

1

Paper SAS4576-2020

Making Administration Easier by Scripting the SAS® Viya®

Command-Line Interfaces

James Holman, SAS Institute Inc., Cary, NC

ABSTRACT

SAS® Viya® offers a set of rich command-line interfaces (CLIs) to directly interact with SAS

Viya without using a graphical interface. This paper describes how these CLIs can be

scripted and chained together to accomplish administrative tasks. Examples include backing

up and then changing the logging levels for SAS® Cloud Analytic Services (CAS), auditing

failed logins, updating themes across a set of SAS Viya reports, batch creating caslibs and

adding access controls to them, as well as many other tasks. All of these tasks can be done

remotely as well, without having to physically be on a SAS Viya system.

INTRODUCTION

SAS Viya contains various command-line interfaces (CLIs) that are available to SAS Viya

administrators. The main entry point is an application called sas-admin. For SAS Viya 3.X

deployments, sas-admin is installed on SAS Viya systems. sas-admin can also be

downloaded to your environment and runs on Linux, Microsoft Windows, and Mac OS

systems. The download method is the recommended approach for SAS Viya 4.0.1 as well.

Commands executed with sas-admin are calling plug-ins and will be referred to as such.

This paper will discuss topics SAS administrators will use to improve productivity –

automation of everyday tasks and building a toolbox of the various tasks scripted. Most

examples shown will be in Unix shell script language. Understanding of SAS Viya

authentication and authorization is needed but will be discussed.

WHAT IF?

It’s Sunday night and you’re just settling down to watch the NFL divisional championships.

You’re draped in your team’s colors and you have your favorite beverage in hand. Why is

the TV ringing? Wait, that’s your phone and it’s your manager calling. This can’t be good.

Your manager is excited and tells you a new project is green lit and the department doing it

needs to be onboarded. You agree it sounds exciting, secretly hoping to still see the football

game. But then it happens – the onboarding must happen tonight and be ready by 9am

Monday morning. Thankfully, your manager does have the requirements of what’s needed.

You tell your manager you’ll get right on this and mournfully consider abandoning football.

But you know there’s a chance for the second half, maybe more as you have a toolbox of

scripts already in place that can do a lot of what’s needed. And since the SAS Viya

command-line interfaces are so robust and powerful, you sit down and script the rest. After

some testing, you onboard the department and send mail to your manager. Back to the

game now – oh no, there’s only 7 minutes left!? Wait, there’s 7 minutes left in the first

quarter. Glad I had that toolbox and it has even more content now.

While the above story may never happen to you, knowing that you can handle it is one of

the reasons that automation is so important.

2

GETTING STARTED

In order to use sas-admin in an automated fashion, the first thing to do is set up your

authentication paradigm. The SAS Viya command-line interface uses the same

authentication scheme as the SAS Viya web applications do. Authentication tokens need to

be renewed every 12 hours by default and manually authenticating to them defeat the

purpose of scripting. By default, the SAS Viya command-line interface saves its

configuration to $HOME/.sas.

Consider creating a file called credentials.sh in $HOME/.sas:

#!/bin/sh

SAS_ADMIN_USER=demoadmin

SAS_ADMIN_PASS=demopass

Creating the file in the same location as the supporting files used by the SAS Viya

command-line interface allows for enforcing desired permissions and protecting passwords.

Once this file is in place, it’s usable in any script you write. For example, this script

(auth.sh) sources the file and then authenticates to SAS Viya:

#!/bin/sh

The location of sas-admin

SAS_ADMIN=/opt/sas/viya/home/bin/sas-admin

The profile to use

export SAS_CLI_PROFILE=”$1”

Include our credentials

source ~/.sas/credentials.sh

Authenticate

$SAS_ADMIN auth login --u $SAS_ADMIN_USER --p $SAS_ADMIN_PASS > /dev/null

Success?

if [$? != 0]; then

 echo "Authentication failure"

else

 echo "Authentication success"

fi

As you can see in the above code, a “profile” is referenced and is passed in as an argument.

In this context, a profile is a construct used to define and characterize the deployment you’ll

be working with. Profiles are created with the sas-admin profile init command and can

be named. See "Create at Least One Profile" in SAS Viya 3.5 Administration for a more

detailed explanation. Each named and persisted profile is contained in the file

credentials.json, located in $HOME/.sas.

This is the first tool in our toolbox.

WHAT TO AUTOMATE

Everyday tasks are the best choices for automation, but so are complex tasks you may need

to repeat. The challenges a SAS administrator faces are varied and numerous. Maybe a new

department needs its infrastructure created or perhaps you need to whitelist 200 new

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calcli&docsetTarget=n1e2dehluji7jon1gk69yggc6i28.htm&locale=en#p17rei99cguhqdn13m8vgg81nlax

3

mobile devices, allowing them to connect to your environment. The following sections will

discuss several different situations and what can be done with them.

CAS LOGGERS

One thing an administrator must deal with is log files. They have the potential to grow out

of control. Suppose your CAS server has been doing quite a lot lately and you’re seeing

more logs than you need. The cas plug-in to sas-admin can deal with CAS loggers, so let’s

see how we can back up the current logging levels and then set them to something more

manageable.

The first thing we need to do is obtain the list of CAS servers in the deployment. The

following examples assume that sas-admin is in the current OS path and a profile is defined

and authenticated to.

This command returns a list of all the servers in a deployment:

 sas-admin cas servers list

And now to get the loggers set to info for one of our servers, cas-shared-default:

 sas-admin cas servers loggers list --server cas-shared-default --level info

Consider the following script:

#!/bin/sh

Authenticate and define our environment

source ./auth.sh demoprofile

Set the sas-admin options we need (json)

export SAS_OUTPUT=json

Obtain the list of CAS servers

SERVERS=`$SAS_ADMIN cas servers list | grep \”name\”: | cut -f4 -d\”`

Any errors? If so, exit

if [$? != 0]; then

 echo "ERROR: Unable to determine the list of CAS servers"

 exit 1

fi

Loop through the list of servers, getting the required loggers

for server in $SERVERS ; do

 # Obtain the trace loggers for the current server

 TRACELOGGERS=`$SAS_ADMIN servers loggers list --server $server --level

trace --all | grep \"name\": | cut -f4 -d\"`

 # Any errors? If so, exit

 if [$? != 0]; then

 echo ERROR: Unable to obtain list of TRACE loggers

 exit 1

 fi

 # Obtain the info loggers for the current server

 INFOLOGGERS=`$SAS_ADMIN servers loggers list --server $server --level

info --all | grep \"name\": | cut -f4 -d\"`

 # Any errors? If so, exit

4

 if [$? != 0]; then

 echo ERROR: Unable to obtain list of INFO loggers

 exit 1

 fi

 # Remove any existing default files if they exist as we're making them

with this execution

 rm -f $server-trace-cas-loggers.txt

 rm -f $server-info-cas-loggers.txt

 echo Recording all CAS loggers with a level of TRACE...

 # For each trace logger, write it to the backup file

 for logger in $TRACELOGGERS ; do

 echo $logger >> $server-trace-cas-loggers.txt

 echo $logger

 done

 echo

 echo Recording all CAS loggers with a level of INFO...

 # For each info logger, write it to the backup file

 for logger in $INFOLOGGERS ; do

 echo $logger >> $server-info-cas-loggers.txt

 echo $logger

 done

done

The above script does several things and contains many pieces we can add to our toolbox.

Be sure to take note of the process. A plug-in command executes, and its results are stored

in a variable. JSON output (as opposed to text output) allows for more targeted parsing.

Being able to loop through a list of items we found is invaluable. In the code above, we

basically found all the CAS servers, and then for each CAS server, found all the CAS loggers

set to trace or info. See the Appendix for the rest of the code that resets the trace and

info loggers to the warn level as well as restores them to their original settings.

RETHEMING REPORTS

SAS Viya has powerful reporting features that use cutting edge analytics to solve business

problems. Reports have cosmetic attributes as well and as a SAS administrator, you may

find yourself having to retheme a given department’s reports with the company accepted

2020 theme. Opening each report in SAS® Visual Analytics would take some time, so let’s

look at how we would script this issue.

The reports plug-in offers the ability to find reports, learn details about them, delete them,

retheme them, etc. Based on our experience with CAS servers above, we need to find all

the reports that meet a certain criterion and then retheme them.

Consider the following (again we’ll use our authentication script):

#!/bin/sh

Authenticate and define our environment

source ./auth.sh demoprofile

Set the sas-admin options we need (json)

export SAS_OUTPUT=json

Obtain the list of “Demo Dept” reports

5

REPORTS=`$SAS_ADMIN reports list --name-starts-with "Demo Dept" | grep

\"id\" | cut -d\" -f4`

Any errors? If so, exit

if [$? != 0]; then

 echo ERROR: Unable to find any reports beginning with \”Demo Dept\”

 exit 1

fi

Loop through the reports we found, setting each one’s theme to 2020Theme

for report in $REPORTS ; do

 $SAS_ADMIN reports themes update --force --report-id $report --theme-id

2020Theme

 # Any errors?

 if [$? != 0]; then

 echo Unable to set the theme for the report with ID $report

 echo

 fi

done

As we did with CAS servers, we loop through the applicable reports and in this case,

retheme them. Note though, a filter was used (--name-starts-with) in locating the reports

we wanted. Most of the SAS Viya command-line interfaces offer a rich filtering mechanism.

Being able to search for specific patterns and conventions is an important tool to have.

AUDITING FAILED LOGONS

I was talking to one of our consultants the other day about a customer’s request to audit

login activity in SAS Viya. Out of the box, several administrative reports detailing system

stability and activity are available in SAS Viya. There is an audit report as well but in the

current releases, login information is not included.

Here are some actual commands using the audit plug-in and its subcommands.

The list subcommand will show a series of records and has many filters to help refine

results. Display 1 is a typical audit record listing.

Display 1. A Simple Listing of Audit Records

Most of the column headers can be used as filters. Since the consultant I spoke to was

interested in login records, I gave him the following command:

 sas-admin audit list --action login

That returns a list of audit records (50 by default) where the action was “login”. In the case

of more precise tracking, additional filters can be added.

For example:

 sas-admin audit list --action login --state failure

This returns a set of audit records where logins failed.

 sas-admin audit list --action SessionDestroyed --state success

This command is looking for audit records where login sessions were destroyed, e.g. a user

logged out.

6

Of course, these can be filtered by user.

 sas-admin audit list --action login --state success --user-id james

This command shows audit records where I logged in.

Once you’ve gotten the filters in place for the desired results, the command’s output can be

directed to a CSV file for further processing. The --csv option to the list subcommand

takes the fully qualified path and filename as the location to write the file. For example:

 sas-admin audit list --action login --csv /tmp/records.csv

At this point, I took the CSV file and imported it into CAS using SAS Data Explorer for SAS

Viya. Then using SAS Visual Analytics on SAS Viya, I created myself a report detailing login

information. Display 2 shows the report.

Display 2. Reporting Audit Failures

ADDING TRANSLATIONS TO SAS VIYA REPORTS

As seen earlier, we were able to find a specific set of reports and retheme them. The next

thing we’re asked to do is to support a group of translators that want to translate all strings

in the report into French, Spanish, German, Japanese, and Korean. With the reports plug-

in, it’s easy to automate the process of extracting the English strings as well as importing

the newly created translations.

Consider the following script:

#!/bin/bash

Authenticate and define our environment

source ./auth.sh demoprofile

Set the sas-admin options we need (json)

export SAS_OUTPUT=json

Obtain the list of “Demo Dept” reports

REPORTS=`$SAS_ADMIN reports list --name-starts-with "Demo Dept" | grep

\"id\" | cut -d\" -f4`

Any errors? If so, exit

if [$? != 0]; then

7

 echo ERROR: Unable to find any reports beginning with \"Demo Dept\"

 exit 1

fi

Define the languages we need

LANGUAGES="fr es de ja ko"

Now loop over the reports and for each language, extract the strings

for report in $REPORTS; do

 for language in $LANGUAGES; do

 $SAS_ADMIN reports translations export --report-id $report --

report-locale $language --output-location .

 done

done

The idea here is to extract all the languages you’re interested in initially even though the

only language that likely is in the report is the one it was written in. By extracting them all

now, what’s produced is easy for the translators to understand. When the script is complete,

the following files now exist in the directory from which the script was executed:

 Demo Dept - Report 1_de.reports

 Demo Dept - Report 1_es.reports

 Demo Dept - Report 1_fr.reports

 Demo Dept - Report 1_ja.reports

 Demo Dept - Report 1_ko.reports

 Demo Dept - Report 2_de.reports

 Demo Dept - Report 2_es.reports

 Demo Dept - Report 2_fr.reports

 Demo Dept - Report 2_ja.reports

 Demo Dept - Report 2_ko.reports

 Demo Dept - Report 3_de.reports

 Demo Dept - Report 3_es.reports

 Demo Dept - Report 3_fr.reports

Demo Dept - Report 3_ja.reports

Demo Dept - Report 3_ko.reports

Demo Dept - Report 4_de.reports

Demo Dept - Report 4_es.reports

Demo Dept - Report 4_fr.reports

Demo Dept - Report 4_ja.reports

Demo Dept - Report 4_ko.reports

Demo Dept - Report 5_de.reports

Demo Dept - Report 5_es.reports

Demo Dept - Report 5_fr.reports

Demo Dept - Report 5_ja.reports

Demo Dept - Report 5_ko.reports

As you can see, each report now has five language files, denoted by the 2-letter country

code. These files can be handed off to the translators now through whatever process is

desired.

When translation is complete, the files can be returned to you the administrator for

importing. Now consider the following script:

#!/bin/bash

Authenticate and define our environment

source ./auth.sh demoprofile

Define the languages we need

LANGUAGES="fr es de ja ko"

Now loop over the translations and import each language for the 5 reports

for language in $LANGUAGES; do

 for i in 1 2 3 4 5 ; do

8

 $SAS_ADMIN reports translations import --source-file "Demo Dept --

Report ${i}_$language.reports"

 done

done

For each language we have translations for, we loop over the “Demo Dept” reports and

insert each language into them. This approach can be modified to whatever paradigm is

appropriate, but the tools the reports plug-in offers are great additions to our toolbox.

CLONING CASLIBS

Caslibs are integral for SAS Viya users and something an administrator must deal with.

From disk space allocation to database schema settings, there are things that will need to

be done correctly. This kind of work sometimes is best done via a graphical user interface,

such as SAS Data Explorer. There, a user can specify whatever settings are appropriate. But

once that’s done, if there is a need to continue creating these kinds of caslibs, it sounds like

a job for our toolbox.

Assume for this example that an Oracle caslib was created named oralib in the CAS server

cas-shared-default. The following command will extract its definition in a JSON format:

 sas-admin --output json cas caslibs show-info --server cas-shared-default -

-caslib oralib > oracletmpl.json

The JSON definition of the caslib is now in the file oracletmpl.json. It has all the settings

specified during the creation of the caslib in SAS Data Explorer. But what can be done with

it?

Suppose you needed to create another Oracle caslib, oralib2, again in cas-shared-

default. All that’s different between it and oralib are its name and schema. Using your

newly created JSON file, you can do this creation from the command-line as well:

 sas-admin cas caslibs create oracle --name oralib2 --schema ORALIB2S --

source-file oracletmpl.json

All settings from the JSON file are maintained save the new name and schema.

This approach lends itself to quickly creating caslibs in batch. The cas plug-in also offers a

command that generates sample templates:

 sas-admin cas --generate-cas-samples --output-location <path>

At this point, we can create caslibs in batch whenever we’d like. But what about the

permissions on the caslibs? Can they be cloned as well? Yes, they can.

Consider the following command:

 sas-admin cas --output json caslibs list-controls --server cas-shared-

default --caslib oralib > oraclectrlstmpl.json

This command creates a JSON file containing all direct access controls set on the caslib

oralib. Assuming that those controls are what you want any Oracle caslib to have, you

could use this command after creating oralib2, as seen above, to achieve this:

 sas-admin replace-controls --server cas-shared-default --caslib oralib2 --

superuser --force --source-file oraclectrlstmpl.json

The --force option causes the command to execute without any prompting and the --

superuser option runs the command as a CAS super user.

At this point, our toolbox has grown a good bit.

9

THE FOOTBALL PROJECT

As mentioned in the beginning, phone calls can pull one away from various things. Although

the story turned out all right with beverages consumed and football watched, let’s look at

what onboarding a new department could mean.

The following is probably a subset of what really would be needed.

• Create 4 new groups: NewDeptUsers, NewDeptMgrs, NewDeptAdmins,
NewDeptDataAdmins

o The identities plug-in can help here.

• Add the NewDeptAdmins group to the CAS admin users list.

o The cas plug-in can help here.

• Create a folder for NewDeptDataAdmins to store SAS Viya reports in.

o The folders plug-in can help here.

• Grant the NewDeptDataAdmins relevant permissions to their folder.

o The authorization plug-in can help here.

• Whitelist the mobile devices for the 4 newly hired managers.

o The devices plug-in can help here.

• Create 4 new path-based caslibs: NewDeptUsers, NewDeptMgrs, NewDeptAdmins,
NewDeptDataAdmins

o The cas plug-in can help here.

• Apply access controls to each of the 4 new caslibs.

o The cas plug-in can help here.

See the Appendix for a sample script that does the above tasks.

CONCLUSION

The SAS Viya command-line interfaces are numerous and robust. They are designed to

allow an administrator to remotely manage their environments, but their very nature lends

themselves to scripting for automation. The very first computer science teacher I had talked

about programming as nothing but a collection of tools in your toolbox. I think it’s an

accurate and fair metaphor applicable to the use of command-line interfaces. Whether you

are batch updating themes in SAS Viya reports or creating 20 caslibs, the atomic and

scriptable nature of the commands should make life easier. I hope this paper is the start of

your own SAS Viya command-line interfaces toolbox and that it helps make your life easier

as a SAS administrator.

REFERENCES

SAS Institute Inc. 2019. "Create at Least One Profile." In SAS Viya 3.5 Administration. Cary,

NC: SAS Institute Inc. Available

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calcli&docsetT

arget=n1e2dehluji7jon1gk69yggc6i28.htm&locale=en#p17rei99cguhqdn13m8vgg81nlax

(accessed February 10, 2020).

10

RECOMMENDED READING

• SAS® Viya® 3.5 Administration

• SAS® Viya® 3.5 Administration: CAS Authorization

• SAS® Viya® 3.5 Administration: Using the Command-Line Interfaces

APPENDIX

The following scripts are more complete versions of a couple of the techniques described in

the main paper. They all make use of the auth.sh paradigm described in the Getting

Started section.

CAS LOGGERS REDUX

Three scripts will be presented – one that makes a record of all CAS loggers with either

info or trace level logging, one that changes all CAS loggers with either info or trace

level logging to warn level logging, and one that restores the affected CAS loggers to their

original info and trace levels.

First up, the backup script:

#!/bin/bash

Define our commands and profile for authentication; we don't need to see

successes, just errors

source ./auth.sh demoprofile > /dev/null

For this script, we want JSON output

export SAS_OUTPUT=json

Obtain the list of servers...

SERVERS=`$SAS_ADMIN cas servers list | grep \"name\": | cut -f4 -d\"`

Any errors, if so exit

if [$? != 0]; then

 tput setaf 1

 echo "ERROR: Unable to get list of CAS servers"

 tput sgr0

 exit 1

fi

Loop through each server, getting the required loggers

for server in $SERVERS ; do

 # Obtain the loggers with a level of trace in this server

 TRACELOGGERS=`$SAS_ADMIN cas servers loggers list --server $server --

level trace --all | grep \"name\": | cut -f4 -d\"`

 # Any errors, if so exit

 if [$? != 0]; then

 tput setaf 1

 echo "ERROR: Unable to get list of CAS loggers with a level of

TRACE"

 tput sgr0

 exit 1

 fi

 # Obtain the loggers with a level of info in this server

11

 INFOLOGGERS=`$SAS_ADMIN cas servers loggers list --server $server --

level info --all | grep \"name\": | cut -f4 -d\"`

 # Any errors, if so exit

 if [$? != 0]; then

 tput setaf 1

 echo "ERROR: Unable to get list of CAS loggers with a level of INFO"

 tput sgr0

 exit 1

 fi

 # Remove any existing the default files if they exist as we're making

them with this execution

 rm -f $server-trace-cas-loggers.txt

 rm -f $server-info-cas-loggers.txt

 tput setaf 4

 echo "Recording all CAS loggers with a level of TRACE..."

 tput sgr0

 # For each trace logger, write it to the backup file

 for logger in $TRACELOGGERS ; do

 echo $logger >> $server-trace-cas-loggers.txt

 tput setaf 2

 echo $logger

 tput sgr0

 done

 echo

 tput setaf 4

 echo "Recording all CAS loggers with a level of INFO..."

 tput sgr0

 # For each info logger, write it to the backup file

 for logger in $INFOLOGGERS ; do

 echo $logger >> $server-info-cas-loggers.txt

 tput setaf 2

 echo $logger

 tput sgr0

 done

done

The following modifies the CAS loggers with levels of info or trace.

#!/bin/bash

Define our commands and profile for authentication; we don't need to see

successes, just errors

source ./auth.sh demoprofile > /dev/null

For this script, we want JSON output

export SAS_OUTPUT=json

Obtain the list of servers...

SERVERS=`$SAS_ADMIN cas servers list | grep \"name\": | cut -f4 -d\"`

Any errors, if so exit

if [$? != 0]; then

 tput setaf 1

12

 echo "ERROR: Unable to get list of CAS servers"

 tput sgr0

 exit 1

fi

Loop through each server, getting the required loggers

for server in $SERVERS ; do

 # Obtain the loggers with a level of trace in this server

 TRACELOGGERS=`$SAS_ADMIN cas servers loggers list --server $server --

level trace --all | grep \"name\": | cut -f4 -d\"`

 # Any errors, if so exit

 if [$? != 0]; then

 tput setaf 1

 echo "ERROR: Unable to get list of CAS loggers with a level of

TRACE"

 tput sgr0

 exit 1

 fi

 # Obtain the loggers with a level of info in this server

 INFOLOGGERS=`$SAS_ADMIN cas servers loggers list --server $server --

level info --all | grep \"name\": | cut -f4 -d\"`

 # Any errors, if so exit

 if [$? != 0]; then

 tput setaf 1

 echo "ERROR: Unable to get list of CAS loggers with a level of INFO"

 tput sgr0

 exit 1

 fi

 tput setaf 4

 echo "Updating all CAS loggers with a level of TRACE to WARN..."

 tput sgr0

 # For each trace logger, change its level to warn

 for logger in $TRACELOGGERS ; do

 $SAS_ADMIN cas servers loggers update --server $server --logger

$logger --level warn

 done

 echo

 tput setaf 4

 echo "Updating all CAS loggers with a level of INFO to WARN..."

 tput sgr0

 # For each info logger, change its level to warn

 for logger in $INFOLOGGERS ; do

 $SAS_ADMIN cas servers loggers update --server $server --logger

$logger --level warn

 done

done

The final script resets the changed CAS loggers back to their original levels:

13

#!/bin/bash

Define our commands and profile for authentication; we don't need to see

successes, just errors

source ./auth.sh demoprofile > /dev/null

For this script, we want JSON output

export SAS_OUTPUT=json

Obtain the list of servers...

SERVERS=`$SAS_ADMIN cas servers list | grep \"name\": | cut -f4 -d\"`

Any errors, if so exit

if [$? != 0]; then

 tput setaf 1

 echo "ERROR: Unable to get list of CAS servers"

 tput sgr0

 exit 1

fi

Loop through each server, reading and restoring the default loggers

for server in $SERVERS ; do

 # Obtain the default loggers with a level of trace in this server by

reading the backup file

 if [-e $server-trace-cas-loggers.txt]; then

 TRACELOGGERS=`cat $server-trace-cas-loggers.txt`

 fi

 # Obtain the default loggers with a level of info in this server by

reading the backup file

 if [-e $server-info-cas-loggers.txt]; then

 INFOLOGGERS=`cat $server-info-cas-loggers.txt`

 fi

 tput setaf 4

 echo "Restoring all CAS loggers with a default level of TRACE..."

 tput sgr0

 # For each trace logger, restore its level to trace

 for logger in $TRACELOGGERS ; do

 $SAS_ADMIN cas servers loggers update --server $server --logger

$logger --level trace

 done

 echo

 tput setaf 4

 echo "Restoring all CAS loggers with a default level of INFO"

 tput sgr0

 # For each info logger, restore its level to info

 for logger in $INFOLOGGERS ; do

 $SAS_ADMIN cas servers loggers update --server $server --logger

$logger --level info

 done

done

14

THE FOOTBALL PROJECT REDUX

This section is one script that automates the onboarding example found earlier in the paper.

Each task is treated separately but data structures are kept and reused where applicable.

Some advanced manipulation of CAS artifacts is done and will be explained. Such sections

will be highlighted in order to draw attention to them. The JSON files referenced are

assumed to have already been created.

#!/bin/bash

Define our commands and profile for authentication; we don't need to see

successes, just errors

source ./auth.sh demoprofile > /dev/null

Create the groups

NewDeptUsers

$SAS_ADMIN identities create-group --name "New Department Users" --id

NewDeptUsers --description "Users in the new department"

Any errors?

if [$? != 0] ; then

 # Not being able to create groups at this point means we should fail the

 # entire process

 echo Unable to create the group NewDeptUsers

 exit 1

fi

echo

NewDeptMgrs

$SAS_ADMIN identities create-group --name "New Department Managers" --id

NewDeptMgrs --description "Managers in the new department"

Any errors?

if [$? != 0] ; then

 # Not being able to create groups at this point means we should fail the

 # entire process

 echo Unable to create the group NewDeptMgrs

 exit 1

fi

echo

NewDeptAdmins

$SAS_ADMIN identities create-group --name "New Department Administrators" -

-id NewDeptAdmins --description "Administrators in the new department"

Any errors?

if [$? != 0] ; then

 # Not being able to create groups at this point means we should fail the

 # entire process

 echo Unable to create the group NewDeptAdmins

 exit 1

fi

echo

15

NewDeptDataAdmins

$SAS_ADMIN identities create-group --name "New Department Data

Administrators" --id NewDeptDataAdmins --description "Data administrators

in the new department"

Any errors?

if [$? != 0] ; then

 # Not being able to create groups at this point means we should fail the

 # entire process

 echo Unable to create the group NewDeptDataAdmins

 exit 1

fi

echo

The groups are created

Add NewDeptAdmins to the CAS Admin Users list

$SAS_ADMIN cas admin-users add --server cas-shared-default --group

NewDeptAdmins

Any errors?

if [$? != 0] ; then

 # Not being able to add NewDeptAdmins to the CAS Admin Users list is a

 # fatal error

 echo Unable to add NewDeptAdmins to the CAS Admin Users list

 exit 1

fi

echo

Create a folder for the NewDeptDataAdmins group to use

FOLDER_ID=`$SAS_ADMIN -output json folders create --name "New Department

Data Administration" --description "Folder to contains resulting data

analysis reports" | grep \"id\": | cut -f4 -d\"`

if ["$FOLDER_ID" != ""] ; then

 echo The requested folder was created with the ID $folderID

else

 echo Could not create the requested folder

 exit 1

fi

echo

Grant permissions to the NewDeptDataAdmins folder

$SAS_ADMIN authorization create-rule --permissions "read,update,add" --

object-uri /folders/folders/$folderID --group NewDeptDataAdmins

echo

Now, whitelist the four devices for the new managers

DEVICE_IDS="119569f6-144a-436c-b949-4994e10e838c bb3997d6-73ce-4960-9e14-

a74e4d51469e 97c836ab-9fc6-43a9-8fe0-745c473457bc c0c0ef3d-e209-405c-9c39-

8f65ee7a667e"

Loop through the devices and add each to the white list

for device in $DEVICE_IDS ; do

16

 # Add the device

 $SAS_ADMIN devices whitelist add --device-id $device

 # Any errors?

 if [$? != 0]; then

 # Yes, note them

 echo Could not add the device $device to the white list

 fi

 echo

done

The following code is for CAS artifacts in the cas-shared-default server

First, create a super user session for use later

SESSION_ID=`$SAS_ADMIN --quiet cas sessions create --name "Onboarding" --

superuser --server cas-shared-default`

Success?

if ["SESSION_ID" == ""] ; then

 # No, stop here as this could be problematic for the CAS artifacts

 echo Could not create super user session

 exit 1

else

 # Success

 echo Created a super user session with id $SESSION_ID

fi

echo

Create four path-based caslibs for use by each group created earlier

CASLIBS="NewDeptUsers NewDeptMgrs NewDeptAdmins NewDeptDataAdmins"

Base file system directory for the caslibs; set accordingly

BASEDIR=/tmp

Loop through the caslib list and create them, applying the controls if a

successful creation occurs

for caslib in $CASLIBS ; do

 # Create the caslib

 sas-admin cas caslibs create path --server cas-shared-default --caslib

$caslib --path $BASEDIR/$caslib --create-dir --description "caslib for the

group $caslib"

 # Any errors?

 if [$? != 0] ; then

 # Inform the user and stop processing this caslib

 echo Unable to create the caslib $caslib

 else

 echo

 # There are no errors so apply the controls; before doing so, lock

 # the caslib

 $SAS_ADMIN cas transactions checkout --server cas-shared-default --

caslib $caslib --session-id $SESSION_ID

17

 # Any errors?

 if [$? != 0] ; then

 # Inform the user and stop processing this caslib

 echo Cannot lock the caslib $caslib; controls won’t be applied

 else

 # Replace the controls

 $SAS_ADMIN cas caslibs replace-controls --server cas-shared-

default --caslib $caslib --session-id $SESSION_ID --source-file

./caslib_controls.json --force

 # Any errors?

 if [$? != 0] ; then

 # Inform the user and stop processing this caslib

 echo Cannot lock the caslib $caslib; controls won’t be applied

 else

 # Commit the changes

 $SAS_ADMIN cas transactions commit --server cas-shared-default

--session-id $SESSION_ID

 fi

 fi

 fi

 echo

done

We're done with CAS artifacts now so destroy the session we created

$SAS_ADMIN cas sessions delete --server cas-shared-default --session-id

$SESSION_ID --force

echo Delete the CAS session $SESSION_ID

The first highlighted section deals with suppressing output. sas-admin supports a “quiet”

mode where most of the output is suppressed. The cas plug-in uses this when creating the

session and only writes the actual session ID to the screen. This allows for an easier

scripting experience.

Another important item to note demonstrated here is that the cas plug-in can use values

established in a previous execution. In general, the SAS Viya command-line interfaces are

stateless and atomic. However, as seen in this block of code, a CAS session is created and

then used in later cas plug-in commands. This approach allows users to maintain a

consistent state and conserve CAS resources.

The second highlighted area illustrates the use of CAS access control transactions. Using

transactions is a valuable tool to develop if you need to administer CAS artifacts. Being able

to lock the artifact in question to a CAS session means that only CAS actions taken in that

session can affect the artifact. The technique is used here mainly for illustrative purposes as

more than likely, creating a caslib, and then applying access controls to it immediately is

low risk for race conditions or collisions.

18

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

James Holman

SAS Visualization Division ■ Content and System Lifecycle

James.Holman@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

