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ABSTRACT  

SAS® Visual Data Mining and Machine Learning in SAS® Viya® offers a number of algorithms 
for training powerful predictive models, such as gradient boosting, forest, and deep learning 
models. Although these models are powerful, they are often too complex for people to 

understand by directly inspecting the model parameters. The “black-box” nature of these 
models limits their use in highly regulated industries such as banking, insurance, and health 
care. This paper introduces various model-agnostic interpretability techniques available in 
SAS Viya that enable you to explain and understand machine learning models. Methods 
include partial dependency (PD) plots, independent conditional expectation (ICE) plots, local 

interpretable model-agnostic explanations (LIME), and Shapley values. This paper 
introduces these methods and demonstrates their use in two scenarios: a business-centered 
modeling task and a health-care modeling task. Also shown are the two different interfaces 
to these methods in SAS Viya: Model Studio and the SAS Viya programming interface.  

INTRODUCTION  

Modern machine learning algorithms can make accurate predictions by modeling the 
complex relationship between inputs and outputs. The algorithms build predictive models by 
learning from the training data, and then make predictions on new observations. Although 
machine learning algorithms can learn complex relationships, the models that are produced 
can be equally complex, making it dif f icult to understand the association between the inputs 

and outputs. Because of their complexity, many machine learning models are seen as black-
box models, producing predictions without explaining why and how they are made. 
 
One example of a black-box machine learning model is a simple neural network model with 
one or two hidden layers. Even though you can write out the equations that link every input 
in the model to every output, you might not be able to grasp the meaning of the 

connections simply by examining the equations. This has less to do with the shortcomings of 
the models, and more to do with the shortcomings of human cognition. Often, the higher 
the predictive accuracy of a model, the harder it is to interpret its inner workings. This is 
where interpretability techniques come into play by providing a lens through which you can 
view these complex models. 

 
Model interpretability can meet different needs for different users, such as regulators, 
executives, data scientists, and domain experts. Regulators need model interpretability to 
make sure the model makes predictions for the right reasons. For example, if  an individual’s 
loan application is rejected, the loan agency needs to confirm that this decision does not 

violate any laws that protect certain groups of people. Executives need to understand black-
box models so that they can logically justify the decisions they make. Lastly, data scientists 
(with the help of domain experts) need model interpretability to be able to detect biases 
that exist in training data, extract new knowledge that is originally hidden in the data, and 
debug models when they produce wrong and unexpected predictions. 

 
In recent years, interpretable machine learning has been the topic of much research. The 
methods for interpreting models can be categorized into two groups: training inherently 
interpretable models and providing post-hoc explanations for complex machine learning 
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models. Inherently interpretable models (also called explainable models) incorporate 
interpretability directly into the model structure, and thus are self-explanatory. One type of 

commonly used inherently interpretable models is the generalized linear model (GLM), 
which includes linear and logistic regression. The coefficient estimates of GLMs directly 
ref lect feature contributions; hence, these models can be explained through these 
coefficients. More recently introduced examples of inherently interpretable models achieve 
interpretability by forcing the models to use fewer features for prediction or by enabling 

features to have monotonic relationships with the prediction (Ustun and Rudin 2015). 
Another example of inherently interpretable models is generalized additive models with 
pairwise interactions (GA2M). These models enable you to understand the contribution of 
features through their additive components (Caruana et al. 2015). These constraints can 
make complex models simpler and increase the model’s comprehensibility to users. 
However, imposing these constraints can also decrease the predictive ability of the model 

when compared to an unrestricted model. 
 
This paper focuses on exploring post-hoc interpretability methods that are used to explain 
trained supervised machine learning models such as boosted trees, forests, and neural 
networks. These model-agnostic techniques explain predictions of these models by treating 

the models as black boxes and then generating explanations without inspecting the internal 
model parameters.  
 
In general, model-agnostic interpretability techniques enable fully complex models to be 
interpreted either globally or locally. Global interpretability provides explanations about the 

general behavior of the model over the entire population. For example, global 
interpretability might explain which variables played an important role in the construction of 
the model or describe the impact of each feature on the overall prediction of the model. In 
contrast, local interpretability provides explanations for a specified prediction of the model.  
 

This paper f irst explains various global and local post-hoc interpretability techniques, and 
then applies these techniques to explain two previously trained models. The f irst example 
explains a gradient boosting model that was trained on f inancial data that includes loan 
records. This example is shown in SAS Model Studio, a highly f lexible point-and-click web 
interface for constructing machine learning pipelines. The second example explains a forest 

model that was trained on health-care data for predicting the malignancy of potential breast 
cancer biopsies. This example uses the programmatic interface in SAS Viya, which offers 
more user control in requesting explanations and is therefore more suitable for advanced 
users.  

GLOBAL INTERPRETABILITY 

Post-hoc global interpretability aims to provide a global understanding about what is learned 
by the pretrained model over the entire population and presents this learned knowledge in a 
way that humans can understand. Variable importance tables and partial dependence (PD) 
plots are two commonly used global interpretability techniques. This section also covers 
individual conditional expectation (ICE). Although ICE is a local explanation technique, it is 

related to PD.  

VARIABLE IMPORTANCE 

Variable importance tables indicate the statistical contribution of each feature to the 
underlying model. There are various ways of calculating model-agnostic feature importance. 

One method includes f itting a global surrogate decision tree model to the black-box model 
predictions and using the variable importance table that is produced by this simple decision 
tree model. Another commonly used approach is permutation-based feature importance as 
described in Altmann et al. (2010). This approach measures the decrease in model 
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predictive performance when a single feature is randomly shuffled. This technique can be 
computationally very expensive if  the number of predictors is very large, because it requires 

training a new model (on the perturbed data) for each feature. If the pretrained model is 
tree-based (decision tree, gradient boosting, or forest), you can also use the model-specific 
variable importance table that is generated during the model construction. Generation of 
these tree-based model variable importance tables is often based on the number of times a 

feature is used to split data.  

PARTIAL DEPENDENCE AND INDIVIDUAL CONDITIONAL EXPECTATION  

Both PD and ICE provide explanations that are based on data perturbation, where the 
contribution of each feature is determined by measuring how a model’s prediction changes 
when the feature is altered. Partial dependence (PD) plots depict the relationship between a 

feature and the average prediction of the pretrained model (Friedman 2001).  
The following steps brief ly describe how the partial dependence of a feature is calculated: 

1. Select a single feature. 

2. Select a sample of observations (rows). 

3. For each row in your sample, replicate the row a number of times equal to the number 

of unique values for the selected feature (or the number of binned values for an interval 
variable), and replace the feature’s value with its unique values. Do this for each row in 

your sample. 

4. Score all the replicated data. 

5. Average the model predictions that are produced by the replicated data for each unique 

value of the selected feature. 

6. Generate a bar plot (or a line plot for an interval variable) that shows the unique values 

of the feature on the X axis and the average prediction on the Y axis. 

7. Repeat steps 1–6 for each selected feature. 

PD plots focus on the average effect of a feature for the entire data, whereas ICE plots focus 
on the effect of a feature for a single observation (Goldstein et al. 2014). By examining 
various ICE plots, you gain insight into how the same feature can have a different effect for 

dif ferent individuals or observations in the data.  

The steps for creating an ICE plot for a feature are similar to the steps for creating PD plots 
except that ICE plots are done only for a single observation, and hence the Step 3 is done 
for a single row, and the averaging step listed in Step 5 is skipped. For more information 

about how PD and ICE plots are generated in SAS Viya, see Wright (2018). 

LOCAL INTERPRETABILITY 

This section describes local interpretability methods for explaining individual predictions. In 
general, these techniques assume that machine learning predictions in the neighborhood of 
a particular instance can be approximated by a white-box interpretable model such as a 

regularized linear regression model (LASSO). This local model does not have to work well 
globally, but it must approximate the behavior of the pretrained model in a small local 
region around the instance of interest. Then the parameters of the white-box model can be 

used to explain the prediction of the pretrained model. 

For more information about the SAS Viya implementation of the techniques in this section, 
see the chapter “Explain Model Action Set” in SAS Visual Data Mining and Machine Learning 

8.5: Programming Guide.  

 

https://go.documentation.sas.com/?docsetId=casactml&docsetTarget=casactml_explainmodel_toc.htm&docsetVersion=8.5&locale=en
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LIME 

LIME (local interpretable model-agnostic explanations) explains the predictions of any model 

by building a white-box local surrogate model (Ribeiro, Singh, and Guestrin 2016). The 
method f irst samples the feature space in the neighborhood of an individual observation 
with respect to a training data set. Then, a sparse linear regression model, such as LASSO, 
is trained on this generated sample, using the predictions that are produced by the 
pretrained model as a target. This surrogate model approximates the behavior of the black-

box model locally, but it is much easier to explain by examining the regression coefficients. 

When performing the LIME method, SAS Viya constructs a local surrogate regression model 

by doing the following: 

1. For each input variable, generates synthetic data that are centered on the observed 
value. This is done independently for each input variable by using the standard deviation 

from the overall training data set. 

2. Scores the synthetic data by using the pretrained black-box model you want to explain. 

3. Fits a weighted LASSO regression model to the synthetic data, where the target is the 

pretrained model score obtained in step 2. 

For each row in the synthetic data, the weight of the LASSO regression is the distance to 
the observation of interest (whose model prediction you want to explain), as shown by 
the following equation for the selected observation 𝑞, synthetic row 𝑥𝑖, and scaling factor 

𝜎: 

 𝑤𝑒𝑖𝑔ℎ𝑡 =  𝑒
||𝑞−𝑥𝑖||

𝜎2    

Shapley Values 

Like LIME, the Shapley values explain individual predictions (Kononenko 2010). Different 
from LIME coefficients, Shapley values for feature contributions do not directly come from a 

local regression model. In regression models, the coefficients represent the effect of a 
feature assuming all the other features are already in the model. It is well-known that the 
values of the regression coefficients highly depend on the collinearity of the feature of 
interest with the other features that are included in the model. To eliminate this bias, 
Shapley values calculate feature contributions by averaging across all permutations of the 

features joining the model. This enables Shapley values to control for variable interactions. 
 
The Shapley values are additive, meaning that you can attribute a portion of the model’s 
predictive value to each of the observation’s input variables. For example, if  you have a 
model that is built with three input variables, then you can write the predicted value as 

summation of the corresponding Shapley values plus the average predicted value across the 

input data set. Note that even though Shapley values are additive, they are not ordered. 

Because of computational complexities, there are multiple methods for computing 

approximations to Shapley values. SAS Viya offers the Kernel SHAP and HyperSHAP 

methods.  

Kernel SHAP 

The kernel SHAP method implementation in SAS Viya is based on the steps presented in 

Lundberg and Lee (2017). When performing this method, Viya does the following: 

1. Generates synthetic data that are based on the distributions of the input data set. 

2. Scores the data by using the machine learning model you want to explain. 

3. Transforms both interval and nominal inputs into binary inputs, with a value of 1 if  the 
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synthetic data row is close to the observation of interest, and 0 otherwise. 

4. Computes a weighted regression to the model prediction by using the SHAP kernel, 
where the weights are calculated by the following equation, where 𝑀 is the number of 

variables and |𝑧| is the number of 1’s in the row of the transformed data: 

𝑤𝑒𝑖𝑔ℎ𝑡 = 
(𝑀−1)

(𝑀 𝑐ℎ𝑜𝑜𝑠𝑒 |𝑧|)∗|𝑧|∗(𝑀−|𝑧|)
,  

HyperSHAP 

The HyperSHAP method estimates the conditional expectation values without f itting a 
regression model. It reduces the number of  necessary evaluations by controlling the 

degrees of variable interactions that are considered in the calculation. When computing the 

HyperSHAP values, SAS Viya does the following: 

1. Accepts a parameter that specifies the depth of the approximation. 

2. For all subsets of variables whose number of selected variables is less than or equal to 
the depth, and for all subsets of variables whose number of selected variables is greater 

than or equal to the total number of variables minus the depth: generates a copy of the 
training set where the variables’ values are set equal to the values of the variable in the 

observation of interest. 

3. Scores the new observations. 

4. Averages the prediction for each data set copy. 

5. Computes a weighted aggregation of the average predictions. 

One benefit of the HyperSHAP method is that it enables you to choose the level of 

approximation to the Shapley values—a tradeoff between f idelity and timing.  

Note that in SAS Viya 3.5, you can access HyperSHAP only through the programmatic user 

interfaces. 

INTERPRETABILITY IN THE MODEL STUDIO USER INTERFACE  

SAS Viya is a cloud-enabled, in-memory analytics platform that supports fast processing of 
huge amounts of data and complex analytics across a large distributed grid. SAS Visual 

Data Mining and Machine Learning running on SAS Viya solves complex analytical problems 
with a comprehensive visual interface that handles all tasks in the analytics life cycle, 
including data wrangling, exploration, feature engineering in addition to modern statistical, 
data mining, and machine learning techniques. All of this is done in a single, scalable, in-
memory processing environment. You can access these tasks through SAS® Drive, which is 

a web-based single point of access.  
 
Included in SAS Visual Data Mining and Machine Learning, the SAS Model Studio application 
is web-based visual interface that enables users to build predictive modeling pipelines. A 
pipeline is a structured f low of analytical nodes, each of which performs a single data mining 

or predictive modeling task. You access Model Studio by selecting Build Models from the 
Analytics Life Cycle menu in SAS Drive, as shown in Figure 1. 
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Figure 1. Access Model Studio by Selecting Build Models 

When working in Model Studio, you construct pipelines by adding nodes through the point-
and-click web interface. Figure 2 shows a simple Model Studio pipeline that performs 
missing data imputation, selects variables, constructs two logistic regression models and a 
decision tree model, and compares their predictive performances. 
 

 
Figure 2. A Model Studio Pipeline in SAS Visual Data Mining and Machine Learning 

Building pipelines is considered a best practice for predictive modeling tasks because 
pipelines can be saved and shared with other SAS Visual Data Mining and Machine Learning 
users for training future machine learning models on similar data. In addition to many 
feature engineering capabilities, Model Studio also offers numerous ways to tune, assess, 

combine, and interpret models. 
 
In Model Studio, model interpretability functionalities are provided as a post-training 
property of all supervised learning nodes. Changing post-training properties and retrieving 
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interpretability results does not require retraining the machine learning model. Figure 3 
shows the model interpretability properties for the Gradient Boosting supervised learning 

node. 
 

 
Figure 3. Model Interpretability Properties for the Gradient Boosting Node 

In Model Studio, model interpretability results are presented in a user-friendly way by 

decreasing the huge amount of information that might be overwhelming to users. Instead, 
Model Studio includes text explanations that are provided by natural language generation 
for easier understanding of the results. This enables users who are less experienced with 
these techniques to f ind some meaningful insight into the relationships between the 
predictors and the target variable in black-box models. For more information about Model 

Studio, see  SAS Visual Data Mining and Machine Learning: User's Guide. 

CASE STUDY I: HELOC DATA 

This case study demonstrates how to use SAS Model Studio for performing post-hoc model 
interpretability. 

Data and Model 

The data come from the FICO xML Challenge, which can be found at 
https://community.fico.com/s/explainable-machine-learning-challenge. The data are 
contained in an anonymized data set of home equity line of credit (HELOC) applications 

made by real homeowners. A HELOC is a line of credit typically offered by a bank as a 
percentage of home equity (the difference between the current market value of a home and 
any liens on the home). The customers in this data set have requested a credit line in the 

range of $5,000–$150,000. 

The goal is to predict whether the applicants will repay their HELOC account within two 
years. The data set has 10,459 observations for a mix of 23 interval and nominal input 
variables, which include predictors such as the number of installment trades with balance, 
the number of months since the most recent delinquency, and the average number of 

months in f ile. The target variable is RiskPerformance, a binary variable that takes the value 
Good or Bad. The value Bad indicates that a customer ’s payment was at least 90 days past 
due at some point in the 24-month period after the credit account was opened. The value 
Good indicates that payments were made without ever being more than 90 days overdue. 

The data are balanced with around 52% Bad observations. 

https://go.documentation.sas.com/?activeCdc=vdmmlcdc&cdcId=capcdc&cdcVersion=8.5&docsetId=vdmmlug&docsetTarget=titlepage.htm&locale=en
https://community.fico.com/s/explainable-machine-learning-challenge
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The focus of this paper is on explaining model interpretability, so the data preprocessing 
and feature generation steps are skipped. All the input variables were taken as-is, except 

for the variables Max Delq/Public Records Last 12 Months and Max Delinquency Ever, which 
were converted to strings according to the FICO data dictionary. In addition, an ID variable 

was created in order to specify individual applicants when performing local interpretability.  

A Model Studio project (called heloc) is created using this data set. For more information 
about how to create a SAS Model Studio project, see the section Getting Started with SAS 
Visual Data Mining and Machine Learning in Model Studio in SAS Visual Data Mining and 

Machine Learning: Users Guide. 

The data are partitioned by the default values of 60% for training, 30% for validation, and 

10% for test sets, as shown in Figure 4. 

 
Figure 4. Project Settings 

By clicking the Data tab, you can assign different roles to your input variables. Figure 5 

shows that the newly created ID variable is assigned the role Key. This step is necessary if  
you want to specify individual predictions for local interpretability. Figure 5 also shows that 
the binary variable RiskPerformance is specif ied as the target variable. 
 

 
Figure 5. Data Tab 

https://go.documentation.sas.com/?activeCdc=vdmmlcdc&cdcId=capcdc&cdcVersion=8.5&docsetId=vdmmlug&docsetTarget=n1thlooq2m46z9n1njxf3pmp1exc.htm&locale=en
https://go.documentation.sas.com/?activeCdc=vdmmlcdc&cdcId=capcdc&cdcVersion=8.5&docsetId=vdmmlug&docsetTarget=n1thlooq2m46z9n1njxf3pmp1exc.htm&locale=en
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When specifying the target variable, you can choose the event level of the target variable. 
Figure 6 shows that event level is specif ied as Bad. This means the predicted probabilities of 

the trained models will represent the probabilities of  a customer making a late payment. 
 

 
Figure 6. Specifying the Event Level for the Target Variable 

To train a gradient boosting model in Model Studio, you simply need to connect the Gradient 
Boosting supervised learning node to the Data node. For this example, the Gradient 
Boosting node is run with its default settings without doing any hyperparameter tuning. By 
default, the validation set is used for early stopping to decide when to stop training boosted 
trees. Figure 7 shows the f it statistics of the black-box gradient boosting model. 

 

 
Figure 7. Model Assessment Results, Model Fit Statistics 

Figure 7 shows that the model’s misclassification rate on the test set is 27.8%. Figure 8 

shows the corresponding event classification plot, where the larger portion of the model’s 
misclassification events are good applications that are predicted as bad. 
 

 
Figure 8. Assessment Results, Event-Based Classification Plot 

To improve prediction accuracy, you can perform a hyperparameter search for your gradient 

boosting model by turning on the Perform Autotuning property, which is available in all 
the supervised machine learning nodes in Model Studio.  To learn more about automated 
hyperparameter tuning functionality in SAS Viya, see Koch et. al. (2018).  

Global Interpretability 

This section shows how you can request and view global interpretability plots. 
Figure 9 shows the check boxes you use enable a node’s global interpretability methods 
(variable importance and partial dependence plots) in Model Studio. Note that since the 
model interpretability techniques covered here are post-hoc, they are done after training 
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the gradient boosting model. This means that unless you change any model training 
properties, changing a post-training property such as model interpretability does not require 

retraining the model. 

 

 
Figure 9. Requesting Global Interpretability for the Trained Gradient Boosting 

Model 

Variable Importance 

The model variable importance table in Figure 10 shows the ranking of the importance of 
the features in construction of the gradient boosting model.  
 

 
Figure 10. Model-Based Variable Importance Table 

Partial Dependence Plots  

In Model Studio, by default partial dependence plots are generated for the top f ive variables 
in the variable importance table. Figure 11 and Figure 12 show the partial dependency plots 

for the top two variables. In Figure 11, you can see that the predicted probability of 
payments being 90 days overdue decreases monotonically as the external risk estimate 
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value increases. A text box to the right of the graph explains the graph by using natural 
language generation (NLG) in SAS Viya. All model interpretability plots have NLG text 

boxes. These explanations can help you understand the graphs and are especially useful if  
you are not familiar with the graph type.  
 

 
Figure 11. Partial Dependency Plot of External Risk Estimate 

Figure 12 shows that the predicted probability of Bad payments decreases gradually as the 
applicant’s number of months in f ile increases from 50 months to 100 months. This is 
expected, because applicants who have a longer credit history are deemed less risky. The 
heat map on the X axis shows that not many observations have an average number of 
months in f ile greater than 100. After the number of months in f ile reaches 100, the 

probability of Bad payments f irst increases slightly and then f lattens because the model has 
less information in this domain. Hence, you should be cautious in explaining the part of the 
plot where the population density is low. 
  

 
Figure 12. Partial Dependence Plot for Average Months in File 
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Local Interpretability 

Local interpretability helps you understand individual predictions. Figure 13 shows the 

Gradient Boosting node’s options for requesting local interpretability (ICE, LIME, and Kernel 
SHAP) for f ive applicants who are specified by their IDs. This identif ication variable should 
have unique values and must be specif ied to have the role Key (only one variable can have 
this role) on the Data tab.  
 

 
 

Figure 13. Requesting Local Interpretability Results for Individual Instances 

ICE Plots 

Figure 14 shows the f ive ICE plots for the specified observations for the external risk 
estimate input variable. The change in the model’s prediction for each of these observations 
decreases as the external risk estimate increases, which matches the behavior that is seen 

in the partial dependence curve (shown in blue). Each observation is affected by the 
external risk estimate slightly dif ferently. For observation 152, there is a steep decline in 
the model’s predicted probability of late payment when the external risk estimate is 
between 60 and 70, whereas for observation for 4129, the decline is more gradual between 
60 and 70 and is steeper after 70. 
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Figure 14. PD and ICE Overlay Plot 

True Positive Prediction of High-Risk (LIME Explanation) 

Figure 15 shows the LIME explanation of the prediction of the black-box gradient boosting 
model for instance 8351. Gradient boosting models predict this instance as a high-risk 
HELOC application with a predicted probability of 0.965.  
 

When LIME is implemented, a local model is f it after converting each feature into a binary 
feature according to its proximity to the explained observation. Therefore, the coefficients in 
the LIME explanation represent the impact of the observed feature values of the instance. 
The feature values of instance 8351 are shown in Table 1. 
 

Variable Label Value 

Number of Trades Open in Last 12 

Months 
0 

External Risk Estimate 59 

Months Since Most Recent Delinquency 0 

Average Months in File 56 

Months Since Most Recent Trade Open 15 

Number Trades 60+ Ever 1 

Percent Trades with Balance 59 

Months Since Oldest Trade Open 136 

Max Delinquency Ever Never Delinquent 

Table 1. Feature Values for LIME Explanation of Instance 8351 

The LIME explanation for instance 8351 shows that Number Trades 60+ Ever=1 and Max 

Delinquency Ever=Never Delinquent decrease the risk of default, whereas all other 
predictors increase the risk of default. 
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Figure 15. LIME Explanation of Instance 8351 as True Positive of High-Risk 

Application  

False Positive Prediction of High Risk (Kernel SHAP Explanation) 

Figure 16 shows the Kernel SHAP explanation of the prediction of the black-box gradient 
boosting model for instance 4129. The ground truth for this instance is Good, but the 

models outputs a high probability (0.904) of predicting it as Bad.  

 
Figure 16. Kernel SHAP Explanation of Instance 4129 as False Positive of High-

Risk Application  
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Variable Label Value 

Percent Trades Never Delinquent 67 

Months Since Most Recent Delinquency 17 

Number Satisfactory Trades 5 

External Risk Estimate 62 

Number Revolving Trades with Balance 3 

Table 2. Feature Values for Kernel SHAP Explanation of Instance 4129 

The Kernel SHAP explanation in Figure 16 and the feature values in Table 1 show that the 
features that contribute most toward increasing the high risk of late payments are Percent 
Trades Never Delinquent=67, Number Satisfactory Trades=5, and External Risk 
Estimate=62. Even though the model has such a high confidence in its prediction, the same 
confidence is not seen by examining the top f ive Kernel SHAP explanations, which can be 

used as a warning sign for this false prediction. 

ACCESSING INTERPRETABILITY THROUGH PROGRAMMATIC 
USAGE 

SAS Viya uses SAS® Cloud Analytic Services (CAS) to perform tasks. The smallest unit of 
work for the CAS server is a CAS action. SAS Model Studio nodes run CAS actions behind 
the scenes to perform analytical tasks. The explainModel action set provides post-hoc 
model-agnostic interpretations for machine learning models. For greater f lexibility in how 

you use model interpretability, you might prefer to directly access the CAS actions through 

a programming interface. 

In SAS Viya, you can run CAS actions via a variety of interfaces, including the following:  

• SAS session, which uses the CAS procedure 

• Python, Lua, or R, which use the SAS Scripting Wrapper for Analytics Transfer 

(SWAT) libraries 

• Java, which uses the CAS Client class  

• Representational state transfer (REST), which uses the CAS REST APIs 

The actions in the explainModel action set can be used to explain a model whose score code 
is saved in SAS DATA step code or a SAS analytic store. The action set includes three 

actions:  

• The partialDependence action calculates partial dependence (PD) and individual 
conditional expectation (ICE), which explain model behaviors on a variable-by-

variable basis.  

• The linearExplainer action also provides both local and global explanations. The local 
explanations (Shapley value estimates and LIME values) provide information about 

variable inf luence and local model behavior for an individual observation, and the 
global explanations (global regression) shed light on the overall model behavior by 
f itting a global surrogate regression model. The Shapley value estimator in the 

linearExplainer action uses the Kernel SHAP method. 

• The shapleyExplainer action is a specialized Shapley value explainer that provides 
scalable and accurate Shapley value estimates. The Shapley values reflect the 
contribution of each variable toward the f inal prediction for an individual observation. 
The shapleyExplainer action uses the HyperSHAP method to calculate the Shapley 

values. 

For implementation details about these techniques and user options, see the chapter 
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“Explain Model Action Set” in SAS Visual Data Mining and Machine Learning 8.5: Programming 
Guide. 

CASE STUDY II: BREAST CANCER DATA 

This section uses a health-care application to demonstrate how to access interpretability 
through a programmatic interface. The full SAS Viya code for this example can be found at: 

https://github.com/sassoftware/sas-viya-machine-learning/tree/master/interpretability 

Data and Model 

Diagnosing illness is a frequent and difficult task undertaken by doctors in the health-care 
industry. The consequences for being incorrect about a diagnosis can be severe. To mitigate 
some of the resulting pressure on doctors, many studies attempt to use machine learning to 

assist the process of diagnosis by training a model on historical clinical cases. Unfortunately, 
many of the most complex machine learning models cannot participate in some diagnostic 

procedures because they lack adequate interpretations.  

This section uses the interpretability actions available in SAS Viya to train a model that 
predicts the malignancy of potential breast cancer biopsies and to explain the predictions of 
this model. Data for this section are from the University of Wisconsin Hospitals in Madison, 
WI, from Dr. William H. Wolberg, as described by Mangasarian and Wolberg (1990). The 

data contain nine observed quantities that are calculated by a physician upon the collection 
of a f ine needle aspirate (FNA) from a potentially malignant area in a patient and are 

labeled according to their malignancy. 

The data contain nine input variables and a target variable. The input variables are clump 
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. Each of these 
variables ranges from 1 to 10, with larger numbers generally indicating a greater likelihood 
of malignancy according to the examining physician. The target variable indicates whether 

the region was malignant or benign. None of these input variables by itself is enough to 
determine whether the region is malignant, so they must be aggregated in some way. A 

random forest model is trained to predict sample malignancy from these variables. 

The data contain 699 observations. The bare nuclei variable contains a few instances of 
missing data, which were imputed to have value 0. The data were partitioned into a training 
set (70%) and a test set (30%). The following code trains a random forest model on the 
training data by using the decisionTree action set in SAS Visual Data Mining and Machine 
Learning: 
 

   proc cas; 

 

 inputs = &inputs; 

 

 decisionTree.forestTrain   result    = forest_res  

                               / table     = "BREAST_CANCER_TRAIN" 

        target    = "class" 

                                 inputs    = inputs 

        oob       = True 

        nTree     = 500 

        maxLevel  = 12 

        prune     = True 

        seed      = 1234 

        varImp    = True 

                                 casOut    = {name    = "FOREST_MODEL_TABLE", 

                                              replace = True} 

                                 savestate = {name    = "FOREST_MODEL", 

https://go.documentation.sas.com/?docsetId=casactml&docsetTarget=casactml_explainmodel_toc.htm&docsetVersion=8.5&locale=en
https://github.com/sassoftware/sas-viya-machine-learning/tree/master/interpretability
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                replace = True}; 

 run; 

 

 print forest_res; 

 run; 

 

   quit; 

 

The macro variable &inputs defines a list that contains the names of the input variables 
(except the ID variable). Following this training, a cutoff of 0.4 optimized the model’s 
misclassification rate on the training set. This cutoff was then used to assess the model on 
the test set, which achieved a misclassification rate of 2.91%. This accuracy is competitive 
with other black-box models that are trained and published on the same data. Although the 
predictive accuracy is good, the forest model remains difficult to interpret because of its 

complexity. This complexity can render the model entirely useless in clinical settings, where 

interpretability is paramount for a patient’s well-being and the physician’s confidence.  

Variable Importance  

Table 2 contains the model-specific variable importance of the input variables as calculated 

by the forestTrain action. 

Variable Name Importance 

cell_size_uniformity 36.9120 

cell_shape_uniformity 28.3112 

bare_nuclei 23.0752 

bland_chromatin 15.5280 

clump_thickness 9.8553 

single_cell_size 5.7949 

normal_nucleoli 5.0672 

marginal_adhesion 3.5239 

mitoses 0.2673 

Table 2. ForestTrain Action Variable Importance Table 

Table 2 shows that the f ive most important variables for the model’s predictions are the 
uniformity of cell size and shape, bare nuclei, bland chromatin, and clump thickness. As you 

can see, this table does not tell you the direct effect of these variables in the model; it only 
says which variables were important in the model’s construction. However, you can use this 
information to decide which variables to investigate further through other interpretability 

techniques such as PD and ICE plots. 

The preceding information establishes that the forest model is highly predictive on unseen 
data and that not all the input variables are equally important. One remaining question is 
how each of the input variables affects the prediction of the model. The partial dependence 
plots for a particular variable illustrate how the model’s predictions change when that 

variable’s value f luctuates with all other variables being held constant.  

The following CAS action call requests the partial dependence plot for the most important 

variable (cell size uniformity) of the variable importance table: 

   proc cas; 

  

 /* Inputs and Nominals macro -> CASL Var */ 

 inputs = &inputs; 
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 /* Action Call */ 

 explainModel.partialDependence   result           = pd_res 

            / table            = "BREAST_CANCER" 

         inputs           = inputs 

         modelTable       = "&model" 

         modelTableType   = "ASTORE" 

         predictedTarget  = "&pred_target" 

         analysisVariable =  

                                           {name  = "&var_name",  

              nBins = 50} 

         iceTable         =  

                                           {casout   = {name = "ICE_TABLE", 

                replace = True}, 

         copyVars = "ALL"} 

         seed             = 1234 

 ; 

 run; 

 

 /* Save PD Results */ 

 saveresult pd_res["PartialDependence"] dataset = PD_RES; 

 run; 

 

   quit; 

 

Again, the &inputs macro variable is used to specify the list of input variables to the 
partialDependence action. The modelTable, modelTableType, and predictedTarget 
parameters specify the model being explained and its expected output column. The table 

and iceTable parameters indicate which data sets to use for the PD calculation and for 
storing replicated observations, respectively. The variable being explained is specif ied in the 
analysisVariable parameter, which contains other subparameters for slightly altering the 
produced PD calculation. For more information, see the chapter “Explain Model Action Set” 
in SAS Visual Data Mining and Machine Learning 8.5: Programming Guide. 
 

Figure 17 shows the partial dependence of the forest’s predictions with respect to the cell 

size uniformity variable. 

 

Figure 17. Partial Dependence of Forest Prediction of Malignancy with Respect to 

Cell Size Uniformity 

https://go.documentation.sas.com/?docsetId=casactml&docsetTarget=casactml_explainmodel_toc.htm&docsetVersion=8.5&locale=en
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Figure 17 shows that the model’s predictions change greatly between the extremes of the 
cell size uniformity variable—for lower values of cell size uniformity, the model’s average 

prediction is lower than 0.3, and for larger values it reaches 0.6. The value of this variable 
in the input data can have a large effect on the prediction from the model, which is why its 
variable importance metric is so high. Figure 17 also shows that the model’s prediction with 
respect to cell size uniformity is monotonic, always increasing as the variable’s value 
increases, which is as expected based on the description of the data. This plot builds trust in 

the model by demonstrating that it is not behaving in an unexpected way. 

Typically, the partial dependencies of variables are shown on individual plots. However, 
since all the input variables in this problem lie on the same scale and have similar impact on 

the target (larger values indicate increased chance of malignancy), the partial dependencies 

with respect to each variable can be overlaid as shown in Figure 18. 

 

Figure 18. Partial Dependence of Forest Prediction of Malignancy for All Inputs 

Figure 18 shows that the input variables are being used exactly as defined by the data 

description; the mean prediction of the model increases as the value of each of the input 
variables increases. Also depicted is the relative inf luence of each variable on the model’s 
prediction, with cell size uniformity, cell shape uniformity, bare nuclei, clump thickness, and 
bland chromatin all showing a large range in their mean predictions. These large ranges 
correspond to their high variable importance values and build further trust in the model. The 

mitoses variable’s partial dependence plot is almost perfectly f lat, which would indicate that 

the variable contributes almost nothing to the prediction of the model.  

LIME and HyperSHAP 

The partial dependence plots are useful for understanding the effect of input variables on all 

observations. Sometimes, however, the role of a variable for an individual observation can 
be rather different from the role of that variable for the overall population. For example, for 
a particular patient, it would be useful to be able to determine which variables in an 
observation contribute most to the prediction of malignancy so that the patient could be 
further convinced of the need of a biopsy, a costly but necessary follow-up procedure. A 

reason such as “The thickness of the clumps in the FNA procedure lead us to believe that we 
should proceed with a biopsy” is more convincing to a patient than just saying “Looking at 
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your FNA, we think we should proceed with a biopsy.” Explanations like these can be 

generated by using LIME and Shapley value methods. 

The following code is used within a SAS macro to compute LIME coefficients: 

 

   explainModel.linearExplainer   result           = lex_res 

               / table            = "BREAST_CANCER_TRAIN" 

         query            =  

       {name  = "BREAST_CANCER_TRAIN",  

             where = "sample_id = &observation;"} 

         inputs           = inputs 

              modelTable       = "FOREST_MODEL" 

              modelTableType   = "ASTORE" 

              predictedTarget  = "P_classMALIGN" 

         preset           = "LIME" 

         explainer        =  

       {standardizeEstimates = "INTERVALS", 

             maxEffects           = &num_vars+1} 

         seed             = 1234 

   ; 

   run; 

 

In the code, the preset parameter is used to select the LIME method for generating 
explanations. The table, modelTable, modelTableType, and predictedTarget parameters are 

used in the same way as in the previous partialDependence action call; they specify the 
data and model to use. The &observation macro variable specifies which observation’s 
prediction is being explained, and the &num_vars macro variable species how many input 
variables are being reported by LIME. The standardizeEstimates parameter is set to 
INTERVALS, which tells the action to standardize the least squares estimates of the LIME 

coefficients so that their magnitudes can be compared.  
 
The following code is used to compute the Shapley values for explaining an individual 
prediction:  
 

   explainModel.shapleyExplainer   result           = shx_res 

        / table            = "BREAST_CANCER_TRAIN" 

          query            =  

                {name  = "BREAST_CANCER_TRAIN",  

         where = "sample_id = &observation;"} 

          inputs           = inputs 

          modelTable       = "FOREST_MODEL" 

          modelTableType   = "ASTORE" 

          predictedTarget  = "P_classMALIGN" 

   ; 

   run; 

 

As in the linearExplainer action call, the &observation macro variable in the 

shapleyExplainer call is used to specify the observation to be explained. The 
shapleyExplainer action call reuses all previous parameters: table, query, inputs, 
modelTable, modelTableType, and predictedTarget. The values of the input variables for the 
specif ied observation are shown in Table 3. This observation was determined by the 
physician to be malignant. The input variables in this observation are large, which would 

correspond to a high likelihood of malignancy according to the attending physician. The 

forest model produces a predicted probability of 100% that this observation is malignant. 
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Clump 
Thickness 

Cell Size 
Uniformity 

Cell Shape 
Uniformity 

Marginal 
Adhesion 

Single 
Cell Size 

Bare 
Nuclei 

Bland 
Chromatin 

Normal 
Nucleoli 

8 10 10 8 7 10 9 7 

Table 3. Correctly Predicted Malignant Observation from Training Data 

Figure 19 shows the LIME coefficients for explaining the forest model for the observation 

that is shown in Table 3. 

 

Figure 19. LIME Coefficients for Correctly Predicted Malignant Observation 

The LIME values for the observation are all positive, indicating that the model’s prediction 
increases as each variable value increases in the local region around this observation. This 
local explanation agrees with the global explanation that comes from the partial dependence 

plots, where the mean prediction increases along with each input variable. 

Figure 20 shows the f ive largest Shapley values for explaining the prediction for the same 

observation that is shown in Table 3. 
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Figure 20. Shapley Values for Correctly Predicted Malignant Observation 

The Shapley values for this observation are all positive, indicating that the values of the 

input variables to the model in this observation increase the model’s prediction relative to 
other observations in the training data. This makes sense because the input variables in this 
observation are all high, taking values between 7 and 10, which would all indicate high 
likelihood for malignancy, and thus contribute positively to the model’s prediction. You can 
see that LIME and Shapley explanations mostly agree for explaining the pretrained forest 

model’s prediction for this observation. 

Table 4 shows another sample from the data for which the model produced an incorrect 
prediction. Although the sample did prove to be malignant, the model predicts a likelihood 

of malignancy of 0.14, which is a large deviation from the truth. Most of the input variables 
in this observation take low values, meaning the investigating physician did not think any 
variable indicated a strong likelihood of malignancy. The LIME and Shapley values might 

provide insight into why the model produces this prediction. 

Clump 
Thickness 

Cell Size 
Uniformity 

Cell Shape 
Uniformity 

Marginal 
Adhesion 

Single 
Cell Size 

Bare 
Nuclei 

Bland 
Chromatin 

Normal 
Nucleoli 

4 1 1 3 1 5 2 1 

Table 4. Incorrectly Predicted Malignant Observation from Training Data 

Figure 21 shows the LIME coefficients for explaining the forest model’s false prediction. 
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Figure 21. LIME Coefficients for Incorrectly Predicted Malignant Observation from 

Training Data 

The LIME coefficients offer little insight beyond what is already understood about the 
model—that its prediction increases with respect to each increasing input variable. Many of 
the variables’ values are small in this observation, and it would therefore be expected that 

the model’s prediction would also be small. 

Figure 22 shows the Shapley values for the same observation that is shown in Table 4. 

 

Figure 22. Shapley Values for Incorrectly Predicted Malignant Observation from 

Training Data 

The Shapley values for the observation are more meaningful in the context of the incorrect 
prediction. It appears that the only variable that contributes positively to the prediction of 
malignancy is the bare nuclei variable (which takes an intermediate value of 5) and that all 

other input values cause the model’s prediction to decrease with respect to the other 
observations. It seems that the model is split in determining whether this observation is 
malignant. This can be caused by the model giving too much weight to some variables or 
there not being enough information in the input data to model this observation. Ultimately 



24 

these results can identify a weakness in the modeling process or might indicate that this 
particular instance is a really hard to diagnose on the basis of the available input variables. 

This information can be used to inform further data collection, feature engineering, and 

model tuning. 

Refining the Model 

Model interpretability does not necessarily need to be confined to the end of a modeling 

process. Occasionally, the interpretability results can reveal information that leads to new 
feature engineering ideas or reveals that certain input variables are useless to the models 
and only contribute to the curse of dimensionality. For this data set, the partial dependency 
of the input variables increases monotonically. The simple nature of the relationship 
between the input variables and the model’s prediction might lead you to think that a 

simpler model will perform just as well as the forest model for this problem. Furthermore, 
the mitoses variable seems to be effectively unused by the model according to both the 
variable importance table and the partial dependence plots, which means it can likely be 

dropped entirely from the input data.  

With the preceding information in mind, a logistic regression model is trained on the same 
data, dropping the mitoses input. Backwards selection is done using the logistic action in the 
regression action set. Only the clump thickness, cell size uniformity, and bare nuclei 
variables remain after selection. Based on the training data, a cutoff of 0.19 is selected, 

which yields a misclassification rate of 4.37% on the test set, a mere 1.46 % decrease in 
accuracy from the forest model. Figure 23 shows the partial dependence of each input 

variable with respect to the mean prediction from the logistic model. 

 

Figure 23. Partial Dependence of Logistic Regression Prediction of Malignancy for 

All Inputs 

The partial dependence curves of the input variables for the logistic regression model show 
a similar relationship to what they show in the forest model, with the mean prediction 

increasing as the variable values increase. However, as expected, the logistic curves are 

much smoother than those of the forest model.  

Now you have two models of comparable accuracy, each with its drawbacks. The forest 

model demonstrates a higher accuracy than the regression model, but it is natively 
uninterpretable. The logistic regression enables you to directly use the regression 
coefficients to understand the model, but it has a slightly lower accuracy. Ultimately the 
best model to use is the one that maximizes prediction accuracy while meeting the 
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necessary interpretability standard. If using the LIME, Shapley, and partial dependence 
values for interpretations provides meaningful explanations given the modeling context, 

then the forest model is better. If not, then the logistic regression should be chosen. Since 
this model will ultimately be consumed by a clinician who has worked closely with the 
patient and directly developed the input features, the forest model is likely a better choice, 

because the clinician is there to safeguard against model inaccuracies. 

CONCLUSION 

Model-agnostic global and local model interpretability techniques are presented with two 
case studies in SAS Visual Data Mining and Machine Learning. This paper shows you how 
you can use these valuable techniques to explain, validate, and debug your black-box 

machine learning models. 
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