
 

 

1 

Paper SAS4440-2020 

Scalable Cloud-Based Time Series Analysis and Forecasting 

Using Open-Source Software 

Javier Delgado, Thiago Quirino, and Michael Leonard, SAS Institute Inc.  

ABSTRACT  

Many organizations need to process large numbers of time series for analysis, 

decomposition, forecasting, monitoring, and data mining. The TSMODEL procedure, 

available in SAS® Visual Forecasting and SAS Econometrics® software, provides a resilient, 

distributed, and optimized generic time series analysis environment for cloud computing. 

PROC TSMODEL offers capabilities such as automatic forecast model generation, automatic 

variable and event selection, automatic model selection, and parameter optimization. It also 

provides advanced support for time series analysis (in the time domain or in the frequency 

domain), time series decomposition, time series modeling, signal analysis and anomaly 

detection (for IoT), and temporal data mining. In addition, PROC TSMODEL supports open-

source integration with external languages Python and R. This paper describes the scripting 

language that supports cloud-based open-source integration between SAS® software and 

external languages; examples that demonstrate this use case are provided. 

INTRODUCTION  

More information than ever before is being collected with associated timestamps. 

Computers, mobile phones, smart devices, detectors, and other devices record timestamped 

data. These timestamped data can be modeled, forecasted, or mined (or any combination of 

these) for better decision-making. In most cases, the decisions are critical and have 

immense financial and ethical implications. For example: 

• Retailers rely on both seasonal and nonseasonal forecasts of product demand in 

order to make profitable decisions about staff scheduling and stocking levels for 

millions of products across thousands of stores. 

• Manufacturers rely on accurate forecasts of time to component failure in order to 

make decisions about the maintenance schedule of critical machinery components. 

• Railroad companies rely on accurate time series forecasts of shipping demand per 

region of the country in order to preemptively stock their railroad cars across 

different regions. Accurate forecasts enable them to better meet the predicted 

demand, minimize shipping delays, and improve customer satisfaction. 

• Energy companies rely on the ability to both monitor and analyze, in real time, 

sensor data that stream from wind turbines. Time series of sensor data are analyzed 

in order to quickly detect and respond to critical anomalous behavior and to maintain 

their turbines at peak performance over time. 

• Hospitals can aggregate patient sensor data, lab results, and physician notes in order 

to monitor patient progress and better predict patient outcome. Similarly, a 

physician can monitor a patient’s pacemaker remotely in order to quickly determine 

when the patient’s heart is behaving anomalously. 

• Governments rely on time series decomposition techniques in order to decompose 

series of economic variables into their long-term trends and short-term seasonal 

effects so that they can gain a better insight into the real status of the economy. 
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In recent years, there has been an enormous increase in the amount of timestamped data 

being collected. It is now commonplace for companies (such as banks, manufacturers, 

retailers, websites, hospitals, universities, and governments, in addition to taxi, insurance, 

stock trading, phone, energy, and many more companies) to maintain large databases of 

timestamped data whose sizes range from hundreds of gigabytes to hundreds of terabytes. 

These databases are gold mines for insights into consumer behavior. These insights can 

help organizations optimize their internal processes to better meet consumer demands. 

The amount of timestamped data being collected is expected to further escalate because of 

the ongoing proliferation of the Internet of Things (IoT). IoT enables all types of objects 

(cars, toasters, pacemakers, water and gas meters, and so on) to be discovered, monitored, 

and controlled remotely via the existing internet infrastructure. In short, “big data” has 

become pervasive in today’s society: it is everywhere and in anything, it is here to stay, and 

it has a lot to say. Processing this ever-increasing amount of timestamped data in an 

intelligent way poses both architectural and analytical challenges. For example, because of 

the sheer amount of data and the ever-increasing demand to gain decision-making insights 

from data in close to real time, time series analysis of big data is inherently a distributed 

computing problem and is thus an architectural challenge. In addition, big data solutions 

must be generic enough to accurately handle the time series analysis requirements of 

different applications and thus are an analytical challenge. 

SAS Visual Forecasting provides procedures for some of the most common analyses that are 

performed on timestamped data: forecasting, decomposition and price analysis, time series 

monitoring and anomaly detection, and temporal data mining. This paper provides an 

overview of the SAS Visual Forecasting procedures—in particular of the TSMODEL 

procedure, which was specifically designed to support advanced, efficient, and cloud-based 

time series analysis of big data. Particular emphasis is given to integrating Python and R 

code with PROC TSMODEL in order to enable efficient, massively parallel execution of 

Python and R programs. 

HOW THE TSMODEL PROCEDURE WORKS 

The goal of cloud-based time series analysis and forecasting is to perform an analytical task 

in a single pass through the data by using a distributed file system or distributed computing 

environment (or both). Moving data can strain computing resources, whether internal to a 

node, external (between computing nodes), or both. A single pass through the data allows 

for enormous performance gains. By providing a system that both moves data and 

computes efficiently, the TSMODEL procedure makes time series analysis and forecasting 

possible on an enormous scale. PROC TSMODEL procedure provides a scalable, cloud-based 

time series analysis environment, which includes a distributed file system, a scripting 

environment, and parallel data reading, script execution, and data writing. It is designed to 

run in the SAS Cloud Analytic Services (CAS) run-time environment that is deployed with 

SAS Visual Forecasting. The following sections describe these elements in more detail. 

DISTRIBUTED FILE SYSTEM 

PROC TSMODEL is designed to enable your analysis to use a distributed file system (DFS). A 

DFS allows for redundant and resilient storage of data; it breaks up large files into chunks 

and stores each chunk on several storage media. In addition, it makes several redundant 

copies of each chunk in order to forgo the need for making periodic backup copies. If a 

particular file system fails, the distributed file system can resiliently heal itself without 

needing to restore backup copies (which could cause delays). However, the data are not 

stored contiguously in such a file system, so sorting on a particular file system is not 

possible. This is particularly problematic for time series analysis, where the ordering of the 

data is crucial. In addition, the data that are needed for time series analysis might be stored 

in several files. These distributed files must be read, sorted, and merged with respect to 
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time in a scalable and efficient way. SAS Visual Forecasting procedures automatically 

perform all these operations on the input time series data in preparation for the analysis. 

Figure 1 illustrates a cluster that consists of four worker nodes and a distributed file system 

that contains two tables, A and B. Each table is organized by classification (BY) variables 

that delineate the time series rows, which are grouped into seven BY groups. Each BY group 

represents one time series. One or more computing (worker) nodes are connected to the 

distributed file system; neither the tables nor the BY groups are stored on a single machine. 

 

Figure 1. Distributed File System 

SCRIPTING LANGUAGE, DISTRIBUTION, AND COMPILATION 

The vast amount of data that cloud computing can support calls for a time series analysis 

environment that allows data to be processed efficiently. SAS Visual Forecasting provides a 

scripting language that facilitates the use of various capabilities, such as the following: 

• automatic forecast model generation, automatic variable and event selection, 

automatic model selection, and parameter optimization 

• advanced support for time series analysis (in the time domain or in the frequency 

domain), time series decomposition, time series modeling, signal analysis and 

anomaly detection (for IoT), and temporal data mining 

• preparation of the input data prior to analysis and postprocessing of the final results 

in the same script 

• reading of multiple input data files and creation of multiple output data files 

These features make the scripting language flexible and useful for numerous applications. 

Figure 2 illustrates the use of this scripting language. The script is created outside the 

computing server and can be submitted to the server by SAS, Python, Lua, or R clients. 

 

Figure 2. Scripting Language: User Script Contains SAS Code and Optionally 

Python and R Code 
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The distributed network can consist of one or more computing (worker) nodes. After being 

submitted to the computing server, the user-specified script is distributed to each worker 

node to permit parallel execution of the specified analysis, as shown in Figure 3. 

 

Figure 3. Script Distribution 

The user-specified script is then compiled on each of the computing nodes. The compiler 

optimizes the resulting executable for the specific operating system of the computing node 

(Linux, Windows, and so on). This optimized executable permits very fast execution of the 

specified analysis. Any external language source code you included in the script is stored in 

memory. One or more external language interpreters are launched for each thread on each 

worker node in order to process the external language code at run time. 

Figure 4 illustrates the script compilation and execution process when only SAS code is run 

and when external-language code is integrated. After the script is distributed to the 

computing (worker) nodes, it is optimally compiled.  

 

(a) User script contains only SAS code: 

 
(b) User script contains SAS and Python code: 

 

Figure 4. Script Compilation (a) without and (b) with External-Language Code 
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PARALLEL READ 

All the computing nodes read one or more input data files simultaneously. Each input data 

file contains unsorted, timestamped transactional data that might be recorded at no fixed 

interval. However, time series analysis algorithms typically require that the input time series 

data be stored contiguously in memory, in temporal order, and with a fixed-time interval. 

Therefore, the transactional data must be transformed into a suitable form prior to analysis. 

PROC TSMODEL relies on the properties of the input data in order to determine how to 

transform the data for optimal performance. For example, when the input data consist of 

multiple time series (BY groups), then the transformation occurs via a two-step process that 

is illustrated in Figure 5 and described in detail in the following sections. 

 

Figure 5. Parallel Read 

PARALLEL AND THREADED EXECUTION 

Each computing node executes (in parallel) the compiled, optimized script for each time 

series that has been assigned to it. Each time series is executed on one thread of the 

computing node. Each of the computing node’s threads is kept busy until all the time series 

that have been assigned to it have been processed. If any problems occur during the 

execution of a particular time series (BY group), they are logged into an in-memory table so 

that you can investigate them further. Figure 6 illustrates the parallel execution. 

 

Figure 6. Parallel Execution 

PARALLEL AND THREADED EXTERNAL LANGUAGE EXECUTION 

The External Languages (EXTLANG) package enables execution of Python and R scripts 

within the PROC TSMODEL infrastructure.  The external-language interpreter is run on the 

same CAS worker thread where the BY groups data reside, so there is no need for additional 

internode data transfer. Data are transferred within the worker node and between the SAS 

process and the external-language interpreter process. Although transfers are backed by a 

path on disk, the operating system typically uses an in-memory copy of the data, bypassing 

the need to read the data from disk. On our cluster, we observed a transfer overhead below 

2 milliseconds when working with BY-group data sizes of less than 10,000 elements. 
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PARALLEL WRITE TO THE DISTRIBUTED FILE SYSTEM 

After the specified analysis is executed for a particular time series, the computing nodes 

write one or more output data sets asynchronously and independently. Multiple output data 

files can be created simultaneously.  

Figure 7 illustrates the parallel write. Each time series analysis result is written back to the 

distributed file system. 

 

Figure 7. Parallel Write 

For more information about scalable cloud-based time series analysis and forecasting, see 

Quirino, Leonard, and Blair (2018). 

IMPLEMENTATION 

SAS Visual Forecasting enables you to use a variety of methods (procedures, scripts, 

packages, and actions) to implement solutions to your time series forecasting problems. 

THE TSMODEL PROCEDURE 

The TSMODEL procedure is a SAS® Viya® procedure that executes user-defined programs 

(scripts) on time series data. PROC TSMODEL analyzes timestamped transactional data with 

respect to time and accumulates the data into a time series format. 

PROC TSMODEL forms time series from timestamped transactional input data and writes the 

accumulated time series variables to an output table. Time series are delineated by distinct 

values of the variables that are specified in the BY statement. 

Timestamped transactional data are not usually recorded at a fixed interval. Because time 

series analysis techniques often require fixed-time intervals, the transactional data must be 

transformed into a fixed-interval time series, such as daily, weekly, or monthly. 

PROC TSMODEL forms time series vectors from timestamped data and then provides these 

vectors as array variables for subsequent processing by program statements, which 

constitute a script. The script is processed independently for each BY group. The syntax of 

PROC TSMODEL is the same as that of the TIMEDATA procedure, which is similar to the SAS 

DATA step for time series data. The SAS DATA step processes data row by row, whereas 

PROC TSMODEL processes time series vectors (columns) for the BY groups. 

For more information about PROC TSMODEL, see SAS Visual Forecasting: Forecasting 

Procedures. 

SCRIPTS 

Scripts consist of statements that perform the desired analysis on each time series. For 

more information about the object-oriented scripting language that PROC TSMODEL 

supports, see the FCMP procedure in Base SAS® Procedures Guide. 
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PACKAGES 

Packages contain computational services that can be used in your script. A package is a set 

of related specialized objects and functions (called “methods”), each of which addresses a 

unique facet of the time series analysis problem. You can use specialized objects and 

functions to write custom SAS code in order to gain access both to cutting-edge data 

analysis tools and to utilities that are designed to significantly speed up code development 

and optimize code quality. Table 1 shows the packages available for PROC TSMODEL. 

Package 

Name 

Description 

SFS Simple Forecast Service: Tools for automatic forecasting of time series with 

a simple-to-use interface; these tools use only exponential smoothing 

(ESM) and ARIMA models 

ATSM Automatic Time Series Modeling And Forecasting: Tools for automatic 

modeling and forecasting of time series by using various model families 

such as exponential smoothing (ESM), ARIMA, intermittent demand (IDM), 

and unobserved component (UCM) models 

TSA Time Series Analysis: Tools for efficient statistical analysis of time series 

(transformations, decompositions, statistical tests for intermittency, 

seasonality, stationarity, forecast bias, and so on) 

TSD Time Series Distance Measures: Tools for efficient measure of the distance 

between two time series or among sequences in temporal data (dynamic 

time warping, longest common subsequence, and so on) 

TDR Time Series Dimension Reduction: Tools for efficient time series dimension 

reduction (symbolic aggregate approximation, discrete Fourier 

transformation, discrete wavelet transformation, random projection, 

singular value decomposition) 

TFA Time-Frequency Analysis: Tools for efficient analysis of time series in both 

time domain and frequency domain 

TSM Time Series Modeling: Tools for efficient time series modeling and 

forecasting 

SSA Singular Spectrum Analysis: Tools for decomposing a time series into 

additive components and categorizing those components on the basis of 

the magnitudes of their contributions 

MSSA Multivariate Singular Spectrum Analysis: Tools for decomposing one or 

more time series into additive components and categorizing those 

components on the basis of the magnitudes of their contributions 

MTF Time Series Motif Discovery: Tools for the discovery of frequent patterns or 

repeated subsequences in time series 

SST Subspace Tracking: Tools for the analysis and decomposition of time series 

for tracking and monitoring purposes 

TIMFIL Time Series Filters: Tools for performing various types of filtering and 

aggregation on time series data 

UTL Utility: Tools for performing basic statistical computations on pairs of actual 

and predicted time series 

EXTLANG External Languages: Tools for enabling seamless integration of external 

language programs into SAS environments 

Table 1. Packages Available for the TSMODEL Procedure 



8 

Some of these packages were developed as cloud-based analogues of traditional SAS 

products and procedures. For example, the ATSM, SFS, and TSM packages carry the 

features available in SAS® Forecast Server. Similarly, the TSA, TFA, and SSA packages carry 

various features that are available in SAS/ETS®, albeit with a different scope. For more 

information about these packages, see SAS Visual Forecasting: Time Series Packages. 

ACTIONS 

Actions are executed on the CAS workers, using clients available for a variety of languages: 

SAS, Python, R, and Lua. For more information about actions, see SAS Visual Forecasting: 

Programming Guide. 

OPEN-SOURCE INTEGRATION 

In addition to being able to execute actions via SAS, Python, Lua, and R clients, the 

TSMODEL procedure can now execute R and Python scripts via actions that run on the 

distributed computing servers (that is, the worker nodes in Figure 4). The computational 

objects provided by the EXTLANG package to facilitate running Python and R programs on 

the computational servers are summarized in Table 2. Figure 8 illustrates the object data 

flow diagram for the EXTLANG package. For more information about the EXTLANG package 

and other packages, see SAS Visual Forecasting: Time Series Packages. 

Interpreter Object Description 

PYTHON2 Provides support for running code that is written in version 2 

of the Python programming language 

PYTHON3 Provides support for running code that is written in version 3 

of the Python programming language 

R Provides support for running code that is written in the R 

programming language 

Output Object  Description 

OUTEXTCODE Stores user-supplied external-language source code that is 

supplied via a PYTHON2, PYTHON3, or R object in a CAS 

table to “replay” it later 

OUTEXTLOG Stores execution and resource usage logs in a table that 

resides in CAS (a CAS table) 

OUTEXTVARSTATUS Collects the status flags of all shared variables and stores 

them in a CAS table 

Input Object Description 

INEXTCODE Reads code from a CAS table and provides it to the external 

language interpreter for reuse on a per-BY-group basis 

Table 2. Computational Objects of the EXTLANG Package 
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Figure 8. Object Data Flow Diagram for the EXTLANG Package 

EXAMPLES 

This section provides three examples that demonstrate the capabilities of the TSMODEL 

procedure, with a specific emphasis on integrating external language programs. The first 

example illustrates how you can input Python code directly into your SAS script to calculate 

a simple moving average. The second example shows you can fit an ARIMA model that is 

implemented in R to your SAS data set. The third example shows the procedure’s ability to 

perform fast time series analysis on big data. All examples use a SAS script as the client to 

run actions on the CAS server, but you can use any supported CAS client, including Python, 

R, or Lua. 

EXAMPLE 1: MOVING AVERAGE USING PYTHON  

This example demonstrates how to use the EXTLANG package to calculate a simple moving 

average of a SAS data set (Sashelp.PriceData ) and transfer the value back to your SAS 

program. This data set consists of simulated monthly sales data that are hierarchically 

organized by region, line, and product. The Sashelp.PriceData data set contains 1,020 
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observations, which are divided into 17 BY groups. By virtue of running within PROC 

TSMODEL, each BY group is processed in parallel in a separate thread on each worker in the 

CAS cluster. Although this data set is relatively small, the sample code in this section can 

also readily handle time series data sets that contain millions of BY groups. 

First, a connection to CAS (that is, a session) is established, and a CAS library called mycas 

is created. The mycas library enables you to transfer data sets to the CAS nodes, where the 

distributed time series analysis is performed. 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

A DATA step transfers the Sashelp.PriceData data set into the CAS mycas library: 
 
DATA mycas.pricedata; 

  SET sashelp.pricedata; 

RUN; 

 

The PROC TSMODEL statement specifies the input data set (mycas.pricedata), an output 

table in which to store the output data array (mycas.outarray), an output table in which to 

store the scalar variables (mycas.outscalar), and an output table in which to store an output 

object (mycas.pylog). 
 

PROC TSMODEL DATA=mycas.pricedata OUTARRAY=mycas.outarray   

             OUTSCALAR=mycas.outscalar  

             OUTOBJ=(pylog=mycas.pylog); 

 

The ID statement specifies the variable date as the time index variable, and the 

INTERVAL= option indicates that the data are monthly. 
 

ID date INTERVAL = MONTH; 

 

The BY statement specifies that each unique combination of the data set variables 

regionname, productline, and productname corresponds to a unique time series BY 

group. BY groups are processed independently. 
 

BY regionname productline productname; 

 

The VAR statement specifies the input data set variable SALE. The ACCUMULATE=AVG 

option specifies an average value accumulation for the SALE variable. 
 

VAR SALE / ACCUMULATE = AVG; 

 

The OUTSCALAR statement specifies the scalar variables that the SAS script is to generate 

and store.  These include a variable in which to store the Python program's execution time 

(runtime), a variable in which to store the exit code (exitCode), and variables in which to 

store the return code from each PYTHON2 object's method call (rc1–rc6). 
 

OUTSCALAR runtime exitCode rc1 rc2 rc3 rc4 rc5 rc6; 

 

The OUTARRAY statement specifies the array variables that the program is to generate and 

store.  The only output array is the moving average (MAVG). 

 
OUTARRAY MAVG; 

 
The REQUIRE statement specifies the EXTLANG package, which includes all the objects that  

PROC TSMODEL needs in order to interact with external languages. 
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REQUIRE EXTLANG; 

 
The program statements between the SUBMIT and ENDSUBMIT statements use the ATSM 

package objects to perform the actual analysis on the CAS server: 
 

SUBMIT; 

 

    /*   

     * Initialize the PYTHON2 object, which is the interface to the  

     * Python interpreter. 

     */ 

    declare object py(PYTHON2); 

    rc = py.Initialize(); 

     

    /*   

     * Create the Python program, which simply does the following: 

     *  1. Import the NumPy package with alias np 

     *  2. Create an array to be used for the moving average computation,  

     *     with a window size of 3 

     *  3. Compute the moving average and store into variable MAVG 

     */ 

    rc1 = py.PushCodeLine('import numpy as np');   

    rc2 = py.PushCodeLine('w = np.ones((3,))/3 ; ');   

    rc3 = py.PushCodeLine('MAVG = np.convolve(SALE, w, mode="same")'); 

     

    /*   

     * Specify variables to share between SAS and Python. 

     * The variable SALE is used only as input in the Python program;  

     * the default value of READONLY is used to avoid propagating 

     * its data back to SAS. MAVG is transferred back to SAS, where 

     * it is stored in a CAS table for further analysis. 

     */ 

    rc4 = py.AddVariable(SALE) ; 

    rc5 = py.AddVariable(MAVG, 'READONLY', 'FALSE'); 

     

 

    /*   

     * Run the program and obtain the run time and exit code. 

     */ 

    rc6 = py.Run(); 

    runtime = py.GetRuntime(); 

    exitCode = py.GetExitCode() ; 

 

    /*   

     * Store the execution and resource usage statistics logs. 

     */ 

    declare object pylog(OUTEXTLOG); 

    rc = pylog.Collect(py,'ALL'); 

 

ENDSUBMIT; 

  RUN; 

The TSMODEL procedure prints a summary of the time series processing that is performed, 

as shown in Output 1. This summary includes the number of BY groups that are processed, 

the total processing time, and some information about the accumulation process. 
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Output 1. Summary for Processing Example 1 

Output 2 shows a subset of the scalar output, which is produced from the following code: 

   PROC PRINT DATA=mycas.outscalar; RUN; 

You can verify from Output 2 that all exit and return codes are 0. 

 

Output 2. Partial Output of OUTSCALAR Table Produced by Example 1 

Output 3 shows the first 10 lines of the OUTARRAY table from this example. You can see the 

moving average values (MAVG) in the last column. Note that values are obtained at the 
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boundaries since the convolution mode was set to “same.” This output is generated via the 

following command: 

   PROC PRINT DATA=mycas.outarray; RUN; 

 

Output 3. Partial Output of OUTARRAY Table of Example 1 

EXAMPLE 2: ARIMA FORECASTING USING R 

This is a more realistic example, which demonstrates how to apply an ARIMA model 

implemented in R to your data. To keep the example succinct, the R model is used 

exclusively. However, the example can be extended to work with other objects to do things 

like include the custom model in the automated model selection process that is provided by 

the ATSM package objects; see SAS Visual Forecasting: Time Series Packages. This example 

also demonstrates how you can load source code from a file. The freely available forecast 

package1 for R is required for this example. 

As with the previous example, the first step is to establish a connection to the CAS server 

and create a CAS library called mycas. The mycas library enables you to transfer data sets 

to the CAS server where the distributed time series analysis is performed. 

 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

A DATA step transfers the Sashelp.PriceData data set into the CAS mycas library: 

 
DATA mycas.pricedata; 

  SET sashelp.pricedata; 

RUN; 

 

The PROC TSMODEL statement specifies the input data set (mycas.pricedata), an output 

table in which to store the output data set (mycas.outarray), an output table in which to 

store one or more scalar variables (mycas.outscalar), and an output table in which to store 

two output objects (the object mycas.rlog stores all the output that is generated by the R 

program and the object rvars stores information about shared variables). LEAD=12 requests 

that 12 time steps into the future be forecasted. 

 

PROC TSMODEL DATA=mycas.pricedata OUTARRAY=mycas.outarray  

             OUTSCALAR=mycas.outscalar  

             OUTOBJ=(rlog=mycas.rlog rvars=mycas.rvars) 

             LEAD=12; 

 
1 https://cran.r-project.org/web/packages/forecast/forecast.pdf 
 

https://cran.r-project.org/web/packages/forecast/forecast.pdf
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The ID statement specifies the variable date as the time index variable, and the 

INTERVAL= option indicates that the data are monthly. 

 

ID date INTERVAL = MONTH; 

 

The BY statement specifies that each unique combination of the data set variables 

regionname, productline, and productname correspond to a unique time series BY 

group. BY groups are processed independently. 

 

BY regionname productline productname; 

 

The VAR statement specifies the input data set variable SALE. The ACCUMULATE=AVG 

option specifies an average value accumulation for the SALE variable. 

 

VAR SALE / ACCUMULATE = AVG; 

 

The OUTSCALAR statement specifies the scalar variables that the SAS script is to generate 

and store. These include variables in which to store the R program’s run time (runtime), 

exit code (exitCode), and the return code from each method called for the R object (rc1–

rc7): 

OUTSCALAR runtime exitCode rc1 rc2 rc3 rc4 rc5 rc6 rc7; 

 

The OUTARRAY statement specifies the array variables that the SAS script is to generate 

and store. The only output array is the series that is modeled using the R ARIMA model 

(rPred). 

 

OUTARRAY rPred; 

 

The REQUIRE statement specifies the EXTLANG package, which includes all the objects that 

are needed for SAS to interact with external languages. 

 

REQUIRE EXTLANG; 

 
The program statements between the SUBMIT and ENDSUBMIT statements use the 

EXTLANG package objects to run the R program on the CAS server: 

 

SUBMIT; 

 

    /*  

     * Initialize the R object, which is the interface to the  

     * R interpreter. The interpreter executable is set via a  

     * CAS configuration file. 

     */ 

    declare object robj(R) ; 

    rc1 = robj.Initialize() ; 

 

    /* 

     * Push code from the filesystem. The R object will dynamically create 

     * a file that contains all source code to be run and will autogenerate 

     * code for transferring to and from the SAS environment. 

     * The file r_arima_code.r has the following contents: 

          ------------------------------------------------------ 
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library(forecast) 

Y<- Y[1:(NFOR - HORIZON)] 

Y_ts<-ts(Y,frequency=12) 

LOG_Y_ts<-log(Y_ts) 

fit <- stats::arima(LOG_Y_ts, order=c(p=0, d=1, q=1), 

seasonal=list(order=c(0,1,1), frequency=12)) 

sse<-sum(fit$residuals^2) 

forecast(fit) 

a <- stats::predict(fit, n.ahead=HORIZON) 

PREDICT <- c( exp(fitted.values(fit)), exp(a$pred) ) 

------------------------------------------------------ 

     */ 

    rc2 = robj.PushCodeFile('/path/to/r_arima_code.r') ; 

     

    /*  

     * Specify variables to share between SAS and R. 

     * SALE is the (READONLY) dependent variable. The ARIMA code  

     * uses the generic name Y for the dependent variable, so  

     * SALE is aliased to Y. 

     * rPred will contain the predicted series, which is returned to the  

     * SAS program. The R code that is used stores the predicted series in  

     * the variable PREDICT, so rPred is aliased to PREDICT. 

     * Two additional read-only variables are needed by the R code:  

     * NFOR, which stores the forecast length, and HORIZON, which stores 

     * the forecast horizon. 

     */ 

    rc3 = robj.AddVariable(SALE, 'ALIAS', 'Y') ; 

    rc4 = robj.AddVariable(rPred, 'ALIAS', 'PREDICT', 'READONLY', 'FALSE'); 

    rc5 = robj.AddVariable(_LENGTH_, 'ALIAS', 'NFOR') ; 

    rc6 = robj.AddVariable(_LEAD_,'ALIAS','HORIZON') ; 

     

     /*  

      * Run the model and get the exit code and run time. 

      */ 

    rc7 = robj.Run() ; 

    exitCode = robj.GetExitCode() ; 

    runtime = robj.GetRunTime() ; 

 

    /*  

     * Store the execution and resource usage statistics logs. 

     */ 

    declare object rlog(OUTEXTLOG) ; 

    rc16 = rlog.Collect(robj, 'EXECUTION') ; 

    declare object rvars(OUTEXTVARSTATUS) ; 

    rc17 = rvars.collect(robj) ; 

 

ENDSUBMIT; 

RUN; 

 

The PROC TSMODEL summary is shown in Output 4. 
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Output 4. PROC TSMODEL Summary Statistics for Example 2 

The following code produces a plot that shows the actual and forecasted units sold over time 

for a simple BY group. The forecast values come from the R ARIMA model that is used in 

Example 2. The DATA step creates a subseries that consists of the BY group that pertains to 

Region 1, Product Line 1, and Product name “Product 3”. The SGPLOT procedure uses the 

subseries that was obtained in the DATA step to create a scatter plot of the actual SALE 

values along with a line plot of the values that were obtained by the R ARIMA model. The 

output is shown in Output 5. 

DATA mycas.subseries ; 

    set mycas.outarray(where=(regionName="Region1" and productLine="Line1" 

and productName="Product3")) ; 

RUN ; 

 

PROC SGPLOT data=mycas.subseries ; 

   scatter x=DATE y=SALE / markerattrs=(color=black) LEGENDLABEL = 'Actual' 

Name="act"; 

   series x=DATE y=rPRED / lineattrs=(color=red thickness=2) 

                                  LEGENDLABEL = 'Predicted' Name="pred"; 

   yaxis LABEL="Sale" ; 

   xaxis LABEL="Time" ; 

   keylegend / POSITION=BOTTOMRIGHT LOCATION=INSIDE ACROSS=1 ; 

RUN; 



17 

 

Output 5. Actual and Modeled Sales for R-Based ARIMA Model 

This R program is not expected to produce any text output if no errors occur, so _LOGTEXT_ 

should be empty. This can be verified by looking at the mycas.rlog table. The following code 

produces this table: 

   PROC PRINT DATA=mycas.rlog; RUN; 

The output is shown in Output 6. 

 

Output 6. Output of RLOG Table for Example 2 

EXAMPLE 3: LIGHTNING-FAST BIG DATA ANALYSIS 

This example demonstrates the TSMODEL procedure’s ability to perform fast time series 

analysis on big data. By using the EXTLANG package objects with PROC TSMODEL, any 

Python or R code can be seamlessly parallelized at a large scale, with minimal overhead. In 

this example, a large industrial data set that consists of more than 1.5 million BY groups is 

processed. On average, each BY group contains 4.3 years of weekly historical data. This 

example was conducted on a cluster of 128 worker nodes and 32 BY-group threads per 

node. Each worker node contains dual Intel Xeon E5-2680 CPUs; each CPU has 8 cores with 

Intel Hyper-Threading Technology. Each worker has 252 GB of RAM. 
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First, a connection to the CAS server is established, and a CAS library called mycas is 

created. The mycas library enables you to transfer data sets to the CAS server where the 

distributed time series analysis is performed: 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

The DATA step is omitted from this example because the data are not publicly available. The 

PROC TSMODEL statement is similar to the previous examples. The details about the 

statements before the SUBMIT…END SUBMIT block are omitted for brevity. 

   PROC TSMODEL data = mycas.large_distributor 

             OUTARRAY=mycas.outarray  

             OUTSCALAR=mycas.outscalar 

             LEAD=52 

            ;    

    ID  period_start_dt 

        interval = week 

        setmissing = missing 

        trimid = none 

    ;    

    BY customer_id product_id store_location_id; 

    VAR demand_qty / acc = total; 

    OUTSCALAR pyTime pyExitCode pyProcessingTime   

              prc1 prc2 prc3 prc4 prc5 prc6 prc7 prc8 prc9 prc10 

              prc11 prc12 prc13 prc14 prc15 prc16  

              ;    

    OUTARRAY pyPred ; 

    REQUIRE extlang ;  

 

The code within the SUBMIT…ENDSUBMIT block runs on all the BY groups. The Python 

version 3 interpreter that is specified in the CAS configuration is launched once for each of 

the 32 worker threads. The interpreter process is duplicated for each new BY group that the 

thread processes. Python modules that are used in the user program are preloaded in the 

duplicated interpreter process to further reduce overhead. Note that Python’s indention 

rules must be obeyed. 

   SUBMIT; 

 

    declare object py(PYTHON3); 

    prc1=py.Initialize(); 

 

    /* Create the script */ 

    prc1 = py.PushCodeLine('import numpy as np'); 

    prc2 = py.PushCodeLine("import os") ; 

    prc3 = py.PushCodeLine("import time") ; 

    prc4 = py.PushCodeLine('start = time.time()'); 

    prc5 = py.PushCodeLine('try:'); 

    /* Moving average with window size = 7 */ 

    prc6 = py.PushCodeLine('   w = np.ones((7,))/7 ; '); 

    prc7 = py.PushCodeLine('   fit = np.convolve(Y, w, mode="same")') ; 

    prc8 = py.PushCodeLine('   PREDICT = fit') ; 

    prc10 = py.PushCodeLine('except Exception as e:'); 

    prc11 = py.PushCodeLine('   print("Error occured during computation. 

                                Y values: {0}. Error: {1}".format(Y, e))') ; 

    prc12 = py.PushCodeLine('PYPROCESSINGTIME = time.time() - start') ; 

 

    /* Add variables */ 

    prc13 = py.AddVariable(demand_qty, 'ALIAS', 'Y') ; 
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    prc14 = py.AddVariable(pyPred, 'ALIAS', 'PREDICT', 'READONLY', 'FALSE'); 

    prc15 = PY.AddVariable(pyProcessingTime, 'READONLY', 'FALSE'); 

 

    /* Run the program */ 

    prc16 = py.Run(); 

    pyTime = py.GetRuntime(); 

    pyExitCode = py.GetExitCode() ; 

   ENDSUBMIT; 

   RUN; 

The results for this example are split into two parts. The first part contains results that are 

obtained by running without any Python code. These results assess the overhead of just 

shuffling the data among the worker nodes. The second part runs the preceding code. 

Hence, the second part of the results shows the additional overhead of loading the Python 

interpreter and transferring data between the interpreter and SAS, in addition to shuffling 

the data. The output summary of the first part is shown in Output 7, which shows that 

1,562,593 BY groups were processed in 29.1 seconds.  The output summary from the full 

example is shown in Output 8, which shows that processing the same BY groups took 153.5 

seconds. Given the simplicity of this program, most of this time can be attributed to the 

overhead involved in duplicating the Python process for each BY group and loading and 

storing their data. Hence, the penalty for processing 750 million rows of data distributed 

among 1.5 million BY groups was just 124 seconds, which is quite small.  

 

 

Output 7. PROC TSMODEL Summary for Loading Large Data Set Using 121 Workers 
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Output 8. PROC TSMODEL Summary for Example 3 

CONCLUSION 

The TSMODEL procedure enables both scalable and optimized time series analysis in a cloud 

environment. PROC TSMODEL comes equipped with a generic scripting environment, which 

enables you to develop custom time series analysis algorithms and prepare your data for 

analysis (clean, transform, preprocess, and postprocess), all within the same script. This 

environment helps reduce data movement (because the data remain in the same contiguous 

memory throughout the analysis) and also optimizes code development. PROC TSMODEL 

also comes equipped with various specialized time series analysis packages that provide 

advanced support for time series analysis (in the time domain or in the frequency domain), 

time series decomposition, time series modeling, signal analysis and anomaly detection (for 

IoT), and temporal data mining. External language support extends the SAS scripting 

environment to allow for open-source integration. You can integrate new and existing 

Python and R programs into your SAS script in order to enhance your processing or analysis 

(or both). Because of these features, what can be accomplished by PROC TSMODEL is 

limited only by your imagination. As is illustrated by the third example, PROC TSMODEL’s 

distributed nature (processing BY groups in parallel), efficiency and scalability (minimizing 

I/O, performing all data operations in memory, and reusing allocated memory efficiently 

across BY groups), and optimized time series modeling and forecasting capabilities enable 

big data forecasting problems to be solved with unprecedented speeds. In summary, 

TSMODEL can efficiently perform time series analysis of big data in close to real time. 
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