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ABSTRACT  

Imaging and image analytics are indispensable tools in clinical medicine today. Among the 
various metrics that doctors routinely derive from images, measures of the morphology of 
tissue structures, including their shape and size, are of key signif icance. Quantifying tissue 
morphology and linking those quantities to other clinical data enable clinicians to diagnose 

diseases and plan treatment strategies. Image segmentation, which classifies image pixels 
into regions of interest, is an important step in such tissue morphology quantification. 
However, common segmentation methods involve a process that is either fully or partially 
manual. Accordingly, these methods can be extremely arduous when you process very large 
amounts of data. This paper illustrates how to build end-to-end pipelines for automatically 

deriving clinically signif icant tissue morphology metrics from raw medical images by using 
powerful tools that were introduced in SAS® Viya® 3.5. Specif ically, it shows how you can 
load medical images and metadata, preprocess the loaded data, build convolutional neural 
network models for automatic segmentation, and postprocess the results to compute 
clinically signif icant 2-D and 3-D morphological metrics. The examples include colorectal 
liver metastases morphometry in collaboration with the Amsterdam University Medical 

Center, and normal spinal cord morphometry with data available from the Cancer Imaging 

Archive, both based on 3-D CT scans. 

INTRODUCTION  

Imaging and artif icial intelligence have shown many practical applications in the clinic in 
recent years.  SAS® Viya® provides users the building blocks to load, process, and 
visualize biomedical images. Using these building blocks, users can construct end-to-end 
pipelines to derive important image-based biomarkers that can be used in the clinic. 

Segmentation, the process of partitioning an image into sets of pixels, is particular ly useful 
in the derivation of such biomarkers, specifically biomarkers that involve tissue 

morphometry, i.e., quantification of the size and shape of various tissue structures.  

In this paper, we demonstrate how to build fully automatic tissue morphometry pipelines in 
SAS® Viya® that involves pre-processing, model training, segmentation, and 
quantif ication. The motivation for such pipelines is to increase accuracy, decrease 
subjectivity, and decrease labor of medical professionals. We provide two examples for our 
demonstration, using different data sets and targeting different clinical biomarkers. Both 

examples utilize computed topography (CT) scan images in the form of Digital Imaging and 
Communication in Medicine (DICOM) f iles. The networks are trained on structural 
annotations given in the form of DICOM-RT f iles. The f irst example uses patient data from 
Amsterdam University Medical Center and tracks colorectal liver metastasis throughout the 
duration of  a patient’s treatment. The second pipeline is built for the segmentation of the 

spinal cord using data from the Lung CT Segmentation Challenge from 2017 that is publicly 
available. Using quantif ication tools in SAS® Viya®, users can derive important biomarkers 
from the model-predicted contours that have signif icant impact on clinical insights. The 
action sets needed to execute these pipelines are the image, biomedimage, fedsql, and 
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deeplearn action sets. The examples are written in Python, but a user could easily recreate 

the code in CASL, R, or Lua. 

CRLM MORPHOMETRY: AN EXAMPLE USE CASE 

MOTIVATION 

The f irst demonstration pipeline that we will highlight will provide a morphometric tissue 
analysis for patients with colorectal liver metastasis (CRLM). Colorectal cancer is a disease 

that starts in the colon and often spreads to the liver. The best treatment for CRLM is 
surgical removal. Currently, the clinical standard for determining a patient’s candidacy for 
surgery lies in the RECIST criterion, which tracks the diameter of two target lesions across 
successive chemotherapy treatments. To help improve treatment strategies for patients 
with CRLM through advanced analytics and large amounts of data, SAS joined forces with 

Amsterdam University Medical Center (AUMC). Through this collaboration, we have access 

to extensive amounts of data for patients with CRLM.  

DATA ACQUISITION AND PREPROCESSING 

The data for this example consists of 57 patients and includes medical contours in the form 

of DICOM-RT f iles that show medical annotations for the liver and lesions of each image. 
Data for each patient contains multiple images before chemotherapy, after chemotherapy, 
and, in some cases, after a continued therapy treatment. Previously, this data was used to 
show how precisely annotated lesion segmentations can overcome the limitations of the 
RECIST criteria by quantifying important biomedical metrics such as the volume and 

contrast of lesions through successive treatments (Vadakkumpadan, Huiskens, 2019). This 
method, however, requires radiologists to perform an extensive amount of manual 
contouring for each new patient, which can be both time-consuming and labor intensive. By 
utilizing deep learning to detect the precise locations of livers and lesions, we overcome the 
need for these manual tasks on new data. In this use-case example, we propose building an 

end-to-end segmentation pipeline to identify precise locations of lesions and track the 

metrics of these lesions over the duration of the patient’s treatment process. 

Liver lesion segmentation is particularly dif ficult due to low contrast between lesions and 

other features as well as lesion shape variability. In order to combat the low contrast within 
CT scans, several steps are taken in image preprocessing. First, the CT scans are windowed 
based on the unit of pixel values in CT images, the Hounsfield unit (HU). For the CRLM data, 
we HU-window the images to the range [-100, 400] to both remove any image features that 
are not of interest and to highlight important structures. This HU-windowing step is done 

using the clamp step within processBioMedImages. The images are then exported into 2-D 

slices within the same action call: 

s.biomedimage.processbiomedimages( 

images=dict(table='ct_scans'), 

steps=[dict(stepparameters= 

dict(steptype='CLAMP', 

   clampParameters=dict(clampType='BASIC',  

low=-100, high=400))), 

                dict(stepparameters=dict(steptype='export'))], 

    copyvars=['_label_','_id_'], 

    casout = dict(name='ct_scans_export', replace=True)) 

 

Next, hist_equalization is performed within processImages to enhance the contrast 

within images. This step distributes the intensity values equally across the image’s 
histogram and therefore allows lesion structures within the image to be highlighted. Figure 
1 outlines these preprocessing steps by displaying an original CT scan slice, the same slice 
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after it is HU-windowed to a range of [-100, 400] and then after its histogram equalization 

step. 

   

Figure 1. CT Scan Slice, After HU-Windowing, and After Histogram Equalization 

The data is then divided into validation, test, and training sets. The training set, which is the 
data the model will be learning from, consists of 41 patients totaling 18918 slices. The 
validation set consists of 4 patients (1335 slices) and helps tune hyperparameters of the 
model. The test set includes 12 patients (6894 slices) and provides unseen images to the 

model for f inal evaluation. 

SEGMENTATION METHODOLOGY 

The convolutional neural network model that will be used for this segmentation task is the 
U-Net model (Ronneberger et al. 2015), available in SAS® Viya® 3.5. This model is a fully 

convolutional network that is specif ically designed for medical image segmentation and 
consists of a series of convolutional, concatenation, and max pooling layers. Annotated 
biomedical images are particularly difficult to obtain due to patient confidentiality and the 
high level of labor and expertise that is required to create them. The U-Net excels at 
biomedical image segmentation because it can produce accurate results on smaller 

annotated image sets. This U-Net is built using layer-by-layer calls within DLPy to create a 
model with a total of 34512258 parameters. The model uses an Adam Solver with a learning 

rate of 0.0001. 

Two separate U-Net models are trained for liver and lesion segmentation using 2-D slices 
that have a resolution of 512x512. This two-step model scoring process is done to constrain 
the solution space for the challenging lesion segmentation task. The f irst U-Net is trained 

from scratch for liver segmentation and is shown in Figure 2.   

 

Figure 2. Liver Segmentation Model 
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The results are cascaded so that the predicted liver segmentations are used as an input test 
set to the lesion segmentation model. This is accomplished through the mask_specific type 

in the binary_operation step of processBioMedImages. Here, the pixel values within the 

liver region-of-interest (ROI) will be cascaded to the output image and any pixels outside 

the ROI will have a uniform value. The new binary_operation step can read two images 

from the same input CASTable. The following code demonstrates this process, where the 
column containing the original CT scan images is named _image_ and the column containing 

the liver segmentation is labeled “seg”: 

s.biomedimage.processbiomedimages( 

    images=dict(table=data_to_be_masked), 

    steps=[dict(stepparameters=dict( 

                steptype='binary_operation', 

                binaryoperation=dict(binaryoperationtype='mask_specific', 

   image='seg', 

   outputBackground=-1000, 

   inputBackground=0)))], 

    casout=gray_mask_liver, 

    copyvars=['_label_', '_id_'], 

) 

 

Figure 3 displays the lesion segmentation schematic, where the output of the 

mask_specific type is used as the input to the model. 

 

 

Figure 3. Lesion Segmentation Model 

With the solution space constrained to the liver ROI, the model can more accurately predict 

the lesion regions.  

RESULTS 

Figure 4 presents the liver segmentation results where blue depicts the liver ROI predicted 
by the model and the red region is the ground truth liver ROI annotated by the radiologist. 

These segmentation-overlaid images are created using the annotateImages action. 
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Figure 4. Liver Segmentation Results 

The liver segmentation results are then cascaded to be scored for lesion segmentation using 
the binary_operation step outlined previously.  In Figure 5, the lesion ROI predicted by 

the model is shown in blue and the ground truth lesion ROI is displayed in red. 

 

Figure 5. Lesion Segmentation Results  

The segmentation predictions are imported back into 3-D using processBioMedImages. 

These 3-D segmentation images are then built and plotted on the original CT scan using 
Mayavi software (Ramachandran, 2011).  The buildSurface action is utilized for this task to 
build the surfaces of both the liver and lesion segmentation results.  This 3-D visualization 
for the model prediction is shown in Figure 6. Here, the red surface is the liver ROI and the 

green surface is the lesion ROI. 
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Figure 6. Model-Predicted Liver Lesion 3-D Visualization  

The segmentation methods are evaluated against the ground truth for similarity. The main 
evaluation criteria used for these segmentation images is the DICE coefficient. The DICE 
score is a much more stringent criterion than misclassification rate and is therefore ideal for 
quantifying the performance of the model. DICE is def ined as two times the area of overlap 

divided by the total number of pixels:  

𝐷𝐼𝐶𝐸(𝐴,𝐵) =
2|𝐴 ∩𝐵|

|𝐴| + |𝐵|
 

where a perfect segmentation yields a DICE score of 1. The liver lesion segmentation results 

are evaluated using the DICE coefficient and the results are shown in Table 1.   

 Liver Lesion 

Test set 93.155% 77.703% 

Validation set 94.167% 69.975% 

Table 1. DICE Coefficients for Liver and Lesion Segmentation  

For scoring, we use the DICE global score, which averages the total test set. It is important 

to note that the global DICE score for lesion segmentation is very dependent on the size of 
the lesions in the evaluation set. The most competitive models in the Liver Tumor 
Segmentation Benchmark (LiTS) achieved a DICE score of 96.7% for liver segmentation and 
79.40% for lesion segmentation (Bilic et al. 2019). From the predicted contours, metrics 
can be derived that describe the tissue morphometry. The action quantifyBioMedImages can 

be used to quantify the lesion segmentation results to analyze volumes and pixel values, 
both of which are ignored by the RECIST criteria. By specifying the quantify type as 

‘content’, the total volume of the lesions is calculated: 

 s.biomedimage.quantifyBioMedImages( 

    images=dict(table='bdata_lesion'), 

    region='image', 

quantities=[dict(quantityparameters= 
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dict(quantitytype='CONTENT',usespacing=True)), 

                 dict(quantityparameters=dict(quantitytype='MEAN'))], 

    inputbackground=-1000, 

    labelParameters=dict(labelType='basic', connectivity='vertex'), 

    copyvars=['_label_', '_id_'], 

    casout=vol) 

The volume calculations are plotted by patient, ordered by their round of chemotherapy 
treatment and shown in Figure 7. The f irst scan before treatment is depicted in blue, the 

f irst follow-up scan is depicted in orange, and the second follow-up scan (if  it exists) is 

shown in green.  

 

Figure 7. Lesion Volume from Model-Predicted Segmentations 

The volumes predicted by the model are plotted against the volumes annotated by the 
radiologist and used as ground truth. The model-predicted results are displayed in a darker 
color and the ground truth results are in a lighter color. The model-predicted lesion volumes 
follow the same trends throughout treatments as the ground truth volumes and therefore 

verify the effectiveness of the segmentation model. The automatic segmentation volume 

averaged a 7.713% decrease in comparison to ground truth.  

The segmentation predictions are then computed for contrast between the liver and lesions. 

Contrast is calculated by comparing the mean pixel values within the lesion segmentation to 
those within the liver segmentation. Figure 8 displays the liver-lesion contrast for each 
image based on the automatic segmentation from the model. The lesion pixel values are 
another metric ignored by RECIST that is captured through the automatic segmentation 

pipeline. 
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Figure 8. Liver-Lesion Contrast 

LCTSC MORPHOMETRY: AN EXAMPLE USE CASE 

MOTIVATION 

Patients with multiple sclerosis (MS) often develop lesions on their spinal cord and suffer 
from loss of volume within their spinal cord. This loss of volume can be an important 

indicator of long-term disability from MS (Andelova et al. 2019). Segmentation of the spinal 

cord and lesions can provide measures of damage, which are key criteria for the diagnosis 
and monitoring of patients with MS (Gros, 2018).  Automating this contouring process 
eliminates variability between radiologists. In this example, we apply a similar methodology 

to construct an automatic pipeline for spinal cord segmentation. The Jupyter notebook for 
this use-case is available for download here. This notebook gives users the opportunity to 
run the automatic spinal cord segmentation pipeline using a data set that is publicly 

available for download and use. 

DATA ACQUISITION AND PREPROCESSING 

The data used in this experiment is from Lung CT Segmentation Challenge (LCTSC) data set 

available at the Cancer Imaging Archive (Yang et al. 2017) and consists of 60 patients.  The 

organs-at-risk (OARs) that are included in this challenge consist of annotations for the 
esophagus, heart, left and right lungs, and spinal cord. The DICOM-RT f iles contain contours 

for each of these organs and are displayed in different colors within the image.  

The f irst step of pre-processing the images for spinal cord segmentation is to use the 
roi2mask step to f ilter out the organs that are not the spinal cord within the DICOM-RT 

f iles. This is executed by specifying the color of the spinal cord within the new parameter 

roidisplaycolor:   

s.biomedimage.processbiomedimages(images=dict(table=imrt), 

steps=[dict(stepparameters=dict(steptype='roi2mask', 

roi2maskparameters=dict(roi2masktype='dicomrt_specific', 

roicontoursequence='_ROIContourSequence_, 

correctionsensitivity=.25, 

pixelintensity=255, 

outputbackground=0, 

https://github.com/sassoftware/sas-viya-programming/tree/master/python/spinal-cord-imaging-segmentation
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roidisplaycolor=colors[0]))), 

dict(stepParameters=dict(stepType='rescale', 

   rescaleparameters=dict(rescaleType="channeltype_8u")))], 

casout=dict(name= ‘masks_all', replace=True), 

copyvars=['_id_', 'color', 'RTID', '_label_']) 

 

Figure 9 exhibits the contours for a patient before and after this f iltering process. With the 
remaining contours containing only those for the spinal cord, segmentation masks are 

created for model training. 

  

Figure 9. DICOM-RT Contours Before and After Filtering by Color 

The image data is divided into training, test, and validation sets.  The data consists of 60 

patients total where 36 images (2106 slices) are used for training, 7 images (403 slices) are 
used for validation and 17 images (634 slices) are in the test set. Comparable to the CRLM 
data, the 3-D images are exported into 2-D slices for training that have a resolution of 

512x512.   

SEGMENTATION METHODOLOGY 

A U-Net is trained for spinal cord segmentation given the segmentation masks created using 
roi2mask. This network is not being cascaded, as the U-Net is trained directly for spinal 

cord segmentation. The model is built using the U-Net DLPy API: 

    model = UNet(s,  

           n_classes=2, 

           width=512, 

           height=512, 

           n_channels=1,  

           bn_after_convolutions=False) 

 

This default model almost exactly resembles the models trained for liver and lesion 
segmentation with the main exception being in the kernel size of the last convolutional layer 
and the lack of activation function in the segmentation layer. This model has 34513282 
parameters and uses an Adam solver with a learning rate of 0.0001. This model is trained 

from scratch for spinal cord segmentation over 50 epochs. 

RESULTS 

The test set is scored for spinal cord segmentation and these results are imported back into 

3-D. The segmentation results for one patient are built and plotted on the original CT scan 
using Mayavi software. This display is shown in Figure 10, where the red portion of the 
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image indicates the region that is predicted by the model and the green region indicates the 

ground truth spinal cord ROI. 

 

Figure 10. Spinal Cord Segmentation Results  

This test set is evaluated using the DICE score coefficient against the ground truth spinal 
cord contours. The DICE coefficient averaged 71.349% on the test set and 69.547% on the 

validation set. The results are then quantif ied using quantifyBioMedImages and the volumes 
are plotted against the original spinal cord volumes annotated by the radiologist. These 

predicted volumes along with their ground truth comparison are displayed in Figure 11. 

 

Figure 11. Spinal Cord Volume from Model-Predicted Segmentation Results 

The predicted model segmentation averaged a 11.1586% decrease in volume when 

compared to the ground truth segmentation.  

DISCUSSION 
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The ideas presented in this paper showcase the automation of segmentation and 
morphometric analysis for biomedical images in SAS® Viya®. This medical contouring 

application can aid radiologists in the clinic for detection and diagnosis of disease, as well as 
help track the health of the patient throughout the course of a disease. This automatic 
process reduces the burden and fatigue placed on medical professionals to perform rigorous 
manual contouring. By reducing the number of arduous tasks that medical professionals 
must face, we therefore reduce the risk of human error in the clinic. In addition, 

visualization and quantif ication of model predictions can help with personalized medicine for 
patients within the clinic. These derived measures can aid medical professionals with 

important decisions about a patient’s long-term treatment.  

The two use case examples show how automatic segmentation can assist clinicians in 
deriving important biomarkers. In the CRLM case, we overcame limitations of RECIST by 
capturing the total volume of the lesions rather than relying on their 1-D representation. A 
visual analysis of the predicted regions shows that in the before therapy case, the model 
tends to underpredict the total volume of the lesion. This is most likely due to the fact that 

before chemotherapy, lesions lack definitive boundaries. After chemotherapy, lesions tend 
to shrink, darken, and have more defined boundaries. As a result, the model has diff iculty 

capturing the full extension of these pre-chemotherapy lesions within its prediction. 

The second example using LCTSC data demonstrates a pipeline that users can run with data 
that is publicly available. Once again, we show how the automatic segmentation method 
allows users to derive important clinical biomarkers with little manual effort. Loss of spinal 
cord volume can be a strong predictor of long-term disability in patients with MS. Therefore, 
tracking the spinal cord volume loss over a period of time can lead to signif icant insights 

about a patient’s long-term health within the clinic. It should be noted that the spinal cord 
images are clipped to a range of slices for each patient. The dramatic dif ference in volumes 
between patients corresponds to the number of slices for each patient. Therefore, the 
patient volumes should not be compared against each other. In contrast to the CRLM case, 
this model tends to over-predict the spinal cord regions. The predicted spinal cord region 

from the model often extends outside the ground truth region and, in some cases, 

misclassifies small regions outside of the target area. 

CONCLUSION 

New biomedical image analysis features in SAS® Viya® 3.5 provide tools for data 
preparation, image segmentation, visualization, and quantif ication. If you wish to download 
and run the pipeline for spinal cord segmentation, please follow the link provided here. 
Through the demonstrated segmentation and morphometric analysis pipeline, users can 
create an efficient detection method for important structures within CT scans. These 

methods improve efficiency and accuracy of biomedical structure identif ication, reducing 
burden and fatigue of medical professionals. Once the models are trained on data, the 
automatic segmentation can replace or assist manual segmentation tasks by medical 
professionals in the clinic. The segmentations are evaluated by the DICE coefficient and are 
shown to be competitive with state-of-the-art methods. Volumetric and pixel analysis are 

used to track disease progression over time and provide substantial assistance to clinical 
assessments.  In future work, we’ll be focusing on the quantif ication of other important 
biomarkers, mainly from the IBSI standard (Zwanenburg, 2016), which will involve the 

expansion of quantifyBioMedImages. 
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