

1

#SASGFSAS® GLOBAL FORUM 2020

Paper 4632-2020

Accelerating SAS Using High-Performing File Systems on
Amazon Web Services

Darryl S. Osborne, Amazon Web Services

ABSTRACT
When running efficient, high-performing SAS® applications in the cloud is critical to your
business, deploying the right storage architecture could be the difference between success
and failure. However, running a high-performing parallel, distributed file system is difficult
and often very expensive to setup, run, and maintain. What if you could offload this to
someone else, someone with expertise and with virtually unlimited resources? You can! This
paper guides you through selecting Amazon FSx for Lustre when running SAS Grid on AWS.
It also discusses the different types of cloud servers available on AWS and which are best
suited to access these high-performing file systems. This in-depth analysis considers the
needs of the different SAS tiers and gives recommendations based on compute, memory,
and network performance configurations, plus tips and tricks to help you get the most out of
your investment.

INTRODUCTION
SAS Grid is a highly available, fast processing analytics platform that offers centralized
management that balances workloads across different compute nodes. This application suite
is capable of data management, visual analytics, governance and security, forecasting and
text mining, statistical analysis, and environment management. It is designed to access and
process large amounts of data efficiently by distributing tasks across different compute
nodes managed by SAS Grid Manager. This accelerates job processing by distributing tasks
across a pool of shared resources to execute multiple jobs and tasks in parallel. Many
organizations are using SAS Grid to analyze their data and make critical business decisions.
They also want to spend less time deploying, managing, and troubleshooting infrastructure,
and more time focusing on their core business. Many of them are now making decisions to
move from their on-premises data centers to the cloud.

Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud
platform, offering over 175 fully featured services from data centers globally. Millions of
customers—including the fastest-growing startups, largest enterprises, and leading
government agencies—are using AWS to lower costs, become more agile, and innovate
faster. These customers want to spend less time deploying, managing, and troubleshooting
infrastructure, and more time focusing on their core business.

Once the decision has been made to run SAS applications on AWS, further decisions are
needed to design, deploy, and maintain a well architected environment. There are two
decisions every SAS Grid customer needs to make when deciding how to architect for AWS.
First is which file system to use to share permanent files between SAS Grid compute nodes.
Second is which Amazon Elastic Compute Cloud (EC2) instance type is optimized for the
selected shared file system while also satisfying SAS Grid compute node specifications and

2

requirements. Getting these two decisions right is critical to your business and could be the
difference between success or failure.

SHARED FILE SYSTEMS
SAS Grid is a highly available, fast processing analytics platform offering centralized job and
task management. SAS Grid Manager distributes compute tasks among different compute
nodes, allowing multiple jobs and tasks to run in parallel. It requires a shared file system to
permanently store files shared by compute nodes. It is recommended that this shared file
system be a parallel file system accessible from multiple Amazon EC2 instances and achieve
millions of IOPS and gigabytes per second throughput with consistent sub-millisecond
latencies.

AMAZON FSX FOR LUSTRE
Because you’re not in the business of running large scale, cloud optimized parallel file
systems, we recommend using Amazon FSx for Lustre for SAS Grid. This allows you to focus
more on running your business and the SAS application and less on managing a high
performing shared file system.

Amazon FSx if a fully managed file storage service that delivers third-party file systems so
you no longer have to worry about the design, deployment, ongoing administration and
overall complexity of running these file systems. There are multiple third-party file system
types within Amazon FSx but we prefer and recommend using Amazon FSx for Lustre when
running SAS Grid on AWS.

The open source Lustre file system is designed for applications that require fast storage –
where you want your storage to keep up with your compute. Lustre was built to quickly and
cost effectively process the fastest-growing data sets in the world, and it’s the most widely
used file system for the 500 fastest computers in the world. It provides sub-millisecond
latencies, up to hundreds of gigabytes per second of throughput, and millions of IOPS.

Now as a fully managed service, Amazon FSx enables you to use Lustre file systems for any
workload where storage speed matters. It eliminates the traditional complexity of setting up
and managing Lustre file systems, allowing you to spin up a high-performance file system in
minutes. It also provides multiple deployment options to optimize cost.

FSx for Lustre integrates with other AWS services like Amazon Virtual Private Cloud (VPC),
AWS Key Management Service (KMS), AWS Parallel Cluster, Amazon Elastic Kubernetes
Service (EKS), Amazon SageMaker, Amazon CloudWatch, AWS CloudTrail, and Amazon
Simple Storage Service (S3). For those of you not familiar with S3, it is an object storage
service that offers industry-leading scalability, data availability, security, and performance.
It provides easy-to-use management features so you can organize your data and configure
finely-tuned access controls to meet your specific business, organizational, and compliance
requirements. It is designed for 99.999999999% (11 9’s) of durability, and stores data for
millions of applications for companies all around the world. When linked to an S3 bucket,
FSx for Lustre transparently presents S3 objects as files. FSx for Lustre tracks changes and
enables you to write changed and new data on the file system back to your S3 bucket at
any time. SAS Grid customers using FSx for Lustre can benefit from this integration in two
ways. First it provides a simple mechanism to archive files to S3. Second it provides a
simple and fast mechanism to duplicate file systems. I’ll share more information on how to
leverage these benefits later in the whitepaper.

Amazon FSx for Lustre is POSIX-compliant, so you can use your current Linux-based
applications without having to make any changes. FSx for Lustre provides a native file
system interface and works as any file system does with your Linux operating system. It
also provides read-after-write consistency and supports file locking. You can control access
to your FSx for Lustre file systems with POSIX permissions and Amazon Virtual Private

3

Cloud (VPC) rules. You can access your file systems from Amazon EC2 instances, and from
on-premises computers using AWS Direct Connect or AWS VPN.

Amazon FSx for Lustre automatically encrypts your data at-rest and in-transit. If you are
subject to regulatory compliance, FSx for Lustre is PCI-DSS, ISO, SOC, GDPR compliant,
and is HIPAA eligible. You can also control network access via Amazon VPC Security Group
rules.

Amazon FSx for Lustre delivers the performance to satisfy a wide variety of high-
performance workloads. The Lustre file system is optimized for data processing, with sub-
millisecond latencies and throughput that scales to hundreds of gigabytes per second.

Amazon FSx for Lustre offers a choice between scratch and persistent file systems for short-
term and longer-term data processing. Scratch file systems are ideal for temporary storage
and shorter-term processing of data. Data is not replicated and does not persist if a file
server fails. Persistent file systems are ideal for longer-term storage and workloads. In
persistent file systems, data is replicated, and file servers are replaced if they fail. Because
of this higher data durability and higher availability of persistent file systems, we
recommend persistent file system for all type of data for SAS Grid, including SASDATA,
SASWORK, and UTILLOC.

Table 1 compares persistent and scratch file systems.

 Persistent Scratch 2

API Name PERSISTENT_1 SCRATCH_2

Availability and Durability

Metadata and storage
servers automatically
replaced on failure.
Storage replicated within
the same Availability Zone
(AZ).

Only metadata servers
automatically replaced on
failure.
Storage is not replicated.

Aggregated Throughput
(Per TiB of Storage Capacity)

50 MB/s per TiB
100 MB/s per TiB
200 MB/s per TiB

200 MB/s per TiB
Burst to 1,200 MB/s per TiB

IOPS Millions Millions

Latency sub-millisecond sub-millisecond

Workload Types
Jobs that are sensitive to
file system failures and
need data to be persistent

Jobs that can be re-run on
file system failures

Encryption at Rest AWS managed CMKs, or
Customer Managed CMKs AWS managed CMKs

Encryption in Transit
Yes, when accessed from
supported EC2 instances
in these regions

Yes, when accessed from
supported EC2 instances
in these regions

Storage Allocation 1.2 TiB, 2.4 TiB with
increments of 2.4 TiB

1.2 TiB, 2.4 TiB with
increments of 2.4 TiB

Table 1 Amazon FSx for Lustre Deployment Options

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/encryption-in-transit-fsxl.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/encryption-in-transit-fsxl.html

4

We recommend using persistent file systems for all SAS Grid libraries (SASDATA,
SASWORK, UTILLOC). The high availability of these file systems, along with gigabytes per
second throughput, millions of IOPS, sub-millisecond latencies, and encryption of data at
rest and in transit aligns with the characteristics needed for SAS applications.

Figure 1 Sample FSx for Lustre Architecture Diagram for SAS Grid

Every AWS account has a default soft limit 100 file systems per region. This limit can be
increased to thousands by contacting AWS Support. There is also a default soft limit on the
total storage capacity of all file systems in a region. Depending on the region, this default
soft limit could be 25.2 TiB or 100.8 TiB. This too can be increased to petabytes by
contacting AWS Support.

We recommend selecting the file system’s storage capacity based on the greater of these
two attributes; either the total storage capacity needed for your file system or the total
throughput needed for your workload based on 50, 100, or 200 MB/s per TiB of the total
storage capacity needed for your file system.

VPC

Amazon FSx for Lustre
Persistent File System

AWS Cloud

SAS Grid
Compute Tier

Elastic Network Interface

SAS Grid
Metadata Tier

Amazon S3
FSx for Lustre data repository

SAS Grid
Web Tier

Availability Zone A

/sasdata

/saswork

/utilloc

5

Getting Started with Amazon FSx for Lustre and SAS Grid
It takes only minutes to get started using FSx for Lustre with SAS Grid. Below are the steps
to get started.

1. Open the Amazon FSx console – https://console.aws.amazon.com/fsx/.

2. Choose Create file system.

3. Choose FSx for Lustre, then choose Next.

4. Provide a descriptive name for the file system, e.g. SAS Grid.

5. For Deployment type, choose Persistent.

6. Provide a storage capacity in TiB.

7. Choose the Per unit storage throughput, either 50, 100, or 200 MB/s per TiB of
storage capacity. If migrating for an existing file system, review your file systems
performance metrics to help determine the level of throughput you should select.

8. Provide the VPC and VPC security group information.

9. Choose an AWS Key Management Service (KMS) encryption key to encrypt the data at
rest.

10. For Data repository integration, choose Amazon S3 and provide the name of an S3
bucket (with optional import prefix) that will be linked to the file system.

11. For Export prefix, choose The same prefix that you imported from (replace
existing objects with updated ones).

12. Choose Next.

13. Review the attributes of the file system and select Create file system.

Within ~5 minutes the file system will be available and its status will change from creating
to available. Creation time is roughly the same regardless of the file system size (1.2 TiB,
100.8 TiB, etc.), as Lustre resources are created in parallel. If an Amazon S3 data
repository is linked to the file system, S3 objects’ names and prefixes will be visible as files
and directories. The number of objects in the linked S3 data repository may increase
creation time. You now have the world’s most popular high-performance parallel file system,
capable of driving hundreds of gigabytes per second, millions of IOPS, with sub-millisecond
latencies.

Amazon FSx for Lustre supports access from the 2.10 versions of the Lustre client. This
client is available for multiple Linux distributions, including Amazon Linux, Amazon Linux 2,
CentOS and Red Hat 7.5, 7.6, 7.7, and newer, SUSE Linux 12 SP3, and Ubuntu 16.04 and
18.04. Red Hat 8.0 is not currently supported. For the latest information on supported Linux
distributions and Lustre client install instructions, please refer to the Installing the Lustre
Client section of the Amazon FSx for Lustre User Guide.

Both SAS and AWS recommend mounting Lustre with the flock mount option. Below is a
sample mount command and mount output for FSx for Lustre:

$ sudo mount -t lustre -o noatime,flock fs-0123456789abcd.fsx.us-west-
2.amazonaws.com@tcp:/za3atbmv /fsx

$ mount -t lustre
172.31.41.37@tcp:/za3atbmv on /fsx type lustre

https://console.aws.amazon.com/fsx/
https://docs.aws.amazon.com/fsx/latest/LustreGuide/install-lustre-client.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/install-lustre-client.html

6

(rw,noatime,seclabel,flock,lazystatfs)

Optional configuration and advanced features
As previously mentioned, the native integration between Amazon FSx for Lustre and
Amazon S3 introduces exciting features and capabilities. When linked to an S3 bucket, FSx
for Lustre transparently presents S3 objects as files and directories. FSx for Lustre tracks
changes and enables you to write new and changed data on the file system back to your S3
bucket at any time. This provides a simple mechanism – data repository tasks – to backup
or archive SASDATA to S3. Data repository tasks optimize data and metadata transfers
between your FSx for Lustre file system and its data repository on S3. These tasks transfer
file data, symbolic links (symlinks), and Portable Operating System Interface (POSIX)
metadata, including ownership, permissions, and timestamps. When you export a file or
directory, your file system exports only data files and metadata that were created or
modified since the last export.

Because FSx for Lustre stores exported files as native objects in S3, you can use advanced
features of S3 to manage this data. Consider enabling S3 Cross-Region replication (CRR) or
Same-Region replication (SRR) to copy objects across S3 buckets in different or the same
region. We recommend enabling object versioning on the S3 bucket so multiple versions of
files are maintained in S3. This enables you to recover previous versions of files on demand
using standard S3 utilities. We also recommend setting up S3 lifecycle policies that
transitions files to the S3 Glacier cold storage class or deletes them with an expiration
policy.

You can start an export task from the Amazon FSx console or using the FSx API. Depending
on your recovery point objectives (RPO) and recovery time objectives (RTO), consider
developing a solution that schedules the export data repository task on run frequently. You
can automate this by using standard time-based job schedulers like cron or an Amazon
CloudWatch scheduled event running an AWS Lambda function. You can find an example of
this solution on the Amazon FSx for Lustre tutorial github repo.

You can create a new file system using the data and metadata archived to S3. Create a new
file system and choose the same S3 bucket as the data repository. File metadata is
imported into the new file system during creation and FSx for Lustre will lazy load data from
S3 upon first access. This allows you to easily create replacement or duplicate file systems
based on the data and metadata stored in S3.

The configuration of Amazon FSx for Lustre is optimized for workloads where speed matters,
such as machine learning, high performance computing (HPC), video processing, and
financial modeling. These default settings provide optimized performance for the majority of
users but Lustre provides advanced configuration settings to further optimize it based on
your requirements.

All file data in Lustre is stored on disks called object storage targets (OSTs). All file
metadata (including file names, timestamps, permissions, etc) is stored on disks called
metadata targets (MDTs). Amazon FSx for Lustre file systems are composed of a single MDT
and multiple OSTs, each of which is built on SSD storage. Each OST is approximately 1.17
TiB in size. FSx for Lustre automatically spreads your file data across OSTs that make up
your file system to balance storage capacity with throughput and IOPS load. To view the
listing and storage usage of the MDT and OSTs that make up your file system, run the
following command from a client that has the file system mounted:

lfs df -h mount/path

The output of this command looks like this but the size of the MDT and the number of OSTs
will vary depending on the storage capacity of your file system.

https://github.com/aws-samples/amazon-fsx-tutorial

7

UUID bytes Used Available Use% Mounted on
mountname-MDT0000_UUID 68.7G 5.4M 68.7G 0% /fsx[MDT:0]
mountname-OST0000_UUID 1.1T 4.5M 1.1T 0% /fsx[OST:0]
mountname-OST0001_UUID 1.1T 4.5M 1.1T 0% /fsx[OST:1]

filesystem_summary: 2.2T 9.0M 2.2T 0% /fsx

Output 1. Output from a Lustre lfs Command

Figure 2 Simple Lustre Architecture Diagram

You can configure how files are striped across OSTs. When a file is striped across multiple
OSTs, read or write requests to the file are spread across those OSTs, increasing the
aggregate throughput or IOPS. By default, each file is stored on a single disk. A file’s
striping parameters are set when the file is first created and are inherited from the
directory. You configure Lustre to spread files across multiple OSTs by setting the stripe
configuration at the directory. Spreading larger files over more OSTs will improve read
performance. Based on your access patterns, consider testing different directory stripe
configurations to optimize performance based on specific IO patterns. You may also
consider using a progressive file layout at the directory level to achieve good performance
without having to know or understanding the IO pattern. For more information on Lustre
progressive file layouts, please refer to progressive file layouts section on the Lustre wiki.

Lustre Architecture

MDS / MDT OSS / OST OSS / OST OSS / OST

MDS - Metadata Server
MDT - Metadata Target
OSS - Object Storage Server
OST - Object Storage Target
n - n number of clients/OSSs/OSTs

Lustre Client Lustre Client

n

n

http://wiki.lustre.org/Progressive_File_Layouts

8

Heavy utilized SAS Grid environments may benefit from using separate FSx for Lustre
persistent file systems for SASDATA, SASWORK, and UTILLOC. An alternative architecture
may offload temporary non-shared file system workloads (SASWORK and UTILLOC) to
instance store volumes or Amazon Elastic Block Store (EBS) volumes attached to the SAS
Grid and compute nodes. This alternative architecture is not generally recommended and
may add cost and complexity.

SAS GRID AND COMPUTE NODES
SAS Grid and compute nodes have the following file system performance and memory
recommendations, all based on the number of physical cores available to the node.

• Memory: minimum of 8 GB per physical core

• File system performance: SASWORK – minimum 125 MB/s per physical core

 UTILLOC – minimum 125 MB/s per physical core

 SASDATA – minimum 75-100 MB/s per physical core

 Overall – minimum 100-125 MB/s per physical core

Because our file system recommendation for all SAS Grid libraries is FSx for Lustre, which is
a network file system accessible to compute nodes over the network, we must help identify
Amazon EC2 instance types for SAS Grid and compute nodes that have enough network
performance that meet or exceed these recommendations. With over 260 different Amazon
EC2 instance types to choose from, you may be looking for guidance on which instance
families best align with these recommendations. Aligning these recommendations with EC2
resource characteristics is critical in selecting the right EC2 instance family or type. To help
you with this selection, I ran a series of highly parallel network throughput tests from
individual EC2 instances against a 100.8 TiB FSx for Lustre file system, which had an
aggregate throughput capacity of 19.688 GB/s. IOR was used to generate write activity to
the file system using parallel threads and direct I/O, bypassing I/O buffers. These tests
were run in multiple AWS regions: N. Virginia (us-east-1); Ohio (us-east-2); Oregon (us-
west-2); and Ireland (eu-west-1); using multiple Amazon EC2 instance families (c5, c5n, i3,
i3en, m5, m5a, m5ad, m5n, m5dn, r5, r5a, r5ad, r5n, and r5dn). Not all these instance
families are available in these 4 regions. The tests ran for 3 hours for each instance and the
DataWriteBytes metric of the file system was recorded every 1 minute. Only 1 instance was
accessing the file system at a time and the p99.9 results were captured. The metrics were
consistent across all 4 regions and the results for the Oregon (us-west-2) region are
available in table 3 below.

This script ran on every EC2 instance type listed in table 2:
module load mpi/openmpi-x86_64
mkdir -p /mnt/fsx/data
job_name=$(echo $(uuidgen)| grep -o ".\{6\}$")
sudo bash -c 'echo 3 > /proc/sys/vm/drop_caches'
mpirun -n 84 --oversubscribe ior --posix.odirect -Y -u -t 1m -b 1g -s 1024
-v -w -i 128 -F -o /mnt/fsx/data/${job_name}.txt

Table 2 shows the results of the IOR test to help identify which instance family meets the
SAS Grid and compute node network performance and memory recommendations.

9

API Name
Physical
Cores

Variable
Network
Performance
Peak (MB/s)

Variable
Network
Performance
Peak
Duration
(seconds)

Consistent
Network
Performance
(MB/s)

Network
Performance
per Physical
Core (MB/s)

Memory
per
Physical
Core
(GiB)

c5.large 1 1227.02091 300 92.81645 92.81645 4

c5.xlarge 2 1248.37167 600 155.01449 77.50724 4

c5.2xlarge 4 1251.85643 1200 310.09888 77.52472 4

c5.4xlarge 8 1251.75507 2400 620.22571 77.52821 4

c5.9xlarge 18 Not applicable Not applicable 1502.32629 83.46257 4

c5.12xlarge 24 Not applicable Not applicable 1502.05017 62.58542 4

c5.18xlarge 36 Not applicable Not applicable 3020.19248 83.89424 4

c5.24xlarge 48 Not applicable Not applicable 2994.46742 62.38474 4

c5n.large 1 1427.74807 1200 372.80372 372.80372 5.25

c5n.xlarge 2 2676.75238 1200 623.42212 311.71106 5.25

c5n.2xlarge 4 3168.92250 2400 1246.71842 311.67960 5.25

c5n.4xlarge 8 3168.97143 3300 1902.08191 237.76024 5.25

c5n.9xlarge 18 Not applicable Not applicable 6338.39376 352.13299 5.25

c5n.18xlarge 36 Not applicable Not applicable 11951.43157 331.98421 5.25

i3.large 1 1148.26587 300 92.83393 92.83393 15.25

i3.xlarge 2 1255.04236 600 154.82225 77.41112 15.25

i3.2xlarge 4 1258.54635 1200 309.67945 77.41986 15.25

i3.4xlarge 8 1258.56558 2400 622.72657 77.84082 15.25

i3.8xlarge 16 Not applicable Not applicable 1516.82810 94.80176 15.25

i3.16xlarge 32 Not applicable Not applicable 3071.22318 95.97572 15.25

i3en.large 1 1745.51204 600 260.43133 260.43133 16

i3en.xlarge 2 2557.30035 600 520.92382 260.46191 16

i3en.2xlarge 4 3169.26853 1200 1041.96997 260.49249 16

i3en.3xlarge 6 3169.09027 2400 1552.11093 258.68516 16

i3en.6xlarge 12 Not applicable Not applicable 3169.19863 264.09989 16

10

API Name
Physical
Cores

Variable
Network
Performance
Peak (MB/s)

Variable
Network
Performance
Peak
Duration
(seconds)

Consistent
Network
Performance
(MB/s)

Network
Performance
per Physical
Core (MB/s)

Memory
per
Physical
Core
(GiB)

i3en.12xlarge 24 Not applicable Not applicable 6338.55104 264.10629 16

i3en.24xlarge 48 Not applicable Not applicable 12020.12029 250.41917 16

m5.large 1 1225.68223 600 92.83393 92.83393 8

m5.xlarge 2 1249.12315 600 155.01449 77.50724 8

m5.2xlarge 4 1251.94732 1200 310.11286 77.52821 8

m5.4xlarge 8 1251.99800 2400 620.24319 77.53040 8

m5.8xlarge 16 Not applicable Not applicable 1251.94382 78.24649 8

m5.12xlarge 24 Not applicable Not applicable 1502.32979 62.59707 8

m5.16xlarge 32 Not applicable Not applicable 2503.76531 78.24267 8

m5.24xlarge 48 Not applicable Not applicable 2995.60687 62.40848 8

m5a.large 1 1219.16533 300 92.81645 92.81645 8

m5a.xlarge 2 1248.13225 600 155.01449 77.50724 8

m5a.2xlarge 4 1251.86867 1200 310.09888 77.52472 8

m5a.4xlarge 8 1251.77255 2400 620.18727 77.52341 8

m5a.8xlarge 16 1252.05217 3900 938.91592 58.68225 8

m5a.12xlarge 24 Not applicable Not applicable 1251.90887 52.16287 8

m5a.16xlarge 32 Not applicable Not applicable 1502.38222 46.94944 8

m5a.24xlarge 48 Not applicable Not applicable 2503.96104 52.16586 8

m5ad.large 1 1228.86117 300 92.81645 92.81645 8

m5ad.xlarge 2 1248.96761 600 155.03196 77.51598 8

m5ad.2xlarge 4 1251.95780 1200 310.11111 77.52778 8

m5ad.4xlarge 8 1252.01547 2400 620.21523 77.52690 8

m5ad.12xlarge 24 Not applicable Not applicable 1251.76906 52.15704 8

m5ad.24xlarge 48 Not applicable Not applicable 2503.99774 52.16662 8

m5n.large 1 1774.61002 600 260.43133 260.43133 8

11

API Name
Physical
Cores

Variable
Network
Performance
Peak (MB/s)

Variable
Network
Performance
Peak
Duration
(seconds)

Consistent
Network
Performance
(MB/s)

Network
Performance
per Physical
Core (MB/s)

Memory
per
Physical
Core
(GiB)

m5n.xlarge 2 2965.57565 600 510.44680 255.22340 8

m5n.2xlarge 4 3169.12872 1200 1014.85729 253.71432 8

m5n.4xlarge 8 3169.09377 2400 2056.20511 257.02564 8

m5n.8xlarge 16 Not applicable Not applicable 4225.55157 264.09697 8

m5n.12xlarge 24 Not applicable Not applicable 6338.58949 264.10790 8

m5n.16xlarge 32 Not applicable Not applicable 8451.36003 264.10500 8

m5n.24xlarge 48 Not applicable Not applicable 12114.19853 252.37914 8

m5dn.large 1 1915.05280 600 260.44531 260.44531 8

m5dn.xlarge 2 3109.39484 600 510.44680 255.22340 8

m5dn.2xlarge 4 3169.15668 1200 1014.14775 253.53694 8

m5dn.4xlarge 8 3169.06406 2400 2055.89053 256.98632 8

m5dn.8xlarge 16 Not applicable Not applicable 4225.61797 264.10112 8

m5dn.12xlarge 24 Not applicable Not applicable 6338.34482 264.09770 8

m5dn.16xlarge 32 Not applicable Not applicable 8451.13459 264.09796 8

m5dn.24xlarge 48 Not applicable Not applicable 12232.71208 254.84817 8

r5.large 1 1216.58234 300 92.83393 92.83393 16

r5.xlarge 2 1245.36575 600 155.03196 77.51598 16

r5.2xlarge 4 1251.77255 1200 310.06392 77.51598 16

r5.4xlarge 8 1251.77255 2400 620.16629 77.52079 16

r5.8xlarge 16 Not applicable Not applicable 1252.01722 78.25108 16

r5.12xlarge 24 Not applicable Not applicable 1501.98026 62.58251 16

r5.16xlarge 32 Not applicable Not applicable 2503.66394 78.23950 16

r5.24xlarge 48 Not applicable Not applicable 3004.34500 62.59052 16

r5a.large 1 984.12353 300 92.81645 92.81645 16

r5a.xlarge 2 1249.65443 600 155.00924 77.50462 16

12

API Name
Physical
Cores

Variable
Network
Performance
Peak (MB/s)

Variable
Network
Performance
Peak
Duration
(seconds)

Consistent
Network
Performance
(MB/s)

Network
Performance
per Physical
Core (MB/s)

Memory
per
Physical
Core
(GiB)

r5a.2xlarge 4 1251.91236 1200 310.07616 77.51904 16

r5a.4xlarge 8 1251.85469 2400 620.18202 77.52275 16

r5a.8xlarge 16 1251.97178 3900 939.02078 58.68880 16

r5a.12xlarge 24 Not applicable Not applicable 1251.85819 52.16076 16

r5a.16xlarge 32 Not applicable Not applicable 1502.41367 46.95043 16

r5a.24xlarge 48 Not applicable Not applicable 2503.83871 52.16331 16

r5ad.large 1 1218.97135 300 92.81645 92.81645 16

r5ad.xlarge 2 1248.88198 600 155.03196 77.51598 16

r5ad.2xlarge 4 1251.85294 1200 310.08140 77.52035 16

r5ad.4xlarge 8 1251.89314 2400 620.21523 77.52690 16

r5ad.12xlarge 24 Not applicable Not applicable 1251.87741 52.16156 16

r5ad.24xlarge 48 Not applicable Not applicable 2504.12182 52.16920 16

r5n.large 1 1789.06464 600 260.44880 260.44880 16

r5n.xlarge 2 2972.05760 600 510.42932 255.21466 16

r5n.2xlarge 4 3169.16367 1200 1014.30155 253.57539 16

r5n.4xlarge 8 3168.98542 2400 2055.92549 256.99069 16

r5n.8xlarge 16 Not applicable Not applicable 4225.70885 264.10680 16

r5n.12xlarge 24 Not applicable Not applicable 6338.69435 264.11226 16

r5n.16xlarge 32 Not applicable Not applicable 8451.33032 264.10407 16

r5n.24xlarge 48 Not applicable Not applicable 12183.11444 253.81488 16

r5dn.large 1 1844.38576 600 260.43133 260.43133 16

r5dn.xlarge 2 3111.51297 600 510.44680 255.22340 16

r5dn.2xlarge 4 3169.23358 1200 1014.02542 253.50636 16

r5dn.4xlarge 8 3169.12697 2400 2057.23271 257.15409 16

r5dn.8xlarge 16 Not applicable Not applicable 4225.70885 264.10680 16

13

API Name
Physical
Cores

Variable
Network
Performance
Peak (MB/s)

Variable
Network
Performance
Peak
Duration
(seconds)

Consistent
Network
Performance
(MB/s)

Network
Performance
per Physical
Core (MB/s)

Memory
per
Physical
Core
(GiB)

r5dn.12xlarge 24 Not applicable Not applicable 6338.32385 264.09683 16

r5dn.16xlarge 32 Not applicable Not applicable 8451.31984 264.10374 16

r5dn.24xlarge 48 Not applicable Not applicable 12100.28567 252.08928 16

Table 2 IOR Test Results

Table 3 shows the EC2 instance families that meet the minimum network performance and
memory recommendations.

Instance
Family

Meets Minimum Network
Performance Recommendation

Meets Minimum Memory
Recommendation

c5

c5n

i3

i3en

m5

m5a

m5ad

m5n

m5dn

r5

r5a

r5ad

r5n

r5dn

Table 3 EC2 Instance Family SAS Grid and Compute Minimum Recommendations

The i3en, m5n, m5dn, r5n, and r5dn EC2 instance families meet or exceed the minimum
network performance and memory recommendations. The m5n and m5dn instance families
have 8,358,070,954.67 bytes of memory per physical core. If measuring memory using

14

base 2 (210 = 1024), the m5n and m5dn have 7.78406 GiB per physical core, just under the
minimum recommendation. If measuring memory using base 10 (103 = 1000), the m5n and
m5dn have 8.35807 GB per physical core, just above the minimum recommendation. The i3
instance family is just shy of meeting the minimum network performance recommendation,
but based on your needs this instance family may meet your requirements. The i3, i3en,
m5dn, and r5dn instance families include instance store volumes that provide temporary
block-level storage located on disks that are attached to the underlying host. These
instances have a higher EC2 compute price when compared to instances without instance
store volumes. Because we recommend using Amazon FSx for Lustre for hosting SAS Grid
libraries, selecting instances with instance store volumes at a higher price may not be
warranted. To achieve the highest levels of throughput to an FSx for Lustre persistent file
systems, you may need to use multiple threads per EC2 instance. We have to work within
the laws of physics. FSx for Lustre is a high-performance file system accessed over the
network. There is added latency when accessing storage over the network compared to local
disks like instance store volumes. If you have a large number of single-threaded jobs, you
may consider using i3en instances to offload your temporary scratch space - /SASWORK
and /UTILLOC to instance store volumes attached to these instances.

To compare throughput between the i3en, m5d, m5dn, r5n, and r5dn instance families, I
ran similar multi-threaded IOR write tests on these instances to an FSx for Lustre persistent
file system that had a storage capacity of 100.8 TiB with an aggregate throughput capacity
of 19.688 GB/s. For those instance families that have instance store volumes (i3en, m5dn,
r5dn), I ran the same IOR write test against these instance store volumes. Instance types
with multiple NVMe disks were mounted as RAID0. All instance store volumes were
formatted using ext4.

Table 4 below shows the results of running the IOR write tests against these instance
families.

Instance
Families

Variable
Network
Performance
per Physical
Core (MB/s)

Consistent
Network
Performance
per Physical Core
(MB/s)

Instance
Store
Volumes -
NVMe (GiB)

Instance Store
Volume
Performance per
Physical Core
(MB/s)

i3en 528.18 - 1745.51 259.81 1250 - 60000 154.26

m5n 396.18 - 1774.61 258.89 Not available Not available

m5dn 396.13 - 1915.05 259.17 75 - 3600 62.48

r5n 396.12 - 1789.06 259.05 Not available Not available

r5dn 396.14 - 1844.39 258.84 75 - 3600 62.22

Table 4 IOR write test results between FSx for Lustre and instance store volumes

M5n and r5n instances are a good blend of price and performance. We recommend m5n
instances for general SAS Grid compute nodes but if your workload is memory bound,
consider using r5n instances which provide double the memory per physical core at a
slightly higher price.

To test the throughput of a few m5n and r5n instance types, I ran the rhel_iotest.sh
script which is available from the SAS Technical Support Samples Tools (SASTSST)
Repository - http://support.sas.com/kb/59/680.html. All instances had an FSx for Lustre
persistent file system mounted with the default mount options and the file system path used

http://support.sas.com/kb/59/680.html

15

the default Lustre stripe set. The file system had a storage capacity of 100.8 TiB with an
aggregate throughput capacity of 19.688 GB/s.

Table 5 below shows the results of running rhel_iotest.sh against a few m5n and r5n
instances.

Instance Type

Variable Network Performance
Peak per Physical Core

Read (MB/s) Write (MB/s)

m5n.large 850.20 357.07

m5n.xlarge 519.46 386.25

m5n.2xlarge 283.01 446.84

m5n.4xlarge 202.89 376.57

m5n.8xlarge 154.98 297.71

r5n.large 906.88 429.93

r5n.xlarge 488.36 455.76

r5n.2xlarge 256.96 471.65

r5n.4xlarge 203.31 390.03

r5n.8xlarge 149.63 299.45

Table 5 rhel_iotest.sh results

To take advantage of the elasticity, scalability, and flexibility of the cloud, we recommend
spreading the SAS Grid and compute workload over a larger number of smaller instances
versus using a smaller number of larger instances.

CONCLUSION
Because you’re not in the business of running large scale, cloud optimized parallel file
systems, we recommend using Amazon FSx for Lustre persistent file systems for all SAS
Grid storage, including SASDATA, SASWORK, and UTILLOC. This allows you to focus more
on running your business and the SAS Grid application and less on managing a high
performing file system. Your goal when selecting a file system for your SAS deployment is
to make sure you get consistent low latencies, high throughput, and millions of IOPS so
your SAS jobs complete within the expected timeframe. While there are other storage
options for running SAS Grid on AWS – like Amazon Elastic File Systems (EFS), Do-It-
Yourself (DIY) file systems using Amazon EC2 with instance store volumes or Amazon
Elastic Block Store (EBS), or even 3rd party storage solutions – these offerings add cost and
complexity and may impact performance, availability, and data durability. We recommend
Amazon FSx for Lustre for its ease of use, quick deployment, performance, simplicity,
availability, and durability. We also recommend using m5n and r5n Amazon EC2 instance
families for SAS Grid compute nodes when accessing SAS Grid libraries hosted on Amazon
FSx for Lustre.

16

REFERENCES
Amazon Web Services. “AWS Service Level Agreements.” Accessed February 27, 2020.
https://aws.amazon.com/legal/service-level-agreements/.

Amazon Web Services. “Amazon EC2 Instance Types.” Accessed February 27, 2020.
https://aws.amazon.com/ec2/instance-types/.

Amazon Web Services. “Object Versioning.” Accessed February 27, 2020.
https://docs.aws.amazon.com/AmazonS3/latest/dev/ObjectVersioning.html.

Amazon Web Services. “Object Lifecycle Management.” Accessed February 27, 2020.
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html.

Amazon Web Services. “Installing the Lustre Client.” Accessed February 27, 2020.
https://docs.aws.amazon.com/fsx/latest/LustreGuide/install-lustre-client.html.

Amazon Web Services. “Amazon FSx for Lustre Tutorial.” Accessed February 27, 2020.
https://github.com/aws-samples/amazon-fsx-tutorial.

Amazon Web Services. “Amazon FSx for Lustre Quotas.” Accessed February 27, 2020.
https://docs.aws.amazon.com/fsx/latest/LustreGuide/limits.html.

Lustre.org. “Progressive File Layouts.” Accessed February 27, 2020.
http://wiki.lustre.org/Progressive_File_Layouts.

SAS. “Usage Note 59680: Testing throughput for your SAS® 9 File Systems: The
rhel_iotest.sh script.” Accessed February 27, 2020. http://support.sas.com/kb/59/680.html.

RECOMMENDED READING
• Amazon Elastic Compute Cloud User Guide for Linux Instances

• Amazon FSx for Lustre User Guide

• Amazon FSx for Lustre Tutorial on Github

• Lustre.org Wiki

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Darryl S. Osborne
Amazon Web Services
darrylo@amazon.com
https://aws.amazon.com

https://aws.amazon.com/legal/service-level-agreements/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AmazonS3/latest/dev/ObjectVersioning.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/install-lustre-client.html
https://github.com/aws-samples/amazon-fsx-tutorial
https://docs.aws.amazon.com/fsx/latest/LustreGuide/limits.html
http://wiki.lustre.org/Progressive_File_Layouts
http://support.sas.com/kb/59/680.html

