
 

 

1 

Paper SAS4454-2020 

           CASL, a Language Specifically Designed for Interacting  

                                              with SAS® Viya® 

                                                                             

Jerry Pendergrass, SAS Institute Inc.  

 
 

ABSTRACT  

CASL is a new language designed to run SAS® Cloud Analytic Services (CAS) actions and process 
responses to generate a report. To make it easy for SAS users, the language syntax mimics the 
syntax of the DATA step. CASL is not just a language,  but a programming environment that is 
embeddable into any program. CASL is available through the CAS procedure or as the action 
runCasl in the CASL Server action set. Learn how to use the CASL language to pipeline actions one 
after another to produce a report. You will learn how to use CASL to create your own result tables 
from action results. Allow me to introduce you to a very powerful language that is simple to use. 

INTRODUCTION  

CASL is a powerful language for running actions in CAS. CASL is embedded in three 

products in SAS . These include a procedure that runs within SAS and actions that run on 

the server. CASL has one goal in mind, and that is to allow you to run actions in CAS and to 

process the results of those actions into useful data and sophisticated reports.     

 

CASL IS EMBEDDED IN THREE SAS PRODUCTS 

CASL is a language environment that can be embedded into any program or environment. 

CASL is embedded in these SAS products: 

• PROC CAS 

• The sccasl.runcasl action  

• The builtins.defineActionSet action 

 

PROC CAS 

 

The CAS procedure allows a user to submit programs to run actions from within SAS. Since 

it is a procedure, it has access to typical facilities within SAS including macros, libnames, 

filenames, options, and the output delivery system (ODS). The only purpose of PROC CAS is 

to run and process CAS actions. PROC CAS can be used as an interactive procedure, where 

code is run at each RUN statement or as a batch procedure where the code is submitted all 

at once. PROC CAS handles task interruption (^c), which stops the current execution of 

CASL code and returns control back to the procedure. To exit the procedure, either start a 

new DATA step/ procedure or enter quit;. Any outstanding CASL code is executed before 

PROC CAS exits. 



2 

 

Here is simple syntax that prints the results from fetching a result table: 

             

    carstbl = {name="carssashelp", where='Buick' = make"}; 

 

    table.fetch / 

    table = carstbl, 

    fetchvars = {"make", "model", "type", "msrp"}, sortby={name="msrp"}; 

 

You can use variables to construct parameters, or you can create them as expressions on 

the line that executes the action. The syntax for creating parameters for an action will be 

explained later.   

 

THE SCCASL ACTION SET  

 

The sccasl action set implements a CAS action named ‘runcasl’, which executes a CASL 

program in the server environment. The user may specify global variables to be initialized 

before the program starts running. The CASL program might return any number of results 

and might provide an exit status. Any log messages are sent back to the user 

asynchronously. 

 

The syntax for the Runcasl actions is:  

 

   sscasl.runcasl code=<code string>  vars={name1=value1, name2=value2,... } 

                                      macvars={macname1='macvalue1', 

                                               macname2='macvalue2',...}; 

 

The results of Runcasl are determined by the CASL program. The function ‘send_response’ 

is called to send back a response. A response consists of one or more directories pass to the 

function ‘send_response’.  You can call ‘send_response’ as many times as you like.  The 

‘exit’ function is called to send back the status from this action and terminate execution of 

the action.  

 

Below is a simple example that obtains a record count (in variable recordCount) from a 

table and returns a summary of the resulting table.  

If an error is detected, the exit status for the action is specified.  

 

  source codeReccount; 

          table.recordCount result=count status=s1 / table=myname; 

          print s1; 

          if s1.severity != 0 then do; 

                  exit(s1); 

          end; 



3 

          simple.summary result=mysum status=s / table=myname; 

          if s.severity != 0 then do; 

                  exit({severity=5,reason=5,statusCode=5}); 

          end; 

          send_response({table=mysum});run; 

  endsource; 

  sscasl.runcasl code=codeReccount vars={myname='cars'}; run; 

  run; 

 

Note that any CAS client can submit a CASL program to execute the Runcasl action. Here is 

the same example using the Python client. 

 

    Res.status = s.sccasl.runcasl(code=' table.recordCount result=count 
status=s1 /                           

                                                  table=myname; 

                                       print s1; 

                                       if (s1.severity != 0) 

                                           then  exit(s1); 

                                       simple.summary result=mysum status=s / 

                                                       table=myname; 

                                        if (s.severity != 0) then                                      

                                           

exit({severity=5,reason=5,statusCode=0}); 

                                        send_response({table=mysum});’; 

THE DEFINEACTIONSET ACTION 

 

CASL is embedded in the built-in action defineActionSet that allows the user to create their 

own action set using CASL as the programming language for this action. You can write your 

own actions using CASL syntax. For example, you could write actions to load all the tables 

in a directory hierarchy, save all the tables in a caslib, or group several action invocations 

into a macro-like module to share with other developers. The defineActionSet  action 

provides a wrapper on top of the Runcasl action interface for an action, just like other 

actions in CAS. The user will see no difference between an action created with 

defineActionSet and an action that is deployed with CAS. 

 

Below is the definition of the codeReccount action using the same CASL code in the previous 

examples.  

 

 builtins.defineActionSet / 

   name="myActionSet" 

   actions={ 



4 

     { 

       name="codeReccount" 

       desc="summary on record count" 

       parms = { 

          { name="myname" type="string" required=TRUE} 

       } 

       definition=codeReccount; 

     } 

  }; 

 

 myActionSet.codeReccount result=sum   myname=cars; run; 

USING CASL TO RUN A CAS ACTION 

 

Actions define work to be executed on the CAS server. Each action has a name, action set, 

and parameters in the form of a directory. A picture of the interaction between CASL and 

CAS is shown below: 

 

 

 

One of the key purposes for using CASL is to prepare arguments for the execution of an 

action. An action is submitted by specifying the action name or actionset.name, followed by 

configuration parameters that help define how the action is to be processed. You then 

provide keyword arguments that are used to process the action. The arguments are 

specified as a set of directory entries. It is the specification of this directory structure that is 

a focus of CASL. Two methods allow CASL to provide arguments for a CASL action: 

 

• Specification of an array 

• Specification of a directory 

 

CREATION OF AN ARRAY 



5 

An array is a list of values that are referenced using an index instead of a named key. A list 

is created either by using braces or brackets. 

 

      fetchvars = {"make", "model", "type", "msrp"}; 

 

This example creates an array of 4 items. Indexes start at 1 and increase. A value at a 

given index does not have to exist, but if an undefined array entry is referenced, a missing 

value will be used. Arrays may contain as many dimensions as are needed, separated by 

commas.  You may also specify an array as 4 assignments. 

 

       fetchvars[1] = “make”; 

    fetchvars[2] = “model”; 

    fetchvars[3] = “type”; 

    fetchvars[4] = “msrp”; 

 

CREATION OF A DICTIONARY 

A dictionary is a list of values with a different named key for each value. The order of the 

list is not guaranteed. You may traverse through a dictionary by referencing the values one 

at a time in a loop. Let’s look at syntax for creating a dictionary as parameters to an action. 

Suppose you want to call the Fetch action to download a CAS table. The name of the table is 

Carssashelp. I want to apply a WHERE clause to the table and I want to specify which 

variables I want in this download. 

You can set up the table parameter as either: 

 

  carstbl.name  = "carssashelp"; 

  carstbl.where = "'Buick' = make"; 

 

or as: 

 

  carstbl = {name="carssashelp", where='Buick' = ‘make’}; 

 

This second assignment group is the typical method used to set up an action parameter. It 

is more intuitive. 

 

Note that in the syntax below, I use the Carstbl variable for the table parameter and then 

specify the variables to fetch as an array of strings. I then added in a sort specification. 

 

  table.fetch / 

    table = carstbl, 

    fetchvars = {"make", "model", "type", "msrp"}, sortby={name="msrp"}; 



6 

 

The default behavior when executing an action is to print the results. The user may specify 

a variable to receive these results. I have changed the action above to place the results into 

the dictionary named Tab. Note that results are always a dictionary of values. Those values 

might be doubles, strings, integers, or arrays and other dictionaries. The action defines the 

form of the results sent from that action. 

 

  table.fetch result=tab / 

    table = carstbl, 

    fetchvars = {"make", "model", "type", "msrp"}, sortby={name="msrp"}; 

  

USING CASL TO PROCESS THE ACTION RESULTS 

What does it mean to get results from an action? The results are returned in the form of a 

dictionary. Each client presents these results to the user in the context that makes the most 

sense for that client. The context that makes sense for CASL is as CASL variables, thereby 

losing no data in the translation. The result values are organized into dictionaries and 

arrays. The supported data types include double, integer, utf8 string, Boolean, time data, 

datetime, varbinary, and a result table. 

The result table is the most common result type. A result table is a data table with rows and 

columns. Each column has a name, label, and format. CASL uses the column name as a 

string to reference a specific column. CASL represents a result table as a two-dimensional  

table, where the 1st dimension references the row and the 2nd dimension references the 

column. Columns can be referenced as either by name or by index. 

It is very important to understand that a dictionary is always returned from an action. This 

dictionary might contain a result table. To access the table, you must reference the 

dictionary entry that contains the result table. Suppose I fetch a table using this syntax: 

     fetch result=tab table={name="cars"} to=20; 

The variable ‘tab’ is a dictionary, not the result table. To get the result table you must 

reference the dictionary entry. 

    mytab = tab.fetch; 

 

CASL is designed to formulate results into new parameters and elegant reports. CASL 

supports a comprehensive expression parser to manipulate results. CASL is not object-

oriented, but does have internal Class variables such as  arrays, dictionaries, and result 

tables. The primary operator in CASL is the DOT (‘.’) operator. This operator is polymorphic, 

meaning that the operation depends on the data type of two operands. If the 1st operand is 

a dictionary, then the second operand is either an index in the dictionary list or a key used 

to look up the value.  CASL also supports a large resource of functions to operate on 

numbers, strings, formats, or result tables. 

 

 NEWTABLE AND ADDROW FUNCTIONS 

 

CASL allows you to take data from anywhere and create a result table using that data. The 

‘newtable’ function creates a result table with the parameters specifying the name of the 



7 

table, the name of the columns, and the data type of the columns. Additional parameters 

might specify rows of data to add to the result table. You can create the table as a blank 

table and add rows later using the ‘addrow’ function. This gives you the power to combine 

data from anywhere into a table that is a compatible CAS result table. Here is an example of 

creating a result table.  

 

   t=newtable( "table", { "make", "MSRP", "HP", "cylinders" }, 

     { "varchar", "int64", "integer", "int64"}, 

     {"dodge", 20000, 250, 4}, 

     {"lexus", 40000, 350, 4}); 

    

   addrow(t,  {"toyota", 30000, 300, 4}, 

                  {"ford  ", 30000, 200, 6} ); 

   Print t; 

 

 

 

WHERE CLAUSE AND COMPUTE OPERATOR 

 

CASL supports two special operators for result tables. The WHERE clause allows you to 

select rows from the table based on expression evaluation. The variables for each row are 

available as normal variables in the expression. An expression is evaluated, and if the result 

is true, then the row is added to the new result table. 

Let's use the Cars table as an example. This table contains a column named MSRP. I can 

use the WHERE clause to select all rows where MSRP is greater than 30000. The expression 

can use any available CASL variable, not just variables from the result table. 

         

newcar = cars.where( msrp > 30000); 

 

The Compute operator allows you to create a new column. You supply the name, label, and 

format for the new column as the 1st argument. The second argument is an expression 

used to calculate the value for each row. As with the WHERE clause, the values of the result 

table variables will change to match those of the row being processed. The data type is 

defined by the 1st expression evaluated. 

 



8 

newcol = cars.compute( {"ratio", "msrp/invoice",best5.3}, msrp/invoice); 

 

Here is an example using the Cars data set. Subset the result table using WHERE and 

Compute, and then reduce to 5 rows and 4 columns. 

 

   res  = cars.where(Horsepower<200).compute({"dphp","Dollar/HP",DOLLAR8.}, 

                                    invoice/Horsepower) 

                             [1:5,${Model Horsepower invoice dphp}]; 

 

PRINTING A REPORT USING THE OUTPUT DELIVERY SYSTEM 

 

The Output Delivery System (ODS) allows CASL to display the contents of your result tables 

based on the intent of a given action. When CASL is used to print a result table, ODS is 

called to display the result. For example, suppose I run GLM on a given dataset: 

   proc cas; 

   loadactionset "regression"; 

       glm result=glmResult 

           table={name='glmdata', groupBy={'name', 'mood', 'by'}} 

         model={depvars={{name='y'}} 

         effects={'x1', 'x2', 'x3'}}; 

     if (_status.severity == 0) 

          print   glmResult[2:6]; 

 

 In the example above, I requested to group values by specified variables for the 

regression. Using the describe statement, I found out that the 1st group-by result is in 

indexes 2-6. 

 Note the check for a good return status validates that the data I expect has been returned. 

The ODS output is presented below: 

 



9 

   

USING FORMATS TO ENHANCE YOUR REPORTS 

CASL supports all the threaded kernel stand-alone formats and user-defined formats. A 

format is represented in CASL using SAS syntax.  

 

        <name><width>.<decimal> 

 

If a variable is assigned to a format, that variable can be used as a format. This allows the 

user to create dynamic formats. The Put function operates the same as the Put function in 

the DATA step. 

 



10 

        <string> = put(<expression>, format); 

 

The expression is evaluated and then converted to a string using the supplied format.  It is 

useful to use the Put function with the PRINT statement. 

 

        print  "the value is " put(1.234678, d4.2);run; 

 

The resulting value is 1.23. 

 

CONCLUSION 

As can be seen, CASL is a powerful language that allows you to run actions and process the 

results. The expression parser provides a rich syntax to create parameters for actions and 

produce elegant reports. ODS is fully integrated into CASL, providing the same level of 

output as you expect from a procedure. The ability to leverage the CASL program language 

in three separate products gives you the flexibility to re-use code and deploy an application 

easily into the CAS Server. The next time you want to run an action against the server, try 

PROC CAS or a CASL action. See how easy it can be.  

RECOMMENDED READING 

• Getting Started with CASL: 
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=casl&docsetTarge
t=titlepage.htm 

• CASL Reference: 
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proccas&docsetT
arget=titlepage.htm 

• CASL Programmer’s Guide: 
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=caslpg&docsetTar
get=titlepage.htm 

•  

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at: 

Jerry Pendergrass  

SAS Institute Inc  

919-531-7766  

jerry.pendergrass@sas.com 

  

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration.  

Other brand and product names are trademarks of their respective companies. 

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=casl&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=casl&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proccas&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proccas&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=caslpg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=caslpg&docsetTarget=titlepage.htm

