
 

 

1 

Paper SAS4612-2020 

Turning the Crank: A Simulation of Optimizing Model Retraining  

David R. Duling, SAS Institute Inc. 

ABSTRACT  

Model retraining is a common practice in the advanced model life cycle.  However, the 

critical question is how do you know when you need to retrain the model?  Once the model 

is retrained, how do we determine when we need to redeploy the model?  Can we predict 

how long the model will be relevant?  The answers can depend on one or more of many 

factors including calendar fluctuations, business cycles, data drift, model performance, 

expected benefit, and many others.  Given those factors, we want to find the optimal points 

in time to retrain and redeploy a predictive model.  This paper presents a simulation study 

of different strategies and techniques for optimizing model retraining with the goal of 

maintaining optimal business performance. 

INTRODUCTION  

Most data mining studies focus on building the most accurate predictive models.  

Competition programs such as Kaggle often supply a single large data set and pose a 

unique prediction problem.  The typical task is formed to create one predictive model with 

maximum test data accuracy.  Competitive models are often formulas that have been 

carefully tuned to the unique objective function on the single large data set.  Once the 

competition is completed, the supplier of the data harvests the knowledge created by the 

competitors.  The competitors move on to the next challenge.  However, data does not exist 

as a single point in time.  In real-world applications, data is continuously collected from 

operational systems and is subject to changing conditions.  The data collected in the second 

month may be different than the data collected in the first month.  Therefore, we may need 

to create a new model in the second month or later.  The process of creating a new model 

to adapt to changing patterns in the data is called “model retraining”.  This paper expands 

on a sample of retraining strategies using a long running data sample from a publicly 

available source.   

MODEL DECAY 

In our 2019 paper “The Aftermath What Happens After You Deploy Your Models and 

Decisions”, we described how models are scored in an operational process. We also 

concluded with a section on model decay and retraining, and then presented a theoretical 

example.  Figure 1 shows two plots from that paper.  In both plots, the lower green line 

shows a measure of model performance for a real model created on that data sample.  The 

thicker red lines show theoretical forms of model decay.  The top plot shows the ideal 

situation in the top red line showing a continuously high level of model performance versus 

the realistic situation with the descending line of model performance.  This plot is unrealistic 

due to data drift and model decay, which refer to the natural process of making less 

accurate predictions due to changes in data over time.  In the bottom plot, the top red line 

shows a more realistic situation where the model is retrained each month, restoring the 

predictive accuracy to the maximum expected level each month.  The overall gain is much 

greater from the frequently trained models than the originally trained model shown in the 

lower green line in each plot.  However, this is a theoretical example based on data that was 

over-sampled to create multiple time periods.   
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Figure 1. Theoretical Model Performance in Absence of Model Decay and by Frequent Retraining 

MODEL MONITORING AND RETRAINING  

There are numerous potential strategies for monitoring model performance and scheduling 

model retraining.  Selection of a retraining strategy often depends on the business needs.  

Some processes can accept new models whenever they are created and validated.  Some 

processes can accept new models only at fixed points in time.  In many cases, models are 

created for comparison but never promoted to production. The main point is that model 

monitoring and retraining must be part of the business dynamic. 

MONITORING 

Model monitoring is a process for determining how well a model is or may be performing.  

There are several potential analyses that might be performed.  Model monitoring process 

should measure all these factors: 

• Data drift.  Data values naturally changes over time due to numerous factors. People 

age.  The economy becomes more or less positive.  Mechanical parts erode or get 

updated.  Competitors improve.  Measuring changes in data values can be an early 

indicator of changes in model or business performance; however, not necessarily 

always.   

• Model stability.  Due to changes in data values, the distribution of model predictions 

may change.  These changes will almost certainly impact business performance or 

planning.  For instance, if predictions of truck maintenance-need increases, then 

more trucks will be scheduled for visits to the shop. More visits increase expenses 

regardless of the prediction accuracy.   

• Model accuracy.  If predictions target labels are available, then we may compute 

model accuracy measures. Degradation of model accuracy outside of acceptable 

bounds indicate a need for model retraining.   

• Variable contribution. Changes in variable contribution to the model score or the 

model accuracy should be measured.  These changes are also leading indicators of 

changes in model performance and may be used for reporting inferences about which 

variables caused changes in stability or accuracy.  This may also be termed model 

interpretability. 
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The results of model monitoring should be stored and are used for model governance, 

statistical and business analysis, and as part of the process of determining if the model 

needs to be retrained. 

RETRAINING 

Model retraining is the process of recomputing a predictive or descriptive model on new 

data. Each new set of coefficients or effects is considered a new model.  Models are 

retrained for multiple reasons.   

• Business strategy.  Changes to objectives such as increasing or decreasing 

acceptable levels of credit risk, investment in growth of new product lines, or 

numerous other facets will create the need for retraining models or creating new 

models. 

• External conditions.  Changes in business factors such as interest rates, new data 

sources, or suppliers of real-time truck metrics may create a need to retrain models.   

• Business performance.  Changes in measure such as response to promotions, credit 

repayment, truck repairs, and numerous others will create the need model retraining 

and / or review of the business strategy.  Some change will be needed. 

• Model Monitoring.  Changes in the measures reported by model monitoring may 

create the need for retraining the model.  This may be due to declining accuracy, 

data drift, or stability. 

 

BUSINESS PROCESS  

Organizations have many reasons for building predictive and descriptive models.  Some 

models are used only for inference to learn more about the processes that shape the 

business or the expected impact of new strategies.  Other models are created for integration 

into operational systems that interact with customer and business touchpoints to make the 

business more efficient, drive growth, improve loyalty, or other systematic objectives.  The 

flow chart shown in Figure 2 is just one possible representation of a process for managing 

models.   

The process flow is cyclical; however, we can say it starts with an operational business 

process that consumes and produces data.  We are only representing the process for 

monitoring and retraining a model.  We are not representing the process for defining a 

business problem and building the initial model.  Here are the possible paths to start a 

model retraining process in this example: 

• A timer event starts each cycle of the process, according to some predefined 

schedule.   

• One timer event directly starts a model retraining.  This is the process we are using 

in our simulation.  

• Another timer event directly starts a model monitoring.  The is the process we are 

using in our simulation.  

• Another timer event checks for new data.  If new data exists, a new monitoring job 

is executed.  This could also be the process we are using in our simulation.  New 

flight data arrives in monthly chunks.  

• Regardless of the source, we always want the monitor process to record the current 

statistics for future analysis. 
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• A KPI measures computed from the monitoring output may drive the retraining.  For 

instance, we may want to retrain if model accuracy falls below a threshold such as 

misclassification greater than 20%. 

• A business strategy change may trigger a model retraining if not a completely new 

model.  

• The newly retrained model should be tested for measures of robustness, accuracy, or 

expected ROI.  It may be compared to a champion model.  The model may fail 

testing and trigger a review of the model building process. 

• If a new model passes testing, it may be deployed into the production environment 

for integration into the operational business process.   

 

Figure 2. Sample Process Flow Diagram for Model Monitoring and Retraining 

 

IMPLEMENTATION 

The goal of our analysis is to test the effect of different strategies for model monitoring and 

retraining on long term model performance.  To create this very custom process, completely 

new SAS code was written.  Here are the descriptions for the major components of the 

code: 

• The primary data was downloaded from the Bureau of Labor Statistics web site.  The 

data consists of 145M rows of data stored in multiple CSV files. 

• PROC IMPORT was used to import each CSV file into a corresponding SAS data set.  

Minimal data cleaning was performed at this stage.  Several variables that are 

naturally numerical integers were mistakenly imported as character variables in the 

SAS tables and needed to be changed in the next step. 

• DATA step and Base SAS procedures were used to transform and clean the data.  A 

small number of observations had missing values for departure or arrival time and 
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were removed from the data.  Several character variables were transformed into 

numerical columns.  Variables that were irrelevant to the analysis were dropped.  

Variables that were proxies for flight late arrival were dropped. The target variable 

LATE was created with numerical Boolean value of (Arrival_Delay > 15).  All months 

of data were combined into one large table with 145M observations.  This “big table” 

was for all calculations. 

• DATA step was used to create Training and Monitoring samples by querying the big 

table for specific months of data.  The Training data was divided randomly into 

approximately equal samples of Train and Test data.  Train data was used to build 

the model. Test data was used to report the statistics from the training exercise.   

• SAS High-Performance Analytics procedures were used to create Decision Tree and 

Logistic Regression models.  Default settings were used in all cases.  Score code was 

saved from each training run into a directory of files.  The score code was used to 

compute test data statistics and for model monitoring.  PROC HPSPLIT and ODS were 

used to create the Decision Tree display images. 

• Base SAS procedures were used to test statistics and model monitoring statistics 

such as mean monthly values of Late proportion, Probability, Misclassification, and 

True Positive rates.  

• PROC SGPLOT and PROC PRINT were used to make all graphs and table displays.   

• The SAS macro %SIM was used to script these operations.  The %SIM macro was 

developed to simulate model retraining and monitoring with different time periods for 

the entire 303 months of data.  All statistics used in this paper came from the %SIM 

macro. 

Note: All SAS code that was used for this paper is available from the author upon request. 

DATA  

For the remainder of this paper, we will refer to the Airline flight data used in several data 

mining competitions and samples.  The data is freely available from the U.S. Bureau of 

Transportation Statistics.  The data starts in October of 1987 and continues to be updated. 

Our sample ranges from 1987 until the end of 2012.  The data contains variables describing 

various attributes about the flight including the scheduled arrival time and the actual arrival 

time.  Several papers have been written about this data including a visualization paper by 

Rick Wicklen as contribution to the ASA Data Expo contest in 2009.   

We use this data because it represents a consistent source of data over many years, which 

has the potential to show change in data values and patterns over that time.  In this 

exercise, our goal is to show long term trends in model monitoring; we are not trying to 

infer new knowledge about the data or build the most sophisticated model.  Our sample 

contains 145,664,836 observations.  All variables that would not be available at the time of 

model building or model deployment have been rejected.  The first ten rows of data are 

printed in Table 1. 
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Table 1. Sample of Data Showing Variables with Typical Values 

 

The derived target variable is named late and is either 0 or 1 to indicate more than 15 

minutes late.  The variables starting with CRS are scheduled times.  The only variable that 

depends on the instance of the flight is departure delay, DEP_DELAY, which is necessary to 

produce good models without creating complicated lag variables.   

The business of managing flight on-time performance has many latent factors.  Airlines are 

reported to implement procedures to control and improve their on-time percentage as 

needed.  They may use this data to make announcements about their performance and 

enhance their marketing campaigns.  Flights that leave late may spend more fuel in an 

effort to regain time.  Flight crew and airport expenses may constrain on time performance.     

Table 2 shows the number of flights aggregated by month over the entire time period.  

Column N refers to the total number of flights.  The monthly late rate averages 19.0% and 

ranges from 10.2% to 32.0%.  Numeric model input predictor variables are also shown.  

The scheduled elapsed time, CRS_ELAPSED_TIME, shows a notably small standard 

deviation, perhaps indicating there has been little overall change in the scheduled routes.  

 

Table 2. Aggregated Monthly Means for the Entire Period of 303 Months 

 

The plot of the number of flights per month is more interesting, in Figure 3.  The sample 

contains 303 months of data over 25 years.  The small yearly seasonality is apparent.  

There are peaks in travel around the winter holidays and over the northern hemisphere 

summer vacation periods.  Markers have been added for selected significant global events.   

The dramatic impact that the September 11, 2001 terror attacks had an obvious impact on 

air travel, as expected, followed by a dramatic rise in the number of flights in January 2003.  

The rate of flights that are late each month is shown in the lower plot.  There is minimal 

correlation between the total number of flights and the rate of late flights.   
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Figure 3. Total Number of Airline Flights per Month with Significant Event Markers 

Most treatments of this data focus on modeling or visualizing the entire data set.  However, 

imagine that you are an analyst working in 1987.   

 

MODELS 

The data is provided in monthly data sets.  We created our first model on the first month of 

data, October of 1987, which contains 448620 rows.  The data is randomly split into half 

training data and half test data.  The model is a default decision tree created by PROC 

HPSPLIT, which uses 10-fold cross validation to control the growth of the tree.   A decision 

tree is good default model for this study since it is tolerant to new data values and naturally 

incorporates variable selection. Figure 4 illustrates the model results with the complete 

classification tree for the first month of data and the top subtree with details about the 

variables used in the model. 

The complete classification tree demonstrates a complex model using several variables.  The 

categorical variables identifying the airline, origination airport, and destination airport have 

higher cardinality and contribute to many of the tree branches.  The subtree view shows top 

portion of the tree where departure delay is the most significant variable, as expected, but 

that other variables contribute to the classification values.   
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Figure 4. Classification Tree and Subtree of Model Variables 

 

The relative variable importance values are shown in Table 3.  These values correlate with 

the detail view of the decision tree.  After DEP_DELAY, the remaining variables retain 

significant impact on the classification rates. 

 

Table 3. Decision Tree Variable Importance Measures 

 

Table 4 demonstrates the Decision Tree model results on the test sample from the first 

month of data. Late is the proportion of late flights, i_late is the proportion of flights 

classified as late, i_misc is the overall misclassification rate, and i_tp is the proportion of 

flights correctly classified as late. The score code was then applied to the test data sample 

and the classification (i_late), misclassification flag (i_misc), and true positive flag (i_tp) 

were computed.  PROC MEANS was run to summarize the test scores and produced the data 

shown in Table 4.  We can see that in the test sample, 17.3% of the flights were late, 7.2% 
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of flights were misclassified, and 10% of flights were correctly classified as late.  These 

metrics will be used to monitor model accuracy in the remaining data.   

 

Table 4. Decision Tree Model Results on Test Sample from the First Month of Data 

 

For comparison purposes, we also ran a Logistic Regression model through the same 

process.  The absolute results are similar as shown in table 7.  The misclassification rate is 

1.2% higher, and the true positive detection is 1.5% lower.   

 

 

Table 5. Logistic Regression Model Results on Test Sample on the First Month of Data 

 

The results are not as good as the Decision Tree.  Table 6 was generated to compare the 

two models. The table illustrates the comparison of models on first month on test data.   

Variable ms is the sequential month counter.  TPR is the sample true positive rate.  Decision 

Tree is champion based on misclassification and true positive rates. We can conclude that 

we have a valid modeling process using the default decision tree and will use that for the 

following results.   

 

 

Table 6. Comparison of Models on First Month on Test Data 
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It would have been tempting to build models on the entire data that account for all the 

seasonality, long term trends, forecasts, and significant events ahead of time. However, we 

must put ourselves into the position of the analyst in November of 1987 who received this 

minimal data with the task of producing models that would give the best prediction for each 

flight as it happens.  We would start with only one month of data.   

A good question to ask is what decision tree models would have been available to the 

analyst in 1987, and what kind of computers would have been used.  Brieman et al. 

published “Classification and Regression Trees” in 1984 and Quinlan published “Decision 

Trees as Probabilistic Classifiers” in 1987.  For our purposes, the general answer is good 

enough.  We can proceed using Decision Trees.  However, we should consider that in a real 

life situation we should evaluate new models at every opportunity for improving a model 

retraining process. 

SIMULATIONS 

The next task is to see how that model performs on subsequent months.  We built our first 

model on a training sample from October.  We then scored the model on all the data from 

October, November, and December, giving us three full months of history.   

THREE-MONTH RESULTS 

We come back to work in January to see how we are doing.  Figure 5 illustrates the plots of 

the monthly proportion of flights that are late, misclassified, and correctly classified as late.  

The first three months of model monitoring show decreasing rates of accuracy and the 

scatter plot shows a possible relationship between accuracy and proportion late.  The plots 

are unspectacular but appear to show trends.  The proportion of late flights and the 

misclassified rate are increasing.  The true positive rate is decreasing.  This appears to 

follow the theory perfectly, as data changes over time that model accuracy and performance 

degrades.   

 

 

Figure 5. First Three Months of Model Monitoring and Proportion Relationship 

 

We now have a decision to make. Should we wait another three months to see what 

happens?  Or should we build a new model now and risk overfitting a short-term trend? We 

decide to do both.  We will build a new model and compare the two strategies after we take 

a vacation and return in April. 
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SIX-MONTH RESULTS 

We come back from our ski vacation in April 1988 to examine the results.  First, we look at 

the results from the single model we trained based on data from October. The surprising 

results are shown in Figure 6.  After the model decay observed in December, the model 

performed more accurately in months January, February, and March.  This correlation with 

the changing proportion of late flights is marked.  We can hypothesize that the pattern of 

late flights is different for the very busy month of December.    

 

 

Figure 6. Six-Month Results on for the Model Originally Trained on using October Data 

 

These scattered results are not definitive.  To find a better answer, we trained and 

monitored models across all combinations of time periods. This included multiple-month 

training periods and multiple-month monitor periods for the first six months.  We sampled 

24 different combinations.  The resulting matrix of data was fed into PROC SGPLOT to 

create the heatmap shown in Figure 7.  The color response statistic is the mean.  The most 

accuracy monitor periods have the most training time in months.  The best continuous 

solution across the sample is the diagonal where the most possible training months were 

used to create the model monitored in the subsequent month.  The best discontinuous 

solution is the diagonal up to month 6 when three or four months of training data were 

better than five.   
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Figure 7. Model Monitoring by Training Time Period in Months 

 

ONE YEAR RESULTS 

Based on the knowledge we gained in April that longer training periods performed better on 

future data, we tested four strategies for the remainder of the first twelve-month period.  

The standard naïve single model and a model trained on each month of data are shown in 

Figure 8.  We focus on the true positive rate as that measure that will most impact our 

ability to identify and react to flights that are predicted to be late.  In Figure 8, the 

monitored true positive rate is below 50% in most months.  It is surprising that the single 

model trained using October data is a better predictor of the next 12 months than the set of 

eleven models trained to predict only one month ahead for the next 12 months.  However, 

neither model strategy is promising.   

 

 

 

Figure 8. Model Performance of Naïve Models Trained on One Month and Each Month 

Our next strategy is to test long model training periods.  Each of these strategies improve 

performance as displayed in Figure 9.  They show a much-improved true positive rate over 

the naïve models with true positive rates greater than 50% most of the time.  In particular, 
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the model based on four months of training time and three months of monitoring time did 

very well.  This is likely due to including enough data to capture periodic effects. The data is 

known to have seasonal patterns.  There are more flights around the winter holidays and 

summer vacations.  There are also more weather delays in the northern hemisphere in 

winter.  However, at this point in time, October 1998, we do not have enough data to 

conclude that periodicity is a main effect.  

 

 

 

Figure 9. Four Model Training and Monitoring Scenarios with Longer Training Periods 

 

Based on these results, we will apply the 4-3 model (4 training months to 3 monitor 

months) to the remainder of the data.  Every three months a new model will be created 

using the previous four months of training data.  This creates a one-month overlap in 

training data between consecutive models, which helps smooth the changes from one model 

to the next.   

This strategy will result in 100 new model training events.  Since we are creating both a 

decision tree model and a logistic regression model, that will create 200 models.  Each 

model will be created on four months of data.  Months have on average approximately 500 

thousand observations and we use half the sample for training and half for testing thus 

resulting in training samples of approximately 500K*4/2= 1 million rows, depending on the 

actual airline traffic for those months.  The total amount of data used in training models will 

be approximately 200*500 M = 10000 M = 10 billion rows! 

TWENTY-FIVE YEAR RESULTS 
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Now jump to the beginning of the year 2013.  It has been 25 years and three months since 

we started this project.  We have been building models and monitoring their progress during 

that time.  Before we retire from our cushy data scientist position, we will take one more 

look at the relative model performance of each strategy.   

The single model (1-303) strategy now produces an expected result.  The green top line is 

the true positive rate, TPR, which shows a downward trend in expected value.  The blue 

middle line is the actual proportion of late flights, which does not show a strong long-term 

trend.  The bottom red line is the monthly misclassification rate that shows a slight upward 

trend.  However, we don’t yet understand the pattern changes that cause this decay in 

performance; that work is outside the scope of this paper.  

We have also been running the four-three strategy where each model was trained on the 

four most recent months of historical data and then monitored for the next three months.  

The difference is not as great as expected based on the first year of performance.  The 

baseline model strategy has a mean monthly TPR of 0.382; the four-three strategy 

produces 0.411.  Neither strategy is compelling.   

Since we now have 25 years of data, we can test other long-term strategies.  We believe 

that there are seasonal effects from monthly up to yearly if not longer.  Therefore, we 

tested additional strategies training data on twelve and eighteen months of history.  The 12-

6 and 18-6 results simulations produce incremental improvements.  The results are plotted 

in Figure 10 and listed in Table 7.  Each strategy produces different cycles of better and 

worse model performance, and all show levels of the long-term trend to worse TPR values.  

Further studies might discover a strategy or model function that produces better and more 

reliable results. 

 

 

Figure 10. Long Term Model Performance of Multiple Retraining Strategies 

 

The final column of Table 9 is the rate of months that have a true positive rate greater than 

0.5.  This could be an important measure of model usefulness.  None of the scenarios 

reliably produced models with a monthly TPR greater than 0.5.  This shows a weakness with 
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all the models used in this exercise.  The last two cells are highlighted as they show a 

significantly elevated monthly TPR.  The training fit statistics, computed on test data, 

indicate we may have hit the limit on core model accuracy.    

 

 

Strategy 

Training Monitoring: 303 months 

Months 
per 
model 

Mean 
Misclassification 
Rate 

Mean       
TPR 

Months 
per 
model 

Mean Monthly 
Misclassification 
Rate 

Mean 
Monthly 
TPR 

Monthly       
TPR > 
50% 

Baseline 1  0.072 0.581 303 0.117 0.399 0.134 

4-3 4 0.119 0.400 3 0.113 0.411 0.155 

12-12 12 0.135 0.411 12 0.111 0.422 0.207 

12-6 12 0.112 0.418 6 0.110 0.428 0.249 

18-6 18 0.113 0.415 6 0.111 0.427 0.270 

Table 7. Comparison of Model Retraining Strategies 

 

CORRELATION 

Another aspect is correlation between model performance and the proportion of late flights 

as displayed clearly in Figure 11.  The plots of the baseline 1-303 strategy and the best-

performing 18-6 strategy are shown in Figure 11.  In both cases, the misclassifications 

correlate well with the target variable, but the true positive rate shows significant 

dispersion.  The 18-6 models show more true positive values above 50% especially across 

the greater vales of late arrival rate.  This gives us more confidence in the 18-6 strategy. 

 

 

Figure 11. Long Term Correlation between Classification Measures and Late Proportion 

 

SAS MODEL MANAGER 

The SAS® Model Manager product contains many of the capabilities shown in this paper.  

You can register all models that were creating in this exercise into a versioned repository by 

using a GUI application, SAS macros, Python code, or REST API services.  You can execute 

model monitoring tasks that are similar to the ones presented here with additional 

capabilities. These capabilities include computing variable distributions, input and output 
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variable drift, and rank order statistics such as lift, captured response, KS, and Gini.  SAS 

Model Manager can also compute a Feature Contribute Index to measure the correlation 

between predicted values and input variables over time.  SAS Model Manager provides 

workflow capabilities to manage the business process shown in Figure 2.  Finally, SAS Model 

Manager can test and deploy SAS and Python models to both batch and real-time servers 

for operational integration.  However, SAS Model Manager does not have the extensive 

simulation capabilities show in this paper.  Most users are expected to be working in the 

moment, rather than analyzing twenty-five years of data.  If you are interested in this 

capability, contact the author for more details.   

CONCLUSION 

Model monitoring and retraining are key parts of any operational model scoring process.  

Many paths can lead to model retraining.  In this work we studied retraining models at 

regular intervals over a very long running process that has produced 25 years of data. The 

length of the time period of data used to train the models and the length of time monitoring 

the models in production have significant impacts on lifetime model accuracy.  Data 

scientists should carefully monitor their models and conduct experiments to optimize those 

parameters.   

The simulation capabilities developed for this paper were useful in testing different 

combinations of retraining and monitoring parameters.  We found that this data contains 

both short and long-term periodic effects.  The best combination of parameters we found 

used an 18-month sample to predict a 6-month interval.  The core finding is that a training 

period should be long enough to accommodate periodic effects and should be longer than 

the monitoring period.  We cannot generalize that specific recommendation to every 

process, but we want to highlight the need for observing and adjusting model retraining and 

monitoring. The simulation framework could be extended to test additional parameters and 

scenarios. 

The Airline On-Time flight data from the National Bureau of Transportation Statistics 

continues to provide a rich source of publicly available data.  The data is now complete from 

the 1987 through 2019.   

Future work could go in several directions.  We should study the effects of implementing 

champion-challenger strategies and dynamically changing the champion model as accuracy 

decreases.  We should study the possibility of using forecasting to estimate when models 

might need retraining especially in the presence of seasonal or long-term effects.  We 

should look at using optimization to dynamically adjust the training and monitoring 

parameters. 

A final key finding is that the SAS system makes a great platform for importing and cleaning 

extremely large amounts of data, and for computationally processing that data over long 

periods of time.  Each simulation processed billions of records over hundreds of iterations 

within several hours.  At the end the same software was able to summarize the results and 

produce useful and professional tables and graphs.   
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