

1

Paper 4437-2020

Building Web Applications with SAS® Has Never Been So Easy

Matthew Kastin, NORC at the University of Chicago; Nikola Markovic, Boemska

ABSTRACT

Boemska AppFactory helps you complete the “last mile of analytics” by empowering users to

innovate with highly tailored productivity apps. When combined with the SAS Viya Platform

you can create sophisticated apps from your data and increase access to analytics by

enabling more of your organization to harness the power of SAS by deploying modern,

intuitive, and relevant apps.

INTRODUCTION

We are going to explore the process of creating a simple web app using ReactJS and SAS

Viya inside of Boemska AppFactory. The app you are creating implements a React

component called react-image-annotate by WorkAround Online Inc. (wao.ai), which we will

integrate with the SAS Viya APIs. The combination of these components will result in a

prototype Image Annotation app that can be rolled out to end users to securely collect

image annotations across your organization. This app can then be used to improve the

quality of your image processing models.

GETTING STARTED

We have designed this application to be presented as a 45-minute hands-on workshop. The

technology described in this paper will be split into two areas: the SAS programming that

most readers will be familiar with and Javascript (ReactJS) web application development,

which may be more of a novelty. In a real-world scenario these two technologies would

likely be taken on by different individuals with strengths in the relative area of development.

However, in the context of our Hands-on Workshop you will be working solo and wearing

both hats, so to speak. Boemska AppFactory also makes assuming whichever role(s)

simple.

To complete the app, we will perform the following tasks for each role:

1. Web developer 🧢
i. Install the Javascript libraries required by the seed app

ii. Build the seed app and test the initial build in the browser

iii. Create a new page in the app

2. SAS programmer 🧢

i. Create a new project in Boemska AppFactory

ii. Create a folder and a data service

2

iii. Write the SAS code which will return the dataset of images to the client

iv. Test and deploy the code

v. Take a copy of the generated React JS snippet from AppFactory

3. Web developer 🧢

i. Add the generated code from AppFactory to the page you last created

ii. Test that the app is communicating with Viya

iii. Add the React Image Annotate component to the app

iv. Add the same component to the page and configure it

v. Test, and show off to your friends

By the time you are done the app should look like Figure 1:

Figure 1. Preview of Final Application

ENTER WEB DEVELOPER MODE 🧢

For the workshop, you will be provided your own login to a browser-based instance of

Microsoft’s VSCode editor. Open the URL provided, and you will be greeted with a screen

that looks like Figure 2:

3

Figure 2. Microsoft VSCode Editor

Once you have logged on successfully, VSCode will provide you with a Terminal instance in

your Home directory (shortcut Ctrl-`), where you can use Git to clone the Boemska react-

seed-app project into a directory called workshop-app. Snippet 1 shows the command to

run.

1. git clone git@builds.boemskats.com:boza/react-seed-app workshop-app -b dev-no-eject

Snippet 1. Git Clone Command for Boemska react-seed-app

Navigate to the newly create directory, and run yarn install to tell the yarn package

manager to download the project dependencies to the project. Figure 3 shows what your

screen should look like at this point.

4

Figure 3. Terminal Output from Git Clone and Yarn Install

Once this has completed, run yarn build to build the app.

To test the app, navigate to the document root directory you have been provided for your

user (it will look something like https://a.cloud.boemskats.com/~username/workshop-app/) and

open the build directory from that location. Figure 4 shows what your screen should look

like:

https://a.cloud.boemskats.com/~username/workshop-app/

5

Figure 4. ReactJS Seed Application Preview

This is enough for now. You have taken a copy of the seed app, installed the libraries it

depends on, and compiled the app. Next, it’s time to put your SAS Programmer hat back on

and write some data code.

ENTER SAS PROGRAMMER MODE 🧢

For our app to do anything, it needs data - and this is where our SAS code comes in. Next,

you will write SAS code that creates a dataset of available image files and feeds it back to

the front-end of the application. You do that in AppFactory.

To log on to AppFactory, navigate to the AppFactory URL provided (will look something like

http://a.cloud.boemskats.com/apps/), and log on. Select the Projects tab, click Create

New, and give your new project a name, description, and a root folder in the Folder

Service. It should look like Figure 5:

http://a.cloud.boemskats.com/apps/

6

Figure 5. AppFactory: Create New Project Screen

Clicking Create will create the new project in AppFactory, which will allow you to define new

roles (folders), services (jobs) within those folders, and write and test the code for each

service.

Once your project is created, add a Role. This will be a folder in the folder service, the

permissions to which can be mapped to a group of users according to the chosen

authorization model. Figure 6 shows an example of the roles screen:

Figure 6. Project Roles

Next, it’s time to create a service within one of those roles. Double-clicking a role will open

that role. There you will create a SAS service called get image list.

7

When Roles and Services are created within an AppFactory project, they are not created

within SAS until the project elements are explicitly synchronized. Clicking the ‘Create’

button that appears on the page of any element that doesn’t yet exist within SAS, be that a

folder or a service, will create that element. You will see a notification like in Figure 7:

Figure 7. Object does not yet exist notification

Now your ‘get image list’ service is defined, you need to specify the table metadata for the

inputs and outputs that the service will be expecting and providing, before writing the code

to process that data and return the results.

You do this by clicking ‘Add’ in the Data I/O section of the service page. This allows you to

then specify the structure of each dataset that will be either expected or produced by your

code.

This service will be providing a set of image names and image URLs to the app. So, the data

structures it produces will look like Figure 8:

Figure 8. AppFactory: Data I/O Section of the Service Page

Define these, save them, and then click the Edit Code button to write the SAS code that will

produce this dataset.

For the workshop, a pre-prepared dataset will be made available which contains a set of

image URIs on the Viya Files service, and the associate image names. To return these to the

app front end, the SAS code can remain simple. Snippet 1 contains all the SAS code we

need and Figure 9 shows it in Boemska AppFactory:

8

1. libname imgrepo '/pub/imagerepo';
2.

3. proc sql;

4. create table candidates as

5. select src, name from imgrepo.candidates;

6. quit;

Snippet 2. SAS Code for prepared dataset

Figure 9. SAS Code as seen inside AppFactory

Once your code is written, clicking on the Test button in the top right of the code editor will

allow you to run it and test that it produces the desired output. Assuming it does, clicking

the Save Code button (the rightmost of the four buttons along the top left of the editor

window) will save your code changes back to the project, and navigate back to the main

page for that service. Clicking the ‘Update’ button from there will ensure that your code

changes are synchronized with the deployed project code.

After this is done, scroll to the bottom of the Service page, and inside the Javascript Code

section, select React and click the Copy Code button. Figure 10 shows what the Service

page looks like:

9

Figure 10. AppFactory Service page

Now it’s time to go back to being a Web Developer.

ENTER WEB DEVELOPER MODE (AGAIN) 🧢

Logging back onto VSCode in the Browser, you should be able to open your previously

opened project as seen below in Figure 11:

10

Figure 11. VSCode Project

The next step is to create the page where the

react-image-annotate component will be shown. This

involves two steps: creating the page itself, and then

adding it’s route to the main application’s App.js file.

The first step involves creating a subdirectory inside the

project structure, and a new .js file inside that

subdirectory. Figure 12 shows the Explorer panel on the

left-hand side of VSCode to highlight this action:

 Figure 12. Explorer panel

11

Inside the new file, paste the code that AppFactory generated, copied from the previous

step. There are a couple of changes that need to be made, to ensure that the

adapterService is being sourced from the correct path, and that the new class is named

correctly.

In this case, the three key parts of your code should read like lines 1, 3 and 5 of Snippet 3:

1. import adapterService from '../../adapterService/adapterService'
2.

3. class Egg extends React.Component {
4.

5. export default connect(mapStateToProps, mapDispatchToProps)(Egg)

Snippet 3. React component update excerpts

Then, adding this new page to the application requires the following two changes to App.js

highlighted below in Figure 13:

Figure 13. App.js Highlighted Changed

12

The last step before the next test is a change that needs to be made to the default h54s

adapter configuration, to tell it where the app’s services have been deployed within the Viya

folder service. This is done by editing the h54s/config.js file, as shown in Figure 14:

Figure 14. H54s config.js example

Note that this config can be copied directly from the main Project page in AppFactory, like in

Figure 15:

Figure 15. Alternative H54s config example inside AppFactory

Once this change is made, it is time to build the app once again and verify that loading our

new page successfully retrieves the data it needs from SAS. To do this, run the yarn build
command in the VSCode terminal console again, and then load the app back up in the

browser - this time appending an /egg uri to the address of the app to point at the new

component.

This time, before hitting the enter key, open the browser’s Developer Tools console. By

default, the snippet of React code copied from AppFactory contains a console.log(response)

command, which you will substitute in the next step. For now, it can show us that the data

from Viya is being retrieved correctly. Therefore, loading the URL with the new page

appended to it should yield a response like this in the browser console (see Figure 16):

13

Figure 16. Web browser developer console

This shows the successful response on the load of that page, including the image list data.

Great. Time to move onto the next and final step - adding the react-image-annotate

component to our project.

This is done using the yarn package manager, back in VSCode’s Terminal. It involves typing

yarn add react-image-annotate, and should yield something like in Figure 17:

Figure 17. Adding react-image-annotate

Once this action has completed, the react-image-annotate component will be available

within your project. Next, it is a simple case of following the instructions from the

component’s homepage (https://waoai.github.io/react-image-annotate/). Namely, it

involves importing the component into the newly created page, by importing it. Snippet 4

highlights the code to do this:

1. import ReactImageAnnotate from "react-image-annotate"

Snippet 4. Importing react-image-annotate

https://waoai.github.io/react-image-annotate/

14

and then configuring it, as show in Figure 18:

Figure 18. Configuring react-image-annotate

These changes do the following:

• Set the response object to update the global state of the application when it returns

• Tell the ReactImageAnnotate component to use the image list object from the

response as its dataset listing all the eligible source images

• Tell it to use the first ([0th]) element in the array as the selected image

• Tell it to also offer three categories for object classification. These could also be

made data driven easily by producing a second dataset from our AppFactory service

that lists some more interesting categories

And that’s it. Running yarn build one last time should build a version of the application,

and hitting refresh should result in an image annotation interface show in Figure 19:

15

Figure 19. Tadaa!

The next obvious step is the development of this app is to create and implement a service

that writes the resulting annotations back to an audited dataset. While that’s outside the

scope of this workshop, a continuation of these materials should soon be available online.

Watch this space!

CONCLUSION

Congratulations! You have completed building a secure, image intake web application for

pre-processing and storing images and metadata. This example app demonstrates how

Boemska AppFactory helps fill in the gaps in the last mile of analytics. Reducing the

complexity on both sides of development by following a structured approach.

From here, your imagination is truly your only limit (when it comes to building web

applications to expand the capabilities of SAS)!

RECOMMENDED READING

• https://boemskats.com

• https://reactjs.org/

https://boemskats.com/
https://reactjs.org/

16

• https://github.com/boemska/h54s

• https://waoai.github.io/react-image-annotate

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Matthew Kastin

NORC at the University of Chicago

fried.egg@verizon.net

Nikola Markovic

Boemska

nik@boemskats.com

http://boemskats.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://github.com/boemska/h54s
https://waoai.github.io/react-image-annotate
mailto:fried.egg@verizon.net
mailto:nik@boemskats.com
http://boemskats.com/

