

1

Paper SAS4537-2020

SAS® Studio Custom Tasks: Tips and Tricks for the Adventurous

Task Author

Olivia Wright, SAS Institute Inc.

ABSTRACT

SAS® Studio provides built-in point-and-click tasks for generating and executing complex

SAS® code. SAS Studio also enables users to embark on the journey of creating their own

interface for their own SAS code, known as a custom task. Building a custom task is easier

than you might think. There are great resources available for getting started writing custom

tasks: SAS® Communities articles, GitHub examples, free e-learning, and previous SAS®

Global Forum papers.

But what about those adventurous task authors who have progressed out of the “getting

started” phase? This paper focuses on more daring custom task concepts that aren’t

covered in introductory material. Examples include writing the optional requirements and

dependencies sections, creating a multi-step (multiple-task) workflow, incorporating Apache

Velocity Template Language code beyond the #foreach, and working with SAS® Cloud

Analytic Services (CAS) tables.

Join me on this quest to create advanced custom tasks that push the limits and incorporate

the features provided by SAS Studio and Apache Velocity Template Language.

INTRODUCTION

Putting together a quick custom task is relatively simple. You may have a short SAS

program that you want to build into a task to allow the user to select a different data set or

variable. This kind of thing can be done easily. For most first-time task authors, everything

you need to create your first task can be found in the built-in “Sample Task” or by looking

at online examples. However, most users progress rather quickly out of the “getting

started” phase and into more elaborate custom task work.

Once the introductory steps are mastered, questions start to arise: How can I hide or show

one control based on the value of another? Can I keep the code from generating until all of

the necessary options are filled out? Is it possible to have one piece of code execute, and

then fill in controls of the task based on those results? How can I maximize task

functionality and style? Are there any differences between task writing for SAS® 9.4 and

SAS® Viya? This paper aims to answer those questions and help task authors venture into

the next level of custom task development.

The full code for all example tasks in this paper is available on the Custom Task Tuesday

GitHub.

OPTIONAL TASK SECTIONS

Tasks are written using the Custom Task Model, which is based on XML. Tasks are made up

of six sections: Registration, Metadata, UI, Dependencies, Requirements, and Code

Template. Dependencies and Requirements are both optional, meaning that you don’t need

to have them in order for the task to work.

https://github.com/sassoftware/sas-studio-tasks/tree/master/contributed/tasktuesdays
https://github.com/sassoftware/sas-studio-tasks/tree/master/contributed/tasktuesdays

2

Because these sections are optional, they are left out of most getting-started materials. In

fact, neither dependencies nor requirements are used in the built-in “Sample Task” in SAS

Studio. In the built-in “Advanced Task,” the Dependencies section is used but the

Requirements section is not.

The quickest way to step-up your task development is by mastering the use of these two

valuable sections.

DEPENDENCIES SECTION

The Dependencies section is the first optional task section. It specifies how certain options

(or controls) rely on one another in order for the task to work properly. The Dependencies

section is infinitely useful because it enables you to show/hide and enable/disable one

control based on the current value of another control. For example, you could have a

variable selector that disappears and reappears based on the value of a check box labeled

Add BY variable.

Another use of the Dependencies section is that it allows the task author to build multiple

workflows into a single task. This can be accomplished by having a single radio button or

combobox selection that asks the user which workflow they are interested in executing, and

then using dependencies to populate the rest of the task with the necessary options based

on the value of that first selection. For example, you could have a combobox or drop-down

list with the options Run Sally’s Analysis and Run Dave’s Analysis. You could then use

Dependencies to change the rest of the options available in the task based on which

analysis was chosen.

To create a dependency, you specify the dependency condition, the target control that you

want to change if the condition is true, and the action that you want to take on the control if

the condition is true. Action options include “show,” “hide,” “enable,” “disable,” and “set.”

Task Example

To show the functionality of the Dependencies section, we will look at the first example task

for this paper: “Sonification Task.” This task enables the user to select a data set and create

a graph that is sonifiable and supported by the SAS Graphics Accelerator. In order to use

this task, you must have installed the SAS Graphics Accelerator Chrome browser extension.

Figure 1 shows what the task looks like.

http://support.sas.com/software/products/graphics-accelerator/
https://chrome.google.com/webstore/detail/sas-graphics-accelerator/ockmipfaiiahknplinepcaogdillgoko?hl=en

3

Figure 1. Sonification Task

In this example task, the Dependencies section is used to control which variable options

appear for each chart type. For example, a bar chart requires only one variable (category)

while a bubble plot requires three variables (x, y, and size). Here is the code for the

Dependencies section:

 <Dependencies>

 <Dependency condition="($comboTYPE == 'vbar' || $comboTYPE ==

 'hline' || $comboTYPE == 'pie')">

 <Target option="VAR" conditionResult="true" action="show"/>

 <Target option="VAR" conditionResult="false" action="hide"/>

 </Dependency>

 <Dependency condition="($comboTYPE == 'vbox' || $comboTYPE ==

 'histogram')">

 <Target option="NVAR" conditionResult="true" action="show" />

 <Target option="NVAR" conditionResult="false" action="hide" />

 </Dependency>

 <Dependency condition="($comboTYPE == 'bubble' || $comboTYPE ==

 'heatmap' || $comboTYPE == 'scatter')">

 <Target option="XVAR" conditionResult="true" action="show"/>

 <Target option="XVAR" conditionResult="false" action="hide"/>

 <Target option="YVAR" conditionResult="true" action="show"/>

 <Target option="YVAR" conditionResult="false" action="hide"/>

 </Dependency>

 <Dependency condition="($comboTYPE == 'bubble')">

 <Target option="SIZEVAR" conditionResult="true" action="show"/>

 <Target option="SIZEVAR" conditionResult="false" action="hide"/>

 </Dependency>

 </Dependencies>

4

REQUIREMENTS SECTION

The Requirements section is the second optional section. It specifies conditions for the task

to run. If the condition has been met, then SAS code is generated. If the condition has not

been met, the SAS code will not generate, and a message will be displayed. The

Requirements section is not as widely used as the Dependencies section, but there are still

times when it can come in handy.

To create a requirement, you specify the requirement condition and the message to be

displayed if the requirement is not met. In most cases, it is easier to specify the condition

that would fail the requirement and then negate it (by using the standard “!”), rather than

specify the condition that would pass the requirement.

One final important note about the Requirements section is the timing. Requirements are

always evaluated after dependencies when the task is being used. Any changes to

dependencies are included in the calculation of whether requirements have been satisfied.

Task Example

Let’s look at the Sonification Task again to see an example Requirements section. In this

task, the requirements are used to ensure that the user has selected the necessary

variables for the chosen type. For example, if the user selects bar chart from the Chart

Type combobox, we want to require that the category variable array is not empty. Here is

the code for the Requirements section:

 <Requirements>

 <Requirement condition="(!(($comboTYPE == 'vbar' || $comboTYPE ==

 'hline' || $comboTYPE == 'pie') && ($VAR.size() == 0)))" >

<Message nlsKey="varSelectionMsgKey">Select a category

 variable.</Message>

 </Requirement>

 <Requirement condition="(!(($comboTYPE == 'vbox' || $comboTYPE ==

 'histogram') && ($NVAR.size() == 0)))">

<Message nlsKey="nvarSelectionMsgKey">Select an analysis

variable.</Message>

 </Requirement>

 <Requirement condition="(!(($comboTYPE == 'bubble' || $comboTYPE ==

 'heatmap' || $comboTYPE == 'scatter') && ($XVAR.size() ==

 0)))">

<Message nlsKey="xvarSelectionMsgKey">Select an X

variable.</Message>

 </Requirement>

 <Requirement condition="(!(($comboTYPE == 'bubble' || $comboTYPE ==

 'heatmap' || $comboTYPE == 'scatter') && ($YVAR.size() ==

 0)))">

<Message nlsKey="yvarSelectionMsgKey">Select a Y

variable.</Message>

 </Requirement>

 <Requirement condition="(!(($comboTYPE == 'bubble') &&

 ($SIZEVAR.size() == 0)))">

 <Message nlsKey="sizevarSelectionMsgKey">Select a size

 variable.</Message>

 </Requirement>

</Requirements>

When the requirement is not met, a message (“Select a category variable”) is displayed in

the code window, as seen in Figure 2. After the requirement is met, the SAS code is

generated as seen in Figure 3.

5

Figure 2. Requirements Not Met

Figure 3. Requirements Met

MULTIPLE TASK WORKFLOW

Our next topic for advanced task authors is creating a multiple task workflow. Often, task

authors would like to run a section of code and incorporate the results back into the task

prompt. While that isn’t something that is possible to accomplish within a single task, a

common strategy is to create a multiple task workflow or dependent tasks labeled “Step 1,”

“Step 2,” and so on. These separate tasks must then be run consecutively by the user. It is

helpful to label tasks with the prefix “Step 1” and “Step 2” because tasks are listed in

alphabetical order in their folders. This naming practice also helps emphasize to the user

that running the second step will not work unless you have previously run the first step.

Task Example

For an example of a multi-task workflow, we are going to look at the following tasks: “Step

1 – Retrieve Report Images” and “Step 2 – Save Report Images.” These tasks take

advantage of the SAS Viya reportImages Service and use code written by Mike Drutar that

can be found on his GitHub page. These tasks must be run in SAS Studio 5.2 Enterprise (or

later) session within a SAS Viya 3.4 (or later) environment that contains the SAS® Visual

Analytics report that is being called.

The Step 1 task (shown in Figure 4) enables you to enter a report URI for a SAS Visual

Analytics report. It then retrieves images of each tab of the report and creates a table with

information on each tab, as well as displays the report images in the results window.

https://developer.sas.com/apis/rest/Visualization/#report-images
https://github.com/sascommunities/sas-global-forum-2019/blob/master/3156-2019-Drutar/ViyaAPI_SASCode/create_VA_svg_image.sas

6

Figure 4. Step 1 – Retrieve Report Images Task

The Step 2 task (shown in Figure 5) uses the table created in the first step to allow the user

to choose a report tab and download the image file to their specified location.

Figure 5. Step 2 – Save Report Images Task

In addition to showing the functionality of a multiple task workflow, these tasks are also

examples of the new markdown object available for use in custom task development

starting in SAS Studio 5.2. Markdown is a plain-text language that allows users to format

their text to make it look more attractive. With Markdown, users can add text with

headings, indentations, images, links, and things like bolding and italics to their tasks. The

“Sample Task” available in SAS Studio 5.2 shows an example of all of the possible options in

the markdown object.

7

Here is the code for the two markdown objects used in the “Step 1 – Retrieve Report

Images”.

<Option inputType="markdown" name="markdownText1" >

To use this task, the data used in the report must be loaded and you

must know the **Report URI** for the Visual Analytics report you are

trying to access. This can be found using the SAS Environment Manager.

Navigate to the report you are interested in under "Content" and copy

the Report URI as seen below.

![INSTRUCTIONS](https://communities.sas.com/t5/image/serverpage/image-

id/35558i00BCEA673B7223D3/image-size/large?v=1.0&px=600)

</Option>

<Option inputType="markdown" name="markdownText2">

The [SAS Viya Report Images

Service](https://developer.sas.com/apis/rest/Visualization/#report-

images) allows users to access static images of their SAS Visual

Analytics Report.

This task uses [this code on Mike Drutar's

GitHub](https://github.com/sascommunities/sas-global-forum-

2019/blob/master/3156-2019-

Drutar/ViyaAPI_SASCode/create_VA_svg_image.sas) with some slight

modifications.

</Option>

ADVANCED VELOCITY TEMPLATE LANGUAGE

The Apache Velocity Template Language is the scripting language used for the Code

Template portion of your task. Before we dive in, let’s make sure we have our Velocity

terminology straight.

• Variables: $variables are Velocity references that usually refer to a specific control

in your task. All references are preceded by the “$” symbol.

• Directives: #directives are Velocity statements that perform some action and

allow for code manipulation. These are preceded by the “#” symbol.

• Methods: $variable.methods() are Velocity references that refer to Java methods

that perform a useful action on the variable.

If you have written a task before, you are probably familiar with a few of the more common

directives and methods available in Apache Velocity Template Language. However, there is

so much more functionality in Velocity for task authors to utilize.

USEFUL VELOCITY DIRECTIVES

There are many useful directives in Velocity that are necessary for task development. These

allow the task author to manipulate the code that the task generates. Table 1 shows a list of

helpful Velocity directives.

Directive Description

#if #elseif

#else #end
Allows conditional logic

#foreach #end Loops through items in a list

#set Sets a value for a Velocity variable (similar to a SAS %LET statement)

#break Stops a loop in a #foreach

Table 1. Velocity Directives

https://velocity.apache.org/engine/2.0/user-guide.html

8

For more information on Velocity directives, see the “Directives” section of the Apache

documentation.

USEFUL JAVA.UTIL.LIST METHODS

Role selector variable references in the custom task model are array references in Velocity.

All array references in Velocity are treated as fixed-link lists (a list of variables), and we are

able to call java.util.List methods on those lists. The methods in Table 2 are useful for

accessing variable lists.

Method Description

.isEmpty() Returns if the list is empty

.size() Returns the size of the list

.get(#) Gets a certain value in the list

Tip: This is helpful when you have a role selector that you have

restricted to allow only one variable. You can call $var.get(0) to get

that variable without having to loop through the list

Table 2. java.util.List Methods

For more information on Velocity methods, see the “Methods” section of the Apache

documentation.

PREDEFINED VELOCITY VARIABLES

The predefined Velocity variables and methods in the Table 3 were introduced to meet

specific needs of task authors at SAS. These can be helpful in many situations.

Predefined Variable Method Description

$CTMUtil quoteString() Wraps a string in single quotation

marks
doubleQuoteString() Wraps a string in double quotation

marks

isProductLicensed() Checks to see if a specific product is

installed
toSASName() Transforms a string into SAS naming

conventions
$CTMMathUtil getMin() Returns the smallest value of an array

of doubles passed in
getMax() Returns the largest value of an array of

doubles passed in
getSum() Returns the sum of all the values of an

array of doubles passed in

Table 3. Predefined Velocity Variables

The variables and methods in Table 3 are all detailed (with examples) in the “Common

Utilities for CTM Developers” section of SAS® Studio 5.2: Developer’s Guide to Writing

Custom Tasks.

WORKING WITH CAS TABLES

For the most part, there is no difference between writing tasks for SAS 9.4 and writing tasks

for SAS Viya. However, there are two important skills you will need for working with CAS

https://velocity.apache.org/engine/2.0/user-guide.html#directives
https://velocity.apache.org/engine/2.0/user-guide.html#directives
https://velocity.apache.org/engine/2.0/user-guide.html#methods
https://velocity.apache.org/engine/2.0/user-guide.html#methods
https://go.documentation.sas.com/api/docsets/webeditordg/5.2/content/webeditordg.pdf
https://go.documentation.sas.com/api/docsets/webeditordg/5.2/content/webeditordg.pdf
https://go.documentation.sas.com/api/docsets/webeditordg/5.2/content/webeditordg.pdf

9

tables in your custom tasks. The first is the ability to change the library engine for the data

set selector. The second is the ability to parse the two-level file name to get the library and

table names.

DATA SET SELECTOR LIBRARY ENGINE

If the SAS code you are putting into a task contains SAS Viya procedures, it is a good idea

to restrict your data set selector to allow only the selection of CAS tables. Alternatively, if

your SAS code uses only SAS 9 procedures, you won’t want users to be able to select CAS

tables as input.

When you create your data set selector or data source control, use the

libraryEngineInclude= option to restrict engines and either include or exclude CAS tables.

Task Example

For this section we will be looking at the CAS Actions task shown in Figure 6. This task uses

CAS actions that allow the user to view information about their chosen data set. A CAS

action sends a request to the server, invokes the action function, and returns the result.

SAS Viya procedures are built from CAS actions, but you can also code in SAS Viya by

writing the actions yourself using PROC CAS. The three CAS actions used are

tables.tableinfo, tables.columninfo, and simple.summary.

Figure 6. CAS Actions Task

The CAS Actions task will accept only a CAS table as input. The following code shows how to

include only the “CAS” library engine on your data set selector:

<DataSources>

 <DataSource libraryEngineInclude="CAS" name="dataset" where="true">

</DataSource>

10

This results in the user seeing only CAS libraries when they make their data set selection as

shown in Figure 7.

Figure 7. Data Set Selector Showing Only CAS libraries

PARSING TWO-LEVEL DATA SET NAMES

CAS actions require the library name and table name to be specified separately (using

caslib=”” and name=””). The data set selector provides the task author with a single string

for the table in the format libraryname.datasetname, for example sashelp.class. If your SAS

code incorporates CAS actions, you will need to parse this string to get separate library and

table names.

Task Example

To demonstrate this, we will look again at the CAS Actions task. The following code parses

the string from the data set selector to retrieve the library and data set names.

#set($outputLibrefIndex = $outputData.toString().indexOf("."))

#set($outputLibrefIndex1 = $outputData.toString().indexOf(".")+1)

#set($outputCASLibref = $outputData.toString().substring(0,

$outputLibrefIndex))

#set($outputCASName =

$outputData.toString().substring($outputLibrefIndex1))

#set($inputLibrefIndex = $DATASOURCE.toString().indexOf("."))

#set($inputLibrefIndex1 = $DATASOURCE.toString().indexOf(".")+1)

#set($inputCASLibref = $DATASOURCE.toString().substring(0,

$inputLibrefIndex))

#set($inputCASName =

$DATASOURCE.toString().substring($inputLibrefIndex1))

After you have extracted the table and libref names into Velocity macro variables

($outputCASName, $outputCASLibref, $inputCASName, and $inputCASLibref), you can

reference them in your SAS Code. Here is the code from the CAS Actions task using the

Velocity macro variables set above.

proc cas ;

#if ($chkTABLE == 1)

 table.tableinfo /name='$inputCASName' caslib='$inputCASLibref';

#end

#if ($chkCOLUMN == 1)

11

 table.columninfo result=r /table={name='$inputCASName',

caslib='$inputCASLibref'};

 print r;

#end

#if ($chkSUMMARY == 1)

simple.summary / table={name='$inputCASName', caslib='$inputCASLibref'

#if ($VAR.size() !=0), groupby={ #foreach($item in $VAR) '$item'

#end} #end}

 casOut={caslib="$outputCASLibref", name="$outputCASName",

replace=true};

#end

run;

#if ($chkSUMMARY == 1)

proc print data=$outputData;

run;

#end

CONCLUSION

Equipped with the tools described in this paper, the adventurous task author is now

prepared to take their task development to the next level. By mastering the use of optional

task sections, considering opportunities for multi-task workflows, incorporating advanced

Velocity techniques, and appropriately using CAS tables, the custom tasks you create will be

functional, elegant, and easy to use.

REFERENCES

Chrome Web Store. “SAS Graphics Accelerator.” Available at

https://chrome.google.com/webstore/detail/sas-graphics-

accelerator/ockmipfaiiahknplinepcaogdillgoko?hl=en.

Drutar, Michael. 2020. “create_VA_svg_image.sas” Cary, NC: SAS Institute Inc. Available at

https://github.com/sascommunities/sas-global-forum-2019/blob/master/3156-2019-

Drutar/ViyaAPI_SASCode/create_VA_svg_image.sas

Drutar, Michael. 2019. “SAS® Viya® reportImages Service: The Report Optimization

Speedometer” Proceedings of the SAS Global Forum 2019 Conference. Cary, NC: SAS

Institute Inc. https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2019/3156-2019.pdf

SAS Institute Inc. 2019. “Common Utilities for CTM Developers” In SAS Studio 5.2:

Developer’s Guide to Writing Custom Tasks. Cary, NC: SAS Institute Inc.

https://documentation.sas.com/api/collections/webeditorcdc/5.2/docsets/webeditordg/conte

nt/webeditordg.pdf.

SAS Institute Inc. 2020. SAS Product page for SAS® Graphics Accelerator.

http://support.sas.com/software/products/graphics-accelerator/.

SAS Institute Inc. 2020. “Report Images” In SAS Viya REST APIs. Available at

https://developer.sas.com/apis/rest/Visualization/#report-images

The Apache Software Foundation. 2020. “User Guide – Contents.” In Velocity User’s Guide.

The Apache Software Foundation. https://velocity.apache.org/engine/2.0/user-guide.html

The Apache Software Foundation. 2020. “Methods.” In Velocity User’s Guide. The Apache

Software Foundation. https://velocity.apache.org/engine/2.0/user-guide.html#methods

The Apache Software Foundation. 2020. “Directives.” In Velocity User’s Guide. The Apache

Software Foundation. https://velocity.apache.org/engine/2.0/user-guide.html#directives

https://chrome.google.com/webstore/detail/sas-graphics-accelerator/ockmipfaiiahknplinepcaogdillgoko?hl=en
https://chrome.google.com/webstore/detail/sas-graphics-accelerator/ockmipfaiiahknplinepcaogdillgoko?hl=en
https://github.com/sascommunities/sas-global-forum-2019/blob/master/3156-2019-Drutar/ViyaAPI_SASCode/create_VA_svg_image.sas
https://github.com/sascommunities/sas-global-forum-2019/blob/master/3156-2019-Drutar/ViyaAPI_SASCode/create_VA_svg_image.sas
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3156-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3156-2019.pdf
https://documentation.sas.com/api/collections/webeditorcdc/5.2/docsets/webeditordg/content/webeditordg.pdf
https://documentation.sas.com/api/collections/webeditorcdc/5.2/docsets/webeditordg/content/webeditordg.pdf
http://support.sas.com/software/products/graphics-accelerator/
https://developer.sas.com/apis/rest/Visualization/#report-images
https://velocity.apache.org/engine/2.0/user-guide.html
https://velocity.apache.org/engine/2.0/user-guide.html#methods
https://velocity.apache.org/engine/2.0/user-guide.html#directives

12

Wright, Olivia. “Custom Task Tuesday Examples.” Available at

https://github.com/sassoftware/sas-studio-tasks/tree/master/contributed/tasktuesdays

RECOMMENDED READING

Corcoran, Christie. Peters, Amy. 2015. “Teach Them to Fish—How to Use Tasks in SAS

Studio to Enable CoWorkers to Run Your Reports Themselves” Proceedings of the SAS

Global Forum 2015 Conference. Cary, NC: SAS Institute Inc.

https://support.sas.com/resources/papers/proceedings15/SAS1831-2015.pdf

Inman, Elliot. Wright, Olivia. 2017. “Developing Your Own SAS Studio Custom Tasks for

Advanced Analytics” Proceedings of the SAS Global Forum 2017 Conference. Cary, NC: SAS

Institute Inc. https://support.sas.com/resources/papers/proceedings17/SAS0677-2017.pdf

Wright, Olivia. Matange, Sanjay. 2019. “Developing Custom SAS® Studio Tasks for Clinical

Trial Graphs” Proceedings of the PharmaSUG 2019 Conference. Cary, NC: SAS Institute Inc.

https://www.pharmasug.org/proceedings/2019/HT/PharmaSUG-2019-HT-063.pdf

ACKNOWLEDGMENTS

A special thank you to the following people for their help and contributions to this paper:

Eric Bolender, Michael Drutar, Brian Gaines, Elliot Inman, Kris Kiser, Gang Meng, Ed

Summers, and Qingsong Yang.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Olivia Wright

SAS Institute Inc.

Olivia.Wright@sas.com

Twitter: @OliviaJWright

LinkedIn: linkedin.com/in/oliviajwright/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://github.com/sassoftware/sas-studio-tasks/tree/master/contributed/tasktuesdays
https://support.sas.com/resources/papers/proceedings15/SAS1831-2015.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0677-2017.pdf
https://www.pharmasug.org/proceedings/2019/HT/PharmaSUG-2019-HT-063.pdf
mailto:Olivia.Wright@sas.com
https://twitter.com/OliviaJWright
https://www.linkedin.com/in/oliviajwright/

