if pos NE 0 then do; 

remov_str=substr(notes, pos, len); 

      iud_removed=(prxmatch(re6, remov_str)=0); 

     end; 

   run; 

 

proc print data=match; var remov_str iud_removed; run; 

 

Obs remov_str                                                  iud_removed 

1   IUD was removed                                                     1 

2   discussing we proceeded without IUD removal                         0 

3   so could not easily be removed                                      0 

4   Mirena IUD removed                                                  1 

5                                                                       0 

Output 4. Output from PROC PRINT following PRXPARSE and PRXMATCH 
 

MATCH MULTIPLE ITERATIONS OF A TARGET PHRASE WITH CALL PRXNEXT 

Let’s return to the example on page 7, where a clinician wanted to extract all text on an 

infant’s appearance starting from the subheading ‘General:’ or ‘Constitutional:’ until the 

next paragraph break. We used CALL PRXSUBSTR to locate the position and length of the 

first match of our RegEx, if any, found within a note. There are times when a single note 

may contain multiple iterations of this target phrase – for instance if a patient received an 

exam by more than one physician, or a physician uses a note template containing both a 

‘General:’ and ‘Constitutional:’ subheading. To ensure all target text is collected, we want to 

match all instances of the target phrase. We do this using the CALL PRXNEXT routine. 

For the purpose of this example, we combine Note 2 and Note 3 above – this is text of one 

observation stored in the notes field of our theoretical dataset: 

GENERAL: well appearing, no acute distress, well hydrated ?HEAD: normocephalic and 

anterior fontanelle open, flat ?EYES: normal eye exam ?EAR: TMs clear bilaterally ?NOSE: 

normal external appearance ? Fever 2 days Const: dehydrated, ill-appearing  ? Eyes: pupils 

equal and reactive,  lids, conjunctiva nl  ?ENT: bilateral TM's and external ear canals 

normal, normal and patent, mucous membranes moist, pharynx normal without lesions ? 

Temperature 99 at home 

As before, PRXPARSE is first used to define the RegEx. The following code uses the same 

RegEx defined in the previous example: 

data parse; 

  set concat; 

  if _N_ = 1 then do; 

re3=prxparse("/(gen(eral)?|const(itutional)?) ?(:|appear|-)[^?]*/i"); 

  end;   

  retain re3; 

run; 

 

In the next code block, CALL PRXNEXT uses the defined RegEx to search within the note for 

a match and returns the position and length of the match – just like we did with CALL 

PRXSUBSTR. This time, instead of searching within the entire note for the first match, we 



11 

search for the first match within the defined start and stop positions. At the beginning of the 

code block, start and stop are set to 1 and length(note) respectively. At the end of the CALL 

PRXNEXT call routine, the function resets the start position to position + length of the 

previous match. We use a DO WHILE loop to loop through the following program steps until 

a match is no longer found, causing pos =0: 

• Assign matching text to variable ‘gen_string’ using SUBSTR function 

• Output an observation containing the text chunk 

• Continue searching in text at new start position using CALL PRXNEXT 

   data all_substrings; 

    set parse; 

    length gen_string $ 500; 

    start=1; 

    stop=length(notes); 

    call prxnext(re3, start, stop, notes, pos, len); 

    do while pos>0;  

      gen_string=substr(notes, pos, len); 

      output; 

      call prxnext(re3, start, stop, notes, pos, len); 

    end; 

   run; 

 

   proc print data=all_substrings; var gen_string pos len start stop; run; 

 

Obs gen_string 

  1 General Appearance: Alert and non-toxic.  Appears in no acute distress.                                                              

  2 Const: dehydrated, ill-appearing   

 

Obs pos len start   stop 

  1 1 58 59   457                                                              

  2 215 39 254   457   

 

 

Output 5. Output from PROC PRINT following CALL PRXNEXT and SUBSTR 

 

REMOVE VARIABILITY FROM A TEXT BLOCK WITH PRXCHANGE 

As part of note data preparation, it may be useful to simplify the data set to reduce some 

amount of variability. We can do this by removing all non-alphanumeric (a-z, A-Z, 0-9), 

spaces, and phrase-ending (.,?) characters. Using the code below, non-toxic and nontoxic 

will be read similarly. If these distinctions or symbols are unimportant for the task at hand, 

their removal can quite helpful.  

The syntax for PRXCHANGE is different from the other PRX functions because you need to 

specify both a search and substitution regular expression.  

• In the following code, the perl-regex has three delimiters (/), separating the RegEx into 

two sections, a search section and substitute section. The s before the first delimiter 

indicates that the first RegEx should be substituted for the second RegEx.  

• The first RegEx has alphanumeric characters, whitespace, a period, a comma, and a 

question mark enclosed in square brackets with a leading carrot (^). This represents a 

single character that is not (because of the ^) within the brackets (remember brackets 

indicate choice).  



12 

• The second delimited RegEx is null (no characters between //).  

• Any character not within the square brackets in the previous RegEx will be removed and 

replaced with nothing (in other words, substituted with the null RegEx).  

• In the prxchange syntax, n-times=-1 indicates that the function will search and 

substitute until the end of the source text is reached.  

Here's the code: 

data cleanconcattext; 

  set concattext; 

  length cleantext $10000.; 

  cleantext=prxchange("s/[^a-zA-Z0-9?., ]//", -1, note_text); 

run; 

 

PRACTICAL CONSIDERATIONS FOR GETTING STARTED WITH A 

NATURAL LANGUAGE PROCESSING PROJECT 

PREPPING NOTE DATA 

As notes can be thousands of characters long, they are broken into several lines within a 

table in the EMR database. For most projects, since we need to find phrases that could span 

multiple lines of a note, we first concatenate all lines within a single note. There are many 

ways to do this, but here is one suggested method: 

3. Determine the distribution and maximum number of lines for a single note within the 

dataset. 

4. Convert your note line dataset from long form to wide form using your favorite long to 

wide program (e.g. PROC TRANSPOSE).  

5. Use the CATX function to concatenate lines and create a single character variable, after 

first specifying the length of the new variable. Note that the maximum size of a single 

variable created within a data step is 32,767 characters. A delimiter, such as a 

whitespace, can be specified in CATX to separate concatenated lines within the new 

variable. 

Interestingly, in our note data set, paragraph breaks are saved in the EMR as a question 

mark, ?. Though they make the electronic note fields painful to look at, they are useful for 

determining contiguous phrases. They can be processed within a regular expression like any 

other character. 

DESIGNING A REGULAR EXPRESSION 

Regular expressions might look like they were written by a robot, but, at least using the 

methodology covered in this paper, they are entirely human crafted. Knowledge of the 

syntax and metacharacters and an eye for patterns is hugely helpful, but even the best 

programmer needs exposure to subject area expertise and anecdotal experience to write a 

good regular expression.  

For us, crafting regular expressions starts with a conversation with a clinical expert and 

review of several example notes. After the notes have been concatenated and cleaned, we 

export a sample of notes into a spreadsheet. The clinical expert helps to identify target 

phrases and discusses other possible variations based on their experience. As we brainstorm 

target phrases, we also identify sources of potential false positives – negated phrases, 

keywords used out of context, etc.  

In any variable defining algorithm, false positives and false negatives are inevitable, and the 

key is finding a balance. If there’s a budget for additional chart review following electronic 



13 

case identification, with the goal to manually remove false positives, a more inclusive RegEx 

strategy could be best – inclusive RegEx=avoid missing cases or false negatives. If missing 

some cases is OK, as long as cases identified are most certainly true positives, then a more 

conservative RegEx strategy may be better suited.  

 

CONCLUSION 

SAS PRX functions and call routines can assist with complex natural language processing 

problems in health research.  

REFERENCES 

Alabaster A. Armstrong MA. 2018. “Interpreting electronic health data using SAS PRX 

functions.” WUSS 2018 Proceedings. Paper 92-2018. 

Backman T. 2004. “Benefit-risk assessment of the levonorgestrel intrauterine system in 

contraception.” Drug Safety. 27(15):1185-204. 

Borowiak KW. 2007. “PERL Regular Expressions 102.” SAS Global Forum 2007 Proceedings. 

Paper 135-2007. 

Cassell DL. 2005. “PRX Functions and Call Routines.” SUGI 30 Proceedings. Paper 138-30. 

Cody R. 2004. “An Introduction to Perl Regular Expressions in SAS 9.” SUGI 29 Proceedings. 

Paper 265-29.  

Heinemann K, Reed S, Moehner S, Minh TD. 2015. “Risk of uterine perforation with 

levonorgestrel-releasing and copper intrauterine devices in the European Active Surveillance 

Study on Intrauterine Devices.” Contraception. 91:274-9. 

Pless R. 2005. “An Introduction to Regular Expressions with Examples from Clinical Data.” 

PharmaSUG 2005 Proceedings. Paper TU02.  

“Regular Expressions 101.” Available at: https://Regex101.com 

SAS RegEx Tip Sheet. Available at: 

https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf 

van Grootheest K, Sachs B, Harrison-Woolrych M, Caduff-Janosa P, van Puijenbroek E. 

2011. “Uterine perforation with the levonorgestrel-releasing intrauterine device: analysis of 

reports from four national pharmacovigilance centres.” Drug Safety. Jan 1;34(1):83-8 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Amy Alabaster  

Kaiser Permanente Division of Research 

amy.alabaster@kp.org 

 
 


