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ABSTRACT  

Python is widely noted as one of the most important languages influencing the development 

of machine learning and artificial intelligence. SAS® has made seamless integration with 

Python one of its recent focal points. With the introduction of the SAS® Scripting Wrapper 

for Analytics Transfer (SWAT) package, Python users can now easily take advantage of the 

power of SAS® Viya®. This paper is designed for Python users who want to learn more about 

getting started with SAS® Cloud Analytic Services (CAS) actions for text analytics. It walks 

them through the process of building a text analytics model from end to end by using a 

Jupyter Notebook as the Python client to connect to SAS Viya. Areas that are covered 

include loading data into CAS, manipulating CAS tables by using Python libraries, text 

parsing, converting unstructured text into input variables used in a predictive model, and 

scoring models. The ease of use of SWAT to interact with SAS Viya using Python is 

showcased throughout the text analytics model building process. 

INTRODUCTION  

One of the ways that SAS provides access to its high-quality text analytics services is 

through CAS actions that can be invoked directly from SAS, Python, Lua, or R. These 

actions cover a wide array of functionality including text mining, text categorization, concept 

identification, and sentiment analysis.  

This paper highlights the construction of an end-to-end text analytics model that leverages 

CAS actions called from Python. It demonstrates how the unstructured text of Amazon 

reviews can be converted into structured input variables and used in a Support Vector 

Machine (SVM) model to predict whether users will find an Amazon review helpful. The 

client-side platform used is a Jupyter notebook, a very popular interface for Python users. 

The version of Python used for this project was Python 3.4.1. 

PYTHON AND CAS 

In recent history, many users have embraced Python as a first-choice programming 

language for the development of software across all domains. The community has embraced 

Python’s open source nature and ease of use through many functional libraries to aid in 

design and performance. As such, the Python user space continues to grow unfailingly. 

SAS Viya has opened its arms to Python users by allowing integration of open source to its 

platform and its use of features. SAS has introduced SWAT (Scripting Wrapper for Analytics 

Transfer), a Python library that enables users, even those with no SAS background, the 

ability to continue coding in Python, while leveraging the performance and resources of CAS 

and SAS Viya in their applications. Users are able to create, manipulate, and print data with 

CAS actions through the Python interface. Added performance improvements are due to the 

data being processed while on the cloud as a part of the SAS Viya architecture and the data 

being loaded and worked on in memory. Other popular libraries, like pandas and NumPy, 

are supported to allow increased compatibility with the open source tools. 
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Figure 1 below shows the Python libraries that are imported and used in this project. Under 

that, the basic syntax for connecting to CAS through SWAT is shown, including using the 

user’s credentials. The final lines of code define and load all the action sets used in this 

project as a list. The relevant CAS actions under each respective action set will be detailed 

in the upcoming sections.  

 

 

Figure 1. Importing Libraries, Connecting to CAS, and Loading Action Sets 

USE CASE – PREDICTING REVIEW HELPFULNESS 

The data set analyzed in this paper includes over 67,000 Amazon reviews of fine food 

products. The model built in this project will predict whether a review will be rated helpful or 

not by Amazon users. For the purposes of this paper, a helpful review is defined as one that 

at least 80% of voters found helpful (with a minimum of 5 users having voted on its 

helpfulness).  The explanatory variables considered include the star rating of the review, the 

length of the review, and the text of the reviews. The text analytics portion of the model 

building process focuses on converting the unstructured text of the review into document 

projections that will be used as input variables to the SVM predictive model along with the 

star rating and review length. The Analyzing Results section of this paper details how 

including document projections derived from the review text significantly improves the 

predictive model’s accuracy compared to using only star rating and review length. Table 1 

below describes the most relevant variables in the data set, which will be referenced in the 

code snippets of upcoming sections. 

Variable Description 

ID A unique identifier for each review 

Text Text of the product review 

Score Star rating for a review (From 1 to 5) 

Review_Length Number of words in a review 

Helpful Target Variable (1=Helpful, 0=Not Helpful) 

Table 1. Description of Relevant Variables 

LOADING DATA INTO CAS 

The data preprocessing steps necessary to prepare the data for consumption by the model 

were performed in Python on the client side prior to loading data into CAS. Those steps 

included:  

1. Dropping all observations that did not have at least five helpfulness ratings. 

2. Creating a predictor variable containing the number of words in a review. 
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3. Creating a unique identifier variable for each review as required by the text actions. 

4. Defining a target variable for review helpfulness as indicated in the previous section.  

After preprocessing, the first step in preparing the data to be loaded into CAS is to define a 

casLib to the location where your data is stored. Figure 2 shows how to use the addCaslib 

action to define a caslib named “projectData “ in the location where the input data is stored. 

 

Figure 2. addCaslib Action Code 

After setting up the caslib, the loadTable action makes it easy to load your data to CAS. 

Figure 3 shows how to load the preprocessed Amazon Fine Food Reviews data set, stored as 

a .sashdat, into CAS. The data is stored as a CAS table named “amazonFull”. 

 

Figure 3. Loading Amazon Reviews into CAS with the loadTable Action 

SPLITTING DATA INTO TRAINING AND VALIDATION SETS 

Now that the model’s input data has been loaded into CAS, the next step is to split the data 

into training and validation sets. For this project, 70% of reviews were included in the 

training set while 30% were reserved for validation. Reviews were assigned to either the 

training or validation data set via simple random sample using the srs CAS action as shown 

in Figure 4. 

 

Figure 4. Using the SRS Action to Create 70% Training/30% Validation 

The srs action assigns a partition index, _PartInd_, which takes a value of 1 for reviews 

assigned to the training set and 0 for reviews assigned to the validation set. The execDirect 

action from the fedSQL action set is used to create separate CAS tables for the training and 

validation sets as shown in Figure 5. 
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Figure 5. Using the execDirect Action to Split Training and Validation into Separate 

CAS Tables 

DATA EXPLORATION  

The next step in the model building process is to explore your training data. Initial data 

exploration shows that 63.7% of the training data set is comprised of helpful reviews while 

the remaining 36.3% of reviews are unhelpful. Further exploration shows that 50% of the 

reviews were rated 5 stars, 24% are rated 1 star, and the remaining 26% are split rather 

evenly between 2, 3, and 4 stars. One noteworthy finding is that while 86.2% of 5-star 

reviews are considered helpful, only 27.5% of 1-star reviews are considered helpful. This 

exploration process gives you an idea that the star rating will likely be a very useful variable 

in determining the likelihood that a review is helpful. Users are more likely to consider 

reviews with higher star ratings as helpful than those that have lower star ratings. Figure 6 

shows the code to perform a cross-tabulation using the pandas library along with the 

resulting stacked bar chart that demonstrates how the proportion of reviews that are 

considered helpful varies for each level of review rating. 

 

Figure 6. Relationship between Review Rating and Review Helpfulness 
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MODEL TRAINING 

This section shows the various steps in building a predictive model that includes text. The 

code not only includes a standard predictive model, in this case we use an SVM, but also the 

actions needed to transform your unstructured data to a numeric representation. 

Figure 7 shows the general overview of the code needed to create the models for scoring. 

There are two major components, one for text and the other for the predictive model. Both 

sections produce their own analytic store model. In the following subsections, these model 

training components are covered more specifically. 

 

 

Figure 7. Model Training Overview 

PARSING THE TEXT  

The tpParse action parses each row of the input table and creates an output offset table that 

lists every term found in every document. It is the first step in transforming your text to a 

numerical representation. There are many options to control how the tokenization works 

and to enable you to use various natural language features such as the part-of-speech tags 

or the stemmed form of a term. In the code shown in Figure 8, you can see common 

settings used in the tpParse action. You should explore which settings work best for your 

particular input data and subsequent model.  

 

Figure 8. The tpParse Action Code 
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In addition to the output offset table, you should also request the parseConfig output. This 

table stores the settings that you use so that they can be reused at score time. Below, you 

will see that the parseConfig table is added to and then used to build a scoring model. 

CORRECTING MISSPELLINGS 

When your input text data is particularly noisy, such as informal chat messages or other 

unedited content, the tpSpell action can be useful for automatically correcting misspellings. 

This action takes the offset table from the tpParse action, analyzes it for spelling corrections 

that need to be made, and, on output, updates the offset table with these corrections. The 

tpSpell action finds candidate misspellings by looking across the entire collection for rare 

terms that are very similar in spelling to more common terms. The code for calling the 

tpSpell action is shown in Figure 9. 

 

Figure 9. The tpSpell Action Code 

In Figure 10, you can see the fetch action that retrieves and displays a subset of the output 

table from the tpSpell action. This output table replaces the offset table of tpParse, 

correcting the parent values of misspelled terms. In the table shown in Figure 10, the 

misspelled term “allert” has been corrected to having a parent of “alert”. 

 

Figure 10. The Fetch Action Code Producing the Output from tpSpell 

GENERATING A TERM-BY-DOCUMENT MATRIX 

Once the text has been tokenized into the offset table, you use the tpAccumulate action to 

filter and reassign some of the terms, and to create a term-by-document weighted 

frequency table.  

Filtering and reassigning the terms is done with the following options on the tpAccumlulate  

action: 

• synonyms: Maps a set of terms to a canonical form of those terms and reduces the 

number of terms in your analysis. 

• stopList: Eliminates specific terms from your analysis. A default stopList is provided 

in the reference library. 

• reduce: Throws out infrequently occurring terms as these tend to be just noise in 

the collection. 
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In Figure 11 below, you can see how to create a custom synonym list to use as input to the 

tpAccumulate action using Python’s StringIO function and SWAT’s data message handler.  

 

Figure 11. An Example of Creating a Synonym List 

Figure 12 shows the call to the tpAccumulate action. For your particular problem, you 

should consider experimenting with the different termWeight settings, the reduce= setting, 

and modify the terms on your stop and synonym lists to be useful for your data. Often the 

Mutual Information weighting, in conjunction with a target input is helpful, but in this case 

the setting seemed to cause overfitting, so it was not used. 

 

Figure 12. The tpAccumulate Action Code 

There are two primary outputs of the tpAccumulate action. The first is the terms table, 

which is a summary table containing the unique terms in the collection and the frequencies 

at which they occur. The second is the parent table, which is a compressed representation 

of the term-by-document weighted frequency table. 

GENERATING DOCUMENT PROJECTIONS 

In a term-by-document weighted frequency matrix, each document is represented with a 

vector whose length is equal to the number of distinct terms in the collection. While this is a 

numerical representation, it is too long and sparse to be useful, so your transformation of 

your input text to a numerical representation will be complete when the term-by-document 

frequency matrix is projected onto a smaller dimensional space. The tmSVD action in the 

textMining action set enables you to form this projection.  
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The action can do much more, such as discover topics in your data, but for your predictive 

model, you are primarily interested in the docPro table containing the k real-valued _Col1_-

_Colk_ variables, where k is the number of dimensions you choose. These document 

projections variables, in conjunction with any other variables on your training data that you 

think might be useful, can be used as input when you train your predictive model. 

The tmSVD action call shown in Figure 13 has several output tables. In addition to the 

docpPro table, the output scoreConfig table is the same parseConfig table you created with 

tpParse, together with additional information that tmSVD model needs at score time. The 

topics and termtopics output tables are not specifically required for the predictive model, 

but they are required for making the analytic store in the next subsection, so they are also 

requested. The option norm=”doc” is specified to override the optimal topic calculation and 

instead focus on getting the best predictive ability. When you set the norm option in this 

way, you make sure that the document projections are normalized to unit length.  

 

Figure 13: The tmSvd Action Code 

CREATING A TEXT MINING ANALYTIC STORE 

The analytic store scoring mechanism has become a standard across SAS. The approach 

encapsulates needed information and data into a binary object, which is used for model 

deployment. In the tmAstore action, you create an analytic store by combining the content 

of several tables that were generated from the previous actions into a single analytic store 

table object. This table will be applied at score time with the score action from the analytic 

store action set. 

Figure 14 contains the code to create the output analytic store table for the text analytics 

portion of your predictive model. In the following section you will see how to create a 

second analytic store for the SVM portion of your model. 

 

Figure 14. The tmAstore Action Code 

BUILDING PREDICTIVE SUPPORT VECTOR MACHINES MODEL 

The step above describes the final step of the text analytics training stages. The following 

stages defined from here are the predictive training stages. In this section, details on the 

analytical actions used for building the machine learning model will be described. As stated 
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in the introduction, the model chosen is SVM (Support Vector Machine). An SVM is a type of 

classifier that can learn from labeled training data and identify features that distinguish 

between different classes. For this project, the two classes that the SVM will classify are 

between reviews considered helpful and reviews considered unhelpful. To aid in the 

classification using an SVM, there are certain mathematical functions that are supported 

called kernels. Kernels are used to transform the data into a form that can make the data 

easier to classify. The purpose of these functions is to improve the separability in the data. 

Separability, in terms of SVM classification, is a property where two or more sets of data 

points can be easily divided into different classes. The functions transform the points so that 

a linear separator can be found that will make fewer errors.  

Figure 15 below demonstrates the use of the svmTrain action, which uses linear and non-

linear kernels to compute support vector machine (SVM) learning classifiers for the binary 

pattern recognition problem. The “degree” parameter specifies the degree of the polynomial 

kernel used. The “input” parameters specify the explanatory variables used for analysis. The 

document projections generated from the previous steps, as well as the review rating and 

review length are selected as these variables. The target variable, “helpful” is specified in 

the “target” parameter. When the action is run, the training results can be saved to a CAS 

table containing an analytic store and specified with the savestate option.  

 

Figure 15. The svmTrain Action Code 

MODEL SCORING 

In this section you will see how to apply an analytic store scoring model. This standardized 

approach makes model deployment an easy step in many different contexts. Analytic stores 

are designed so that multiple different analytic stores can be applied one after another. In 

this case, you will first use the analytic store created from the text analytics component and 

then you will use the analytic store that encapsulates the SVM model. Figure 16 illustrates 

the model scoring process. 

 

Figure 16. The Model Scoring Process 
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GENERATING SCORED DOCUMENT PROJECTIONS 

You apply the text analytics scoring on the validation data with the score action. Your two 

inputs are the data you want to score and the text analytic store table. If there are 

additional variables that you want to use, then add them with the copyVars statement and 

they will be passed along together with the _Col1_-_Colk_ variables that you created at 

train time. The score action call is shown in Figure 17 and the output table created with the 

out option will then serve as input to the SVM scoring. 

 

Figure 17. Analytic Store Scoring Code for Text Model 

SCORING THE SUPPORT VECTOR MACHINES PREDICTIVE MODEL 

To score the SVM model, the output from the text scoring step and the SVM analytic store 

are submitted as input into the score action. The score action code for scoring the SVM 

model is shown in Figure 18. Your predictions will be included in the resulting output table. 

 

Figure 18. Analytic Store Scoring Code for SVM Model 

ASSESSING RESULTS 

To assess the results of your scored SVM model, you can use the assess action from the 

percentile action set. This action generates an output table with Receiver Operating 

Characteristic (ROC) information. Included in this output is the C statistic, which represents 

the area under the ROC curve, a common metric for assessing model performance. Figure 

19 shows the code to generate the ROC information for your scored model. 

 

Figure 19. Assess Action Code to Generate ROC Table 

From the ROC output table, you will find that the area under the ROC curve for your model 

is 0.86 and that the overall misclassification at a p=0.50 cutoff is 18.7%. More specifically, 

the model successfully identified 11,079 of the 13,140 helpful reviews (84.3%) and 5,371 of 

the 7,100 unhelpful reviews (75.6%) in the validation data. 

To further assess the model and to demonstrate the value that document projections were 

able to add, you can compare the predictive results with and without using the document 
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projections as a predictor. The misclassification results of three candidate models can be 

compared to determine which has the most predictive value: 

• SVM Model using document projections, star rating, and review length 

• SVM Model using only document projections (no star rating or review length) 

• SVM Model using only star rating and review length 

For the sake of space, the code to generate all three models and compare their 

misclassification rates is not included in this paper. Table 2 is a Jupyter Notebook output 

table created to compare the misclassification rates of the three models at a cutoff of 

p=0.50. This table shows that the model including all variables did the best job at 

classifying reviews as helpful. 

  

Table 2. Comparing Misclassification Rates 

For a visual comparison between models, the Matplotlib library can be used to generate an 

ROC curve for each model. Figure 20 shows how to generate the curves. 

 

Figure 20. Code to Generate ROC Curves 

The resulting ROC curves are shown in Figure 21. 



12 

 

Figure 21. ROC Curves on Validation Data 

The area under the curve improves significantly from 0.78 to 0.86 when document 

projections are included in the model. This demonstrates the value added through the text 

analytics model building process where unstructured text was converted into numeric input 

variables for use in the SVM model.  

CONCLUSION 

The SWAT library makes it easy for Python users to access and interact with the SAS Viya 

platform. Python users are able to write code in a familiar environment while gaining access 

to SAS text analytics and machine learning CAS actions. These actions were used 

throughout the course of this paper to highlight an approach for building an end-to-end text 

analytics model in SAS Viya using Python.  

The value of incorporating unstructured text as input into a machine learning model was 

demonstrated. Amazon reviews were transformed into a numerical representation via the 

document projections output from the tmSvd action. Those document projections were 

combined with the star rating and review length as input into an SVM model to predict 

whether users will rate a review as being helpful. The results on the validation data proved 

the value of incorporating the document projections as they improved the misclassification 

rate and area under the curve significantly. The area under the curve from this model built 

with a traditional text mining approach plus an SVM can serve as a baseline for comparison 

against other techniques such as deep learning, an approach SAS makes accessible to 

Python users through the SAS Deep Learning Python (DLPy) package. 
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