
 

 

1 

Paper SAS4408-2020 

Essential Performance Tips for SAS® Visual Analytics 

Meera Venkataramani, SAS Institute Inc.  

ABSTRACT  

Troubleshooting performance-related issues across distributed systems is a challenging 

task, and it requires a step-by-step approach to identify the cause of the bottleneck. When 
it comes to performance, there are a myriad of factors involved, with each one contributing 

in its own way to the overall problem. Because SAS® Viya® is a broad system with many 

distributed layers, the variance and complexity is what makes the problem hard to solve, 
and often causes approaches to fail on given architectures. This paper takes a holistic look 

at the SAS Viya and explores the various processes and methodology involved in diagnosing 

performance problems with SAS® Visual Analytics. Using a customer use case, we will 
demonstrate to you the diagnostic steps, forensic process, and the tools and methods 

involved in this process. In order to get the best user experience and optimum performance 
with SAS Visual Analytics, thought and effort should be put into architecting the application 

and the underlying infrastructure layers. The various components of the system should be 

built to be highly responsive on all the different components of the application service. As if 
peeling an onion, we’ll examine each layer of the SAS Visual Analytics until we arrive at its 

core.  Each layer has a rich set of performance-related information to offer along the 

way…and we promise that it won’t bring tears to your eyes.  

INTRODUCTION 

Identifying performance issues distributed across SAS Viya is a challenging task and it will 

need a step-by-step approach to identify the cause of the bottleneck. When it comes to 
performance, there are a myriad of factors involved with each one contributing in its own 

way to the overall problem. Sometimes, it’s like finding a needle in a haystack. Isolating the 

various factors is the key. 

This paper provides guidelines and basic validation tests to identify what and how to solve 

these issues. Eliminating and identifying what is SAS and what is outside SAS early on gives 

us an edge. We have seen over the years that everyone has a different approach to solving 
performance issues and everyone has their own set of steps and tools they use to start this 

evaluation. This paper is an effort to gather, review, test, and document all of these tools in 

one place and to provide a step-by-step framework to solve performance issues. 

WHY IS APPLICATION PERFORMANCE IMPORTANT? 

Inadequate software performance that refers to slow system response times and transaction 

throughput rates is the biggest problem in production systems these days. Slow degraded 
application performance is highly disruptive, inefficient, and can cost the business a lot of 

money in terms of system downtime, delayed decisions, and lost revenue. Business 

continuity and application performance are dependent on each other, and critical for 

success. 

In recent years, software applications have evolved to be more complex, dynamic, robust, 

and distributed in nature. Applications have also changed their formats, starting with stand-
alone hardware to client-server and then mobile and distributed cloud-based solutions. The 

introduction of mobile and cloud computing technology has also changed how applications 
are used today. In today's world, corporations cannot afford to have any degraded 



   

 

2 

performance or system downtime. Applications must be fully functional, efficient, and 

readily available around-the-clock to deliver the most optimal performance and a high-
quality experience at all times to their customers. Would you like it if your Netflix movie 

took far too much time buffering and occasionally it might freeze and drop out? 

SAS is committed to delivering the best optimum performance with our application to our 

customers. However, dealing with system performance is a joint responsibility between 

SAS, the customer, the customer’s IT organization, and even other third-party service 
providers. Customers expect SAS to understand how to get the best performance, even 

though we don’t control all aspects of the issue. Solving such problems often involves 
getting several teams in a room to work through the various layers of the application and 

infrastructure. 

TROUBLESHOOTING A PERFORMANCE ISSUE CAN BE A 
NIGHTMARE 

Why is troubleshooting so hard you may ask. Application performance is impacted by the 

components used to deliver the service to the user, the application’s user interface, and the 
connectivity between these components. The variance and complexity make the problem 

hard to solve, and often causes approaches to fail on given architectures. 

Applications are distributed by nature, and unless the underlying infrastructure is responsive 
on all the different components of the application service, the entire application service is 

impacted. One of the most critical factors that affect application performance, and often the 
hardest to identify and track, are application dependencies on supporting applications, as 

well as the underlying system and network components that connect them all together. 

With the advent of virtualized servers and networks, the complexity of the application 
delivery infrastructure has increased significantly. The challenge is finding an application 

performance monitoring solution that can automatically discover and monitor the network 

and server topologies for the entire application service. 

Today's distributed applications, such as SAS Viya — particularly for large organizations — 

can have thousands of individual connections stretching across many tiers and even 
reaching outside services. We've moved beyond simple 3-tiered web applications into 

complex distributed applications (made up of load-balanced web and application servers, 

multiple layers of middleware and databases, storage arrays, mainframe transactions, and 
even outside services). In this world, problems are no longer concentrated in application 

code, instead they are randomly distributed throughout the application infrastructure. It 
could be anywhere in the stack, for example, servers, operating systems, storage, 

networking services, LDAP, anti-virus, database, firewall, and DNS misconfiguration all can 

create application problems; and that's just the tip of the iceberg. 

In these situations, you need to be able to think outside of the box for new ways to tear into 

the problem. That might involve breaking out medieval tools, such as a protocol analyzer 
(like Wireshark) or process tracer (for example, truss, strace, procmon, regmon, and so 

on). However, being able to use those tools to good effect basically requires you to be 

curious about how things work at a basic level. As with communication, not every IT pro has 

this skill. 

However, the most difficult performance problems won't be untangled that easily. The really 
fun ones leave no trace of their existence. Performance graphs will look well within limits, 

error logs will be devoid of useful errors, and hardware/software specifications will all be 

satisfied 

  



   

 

3 

SAS VIYA ARCHITECTURE 

Not only does SAS Viya bring exciting advancements in high-performance analytics, it 

introduces several modern practices to SAS software architecture. SAS Viya brings a more 
resilient, elastic, unified, and open architecture, which leverages cloud-friendly 

microservices and a next generation analytics run-time engine.   

To administer SAS Viya, you should have a good understanding of each of the following 
components, gain a better understanding of the components of the SAS Viya architecture, 

and how they can be collectively managed to keep your environment available, secure, and 
performant for the users and processes you support.  Your system is only as good as the 

weakest link in your chain. For SAS Viya to perform optimally, each of the components in 

SAS Viya should also be performing optimally. Figure 1 shows a high-level architectural view 

of SAS Viya. 

 

 

Figure 1. SAS Viya Architecture 

IT INFRASTRUCTURE 

Let’s see an example of what a customer’s IT infrastructure might look like.  

Figure 2 illustrates how a modern organization might function in a global environment. It 

provides a high-level map or plan of the information assets in an organization, which guides 
the current operations. Notice the following in the figure: 

 

• A front-end web server talks with an application server that talks with a middleware 
server that queries one or more database servers. 

• Then, all of those servers might talk with DNS servers to look up IP addresses or 

map them back to server names. 
 

When that happens, just one weak link slows the whole application down. 

 



   

 

4 

In order for SAS Viya to perform optimally – unless the underlying infrastructure that SAS Viya 
depends upon, is responsive on all the different components of the application service, the entire 
application service is impacted.  

 

 

Figure 2. An Illustration of a High-Level Map of the Information Assets In an 

Organization 

TROUBLESHOOTING: A STEP-BY-STEP PROCESS 

Troubleshooting a performance-related issue is like peeling an onion, to get to the core you 

must progressively peel away and asking layers of questions as you go along, By asking 
deeper and deeper questions that build on the previous answers, you are more likely to peel 

the onion (so to speak) and discover what really matters. If this scenario brings tears to 
your eyes, I promise that the following process of uncovering core information by removing 

each layer, will not leave you red and irritated. 

Now that we have talked in detail about the complexities of identifying a performance 
bottleneck in SAS Viya, let us take a deep dive into the how’s of solving performance 

problems and designing high performant systems. 

GENERAL CONSIDERATIONS AND GUIDELINES 

Here are some general guidelines and best practices to keep in mind as you start your 

troubleshooting journey: 

Designing for High-Performant Systems from the Start 

Of course, the best way to troubleshoot performance problems is to prevent them in the 
first place by designing for high-performance from the start. Details, in the form of 

requirements, are just as important when designing a new high-performance solution as 

they are when you are troubleshooting problems. Here are questions to ask: How much 
data is involved? How much data traverses the system when a job is run? How much goes 

over the network or between the server and storage? Can we move data local to the system 
instead of remote? How many jobs are run, per hour, per day? How much data is processed 

during those jobs? How quickly do the jobs need to complete? 



   

 

5 

One of the biggest factors that impacts application performance is design. Performance 

must be designed in. When applications are specified, performance goals need to be 
delineated along with the details of the environment the applications will run in. Often 

development is left out of this and applications are monitored, analyzed and “fixed” after 
they are released into production. This never works as well as when performance is one of 

the key goals of the application design before a line of code is written. 

Identifying the Exact Issue 

The first step in troubleshooting a performance problem (really any problem) is to get a 

solid understanding of what the problem is. We often get performance problem reports that 
say simply, “It’s slow.” We need more details. For example: What’s slow? What’s the 

specific problem you’re having that we can troubleshoot? The more detail you can give us 

the better. If there are multiple problems, tell us which one is the most important so that 
we can start there. If you can replicate the problem, please give us the specific steps that 

we can use to replicate your problem. 

Getting an accurate description of the problem soon after it is first reported it’s perhaps the 
most valuable clue you can work with in the troubleshooting process. I can't tell you how 

many times I have been in situations where we are chasing a problem that didn't actually 
exist -- at least not in the way that it was originally described. Not only is it a waste of time 

and money to chase ghost problems, but it's also intensely frustrating for stakeholders who 

see no progress being made on an issue they've reported. 

Document Problems Correctly and Accurately 

Often, asking an affected user to keep a log of exactly what happens -- and when it 
happens -- can really help when it comes to matching user complaints to system logs and 

performance charts. If you can coach the user on what to look for and how to document 

events accurately, you can save yourself a lot of trouble chasing the ghosts created by 

approximation, hearsay, or an overactive imagination. 

Hardware Sizing 

Hardware sizing is never an exact science, particularly when you consider the potential 

these days for database and user population growth. So, when you receive a sizing from 

SAS consider going over it with your SAS representative and confirming whether the sizing 
takes into account your best estimates for storage and usage growth in both the near term 

and the foreseeable future. All customers should have plans in place to manage application 

growth. Make sure you have adequately accounted for memory, CPU, and disk space. 

Usage: Peaks and Lows 

One of the most important factors that affects application performance is a poor 
understanding of how the application will be used (for example, how many people will 

simultaneously use it and for what kind of transactions), and the corresponding application 

architecture and its scaling assumptions that go into its design and deployment. This lack of 
understanding real user transactions and performance manifests itself as bottlenecks in 

performance during the most critical peak usage period. 

Virtualization 

In addition to latency and bandwidth being an issue, there is a good chance that customers 

are running SAS software on virtualized hardware that is shared with other applications. It 
is very challenging in this dynamic environment to understand what will impact your 

application performance, as it requires intimate knowledge of your ever-changing 
application structure at any given moment. For hardware or virtual machines, virtualization 

usually adds an overhead. 



   

 

6 

The modern application is complex, and a single transaction trace can sprawl across many 

layers in a virtualized, cloud world – a perfect storm impacting application performance. 
This growing complexity impacts application performance from the end-user experience all 

the way back through transactions, the application layer, application infrastructure, and IT 
infrastructure. The IT team should be able to run tests to validate that the virtualized 

hardware is not overcommitted and that resources are used optimally. 

Browsers 

Today’s web-based applications tend to push user-interaction work — often accompanied by 

lots of data — to the client workstation. From there, JavaScript code processes hundreds or 
thousands of rows of data, which can cause multi-second pauses before the client displays 

the updates. 

A web browser is the key blind spot for gaining true end-to-end visibility into application 
performance. With new approaches to application design and the increased usage of web 

services, the ability to monitor the processing that takes place within the browser has 

become one of the key requirements for full visibility into application performance.  

Applications perform differently in different browsers. Adequate testing and use cases 

should be validated using different browsers on different operating systems to make sure 

that your application performs optimally on all of the supported browsers.   

INFRASTRUCTURE TESTS 

Now that you have deployed SAS Viya, everything looks OK in your development and test 

environment, system is rolled out to production but you are starting to see problems. Tests 

that once seemed to operate smoothly in the lab are showing degraded performance and 

performing sluggishly. End users are complaining. Your boss is upset. The pressure builds 

for you to finally fix that slow application everyone depends upon. Where do you start?  

Start by performing system-level baseline tests to rule out issues related to network and 

connectivity. Performing system-level baseline tests (outside of SAS Viya) to assess the 

heath of your system infrastructure is key in moving further with the diagnosis and will help 

save a tremendous amount of time. These tests allow us to rule out basic obvious issues 

associated with memory, network connectivity, latency, bandwidth, input/output, and disk 

space requirements. Let us look at some of these tests in greater detail. 

Network Latency and Bandwidth 

Latency and bandwidth are one of the most important pieces for applications that are 

distributed and span multiple layers. Monitoring network bandwidth and web application 
performance from multiple locations helps isolate the problem to the network tier. The 

network on which the application is used impacts performance tremendously, especially for 

mobile and cloud. Inconsistent bandwidth, high jitter, increased latency, and packet loss all 
work to degrade application performance. While you might not be able to control mobile or 

most cloud networks, you can build and test apps with these network conditions in mind. 
This gives organizations the best chance to optimize application performance before the 

network impacts are felt by users. Bandwidth bottlenecks are a big problem as they can 

cause network queues to develop and data to be lost, thus impacting the performance of 

applications. 

tgridperf 

tkgridperf is a network test provided by SAS that can be run on all of your SAS Viya nodes 

to isolate latency issues. The tkgridperf network test only takes a few minutes to run and 
has proven invaluable in several situations. In your SAS Viya deployment, you will find the 
script in the /opt/sas/viya/home/SASFoundation/utilities/bin directory. 



   

 

7 

To run the test, go to your SAS Cloud Analytics Services (CAS) controller node and issue the 

following command:  

export GRIDHOST=<name of controller node>  

export GRIDINSTALLLOC=/opt/sas/viya/home/SASFoundation/utilities  

export GRIDRSHCOMMAND=/usr/bin/ssh  

export TKPATH=/opt/sas/viya/home/SASFoundation/sasexe  

cd /opt/sas/viya/home/SASFoundation/utilities/bin  

./tkgridperf 

 Note: This example assumes that SAS is installed is under /opt/sas 

The tkgridperf network test returns 3 results. Let us look at an example output from one of 

my systems that has one controller and three worker nodes. 

 
bash@system02>./tkgridperf 

Grid initialized with 4 machines 

Time for bcast(100M bytes, 20 times): 6013 ms      

Time for reduce(max, 4 bytes, 10K times): 5220 ms      

Time for allreduce(max, 4 bytes, 10K times): 5156 ms 

 

The bcast test sends 100M of data to all nodes 20 times. This is a test of throughput 
between nodes. This is more a measurement of bandwidth, because it's a big file, few 

times. The reduce test gathers 4 bytes from each node to the controller 10,000 times. This 

is a small amount of data, so this is mostly a latency test. The allreduce test gathers 4 bytes 
to all nodes 10,000 times. Again, this is a latency test. 

 

The reduce and allreduce tests use really tiny data (4bytes), but it's 10,000 times. It tests 
latency, so if the latency is high, the value in milliseconds will be high. Ideally you want the 

value in milliseconds to be as low as possible. 
 

The tkgridperf test will not tell you which node is slow. They will only tell you if the CAS grid 

as a whole is working well together. If you get a bad result and want to narrow down the 
results to find out which node is slow, you could start by lowering the number of worker 
nodes with the -procs option. You can also remove nodes from the machine list and try to 

isolate the slow node (or nodes) that way. 

 
This test can be used as a first shot to identify basic obvious latency, bandwidth, and other 

networking issues. CAS is not used at all in these tests; however, the test uses the same 

communication library that CAS uses. 

qperf 

The Linux command, qperf, is another way to measure network bandwidth and latency 
performance. The qperf command works over TCP/IP, RDMA, and many other transports. It 

connects two nodes, with one node designated as the server (with no arguments) and a 

second node that runs with two arguments. Many options are available.  

Live Performance Monitoring with Tmux and Dstat 

Tmux and Dstat are great open-source performance monitoring tools to understand what is 

happening on your SAS Viya systems. 

For Unix-like operating systems, tmux is a terminal multiplexer. You can access multiple 

sessions simultaneously from a single window or run multiple command-line programs 
simultaneously. Using tmux, you can create a monitoring system that enables you to 

remotely check your server for an overview of what’s going on. 



   

 

8 

Dstat is handy system administration tool for viewing Linux system resources. It generates 

useful system resource statistics in real time. (Dstat replaces multiple Linux tools, including 
vmstat, netstat, ifstat, iostat, and mpstat.) Dstat lets you monitor systems while you are 

troubleshooting, testing performance tuning, or benchmarking. 

Opens Source Tools: Prometheus and Grafana 

If you’re using open-source tools for monitoring and alerts, then Prometheus is another 

toolkit to consider. Grafana is a visualization tool that integrates out-of-the-box with 

Prometheus, as well as many other databases. You can use Grafana to create a monitoring 

dashboard that consists of multiple charts and can easily be shared with your team.   

SAS VIYA COMPONENTRY TESTS 

Now that you have performed all the infrastructure-level baseline tests and are convinced 

that the various components of your infrastructure are performing optimally, you should 

test the SAS Viya components next. 

CAS: gridmon Console Application 

The very first test you want to use is the gridmon console application that helps you see 
what is happening further inside SAS Viya., However, gridmon is available only to a more 

sophisticated super user or administrator.  

 
gridmon.sh is a console or terminal application that can be run from a Linux terminal or a 

terminal emulator like PuTTY. gridmon.sh displays data that is streamed from all of the 
machines on your CAS server. It shows information about jobs, individual machines on the 

server, and the attached disks. The gridmon application shows the status closer to real 

time, and it has some useful additional details, such as the specific percentage of CPU, 
memory, and number of ranks (both active and pending).. gridmon.sh also lets you show 

ranks, kill jobs, or run the gstack application to collect results  
 

gridmon.sh  is a popular tool for anyone wanting to know everything about a SAS Viya 

system. You could use all the menu choices of gridman as a cheat sheet. It even has a 
record/playback feature so that you can make a recording at a customer site and send it to 

SAS Technical Support so that we can analyze it further. 

 
The SAS documentation for gridmon.sh provides a complete list of the available commands. 

The descriptions should give you enough information for cases where you are looking to see 
for examples of which sessions/process are running which actions and using how much 

memory, disk space, and CPU are being used. More difficult problems often require a 

combination of detailed machine, operating system, and CAS knowledge. This is where the 
record/playback feature comes in. Customers can send their recordings, CAS logs, and a 

description of the symptoms to SAS Tech support, so that we at SAS can hopefully provide 
a diagnosis, or at least next steps. 

Microservices Analysis 

SAS Viya is based on a microservices architecture that structures an application as a 
collection of loosely coupled services. In a microservices architecture, the services are fine-

grained and the protocols are lightweight. The benefit of decomposing an application into 

different smaller services is that it improves modularity. This makes the application easier to 

understand, develop, test, and become more resilient to architecture erosion.  

We could use many of the operating system-level commands to identify the microservice 

that is consuming the largest amount of resources. Commands such as ps, top, and htop   

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calserverscas&docsetTarget=n08000viyaservers000000admin.htm&locale=en#n08193viyaservers000000admin


   

 

9 

can be used to find this information. Once you have identified the most CPU-hungry 

process, you can find out which microservice it is.  

Here is an example: 

Use the ps -ef | grep sas command on the SAS Viya services machine. This gives you a 

list of processes and the memory consumption of each of the microservice. If you look 

closely, it also gives you the name of the microservice. The JAR name is in the full command 
line of the Java process. However, it isn’t  always visible when you use the top command. 

Then you can use the JAR name to identify which microservices are consuming which 

resources.  

Boemska Enterprise Session Monitor (ESM) for SASTM 

ESM has been designed and built from the ground up for the purpose of monitoring the SAS 

platform. It monitors individual server-side processes for processor, memory, and disk 

space usage, and lets users contrast the performance of their sessions against the overall 
performance of the server they are executing on – all via an intuitive, user-friendly web-

based interface.  

ESM enables developers to proactively profile and predict the performance of their 

programs, reports, and stored processes prior to releasing them to end-users. The 

functionality offered by ESM can save developers a considerable amount of time and effort 
in diagnosing and solving common problems that are otherwise difficult to pinpoint, 

regarding both the performance of individual jobs and the stability of an environment as a 

whole. 

As well as streaming them in real time, ESM stores the metrics it collects for later 

inspection, letting users and administrators retrospectively analyze the performance of jobs 
that run unattended during the overnight batch window. The profiles of individual jobs are 

searchable by Job Name or Completion Status and presented in an easy to read Gantt-style 
chart, making the root cause of multiple failures easier to spot. Any warnings or errors are 

flagged as they occur, and clicking on a warning or error instantly displays it in the wider 

context of the job log. 

ESM is invaluable for remedying deployments where stability and timely completion of the 

batch are critical. It provides unprecedented visibility of overnight system behavior, 

reducing the time taken to diagnose a failure by an order of magnitude and giving 

administrators the time and information that they need to stop it happening again.   

To get access to ESM contact your SAS account manager, who will be able to put you in 
touch with Boemska. Alternatively, you can contact them directly via their website: 

boemskats.com. 

SAS VISUAL ANALYTICS TESTS 

Now that we have done all the infrastructre-level baseline tests and tested the SAS Viya 

components, we can start looking at the SAS Visual Analytics application layer itself. 

Today’s web-based applications tend to push user-interaction work — often accompanied by 

lots of data — to the client workstation. From there, JavaScript code processes hundreds or 

thousands of rows of data, which can cause multi-second pauses before the client display 

updates. The web application becomes a very important layer and can be the cause of many 

bottlenecks.  

By using a real browser, you can measure the time it takes the browser to completely finish 

rendering the page. This takes into account things like CSS/JavaScript download, JavaScript 

processing, DOM layout rendering, and so on. Yet, with the advancement of technology, 

https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fboemskats.com%2F&data=02%7C01%7CMeera.Venkataramani%40sas.com%7Cd2507c4ae443426fb36408d7b3f2e1b1%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637175728062961252&sdata=C8UAUGNunR8%2FyROkVmUdqlLKLg54BdSe3RRxY%2FP%2BRd4%3D&reserved=0


   

 

10 

HTML5, JavaScript, and CSS improvements, more and more logic and behavior have been 

pushed down to the client. This adds to the overall perceived performance of website or web 

application. 

There are several ways you could go deeper into the SAS Visual Analytics application layer 

itself, such as analyzing the SAS Visual Analytics logs from a SAS Viya system inspecting 

the web page using browsers development tools, or running a network sniffing tool such as 

Wireshark or Fiddler.  

Analyzing the SAS Visual Analytics Logs 

The SAS Visual Analytics logs hold a wealth of information about your application, user 

activity, timings, and behind the scenes queries. The logs can be enabled for debug to get 

more verbose and detail information from the logs. When all other tests turn out clean, and 

you still need to be able to identify the culprit, you can turn to these logs for more 

information.  

My SAS Communities article Debugging SAS Visual Analytics Report Performance Problems 

explains in detail the step-by-step procedure used to debug report-level performance issues 

in SAS Visual Analytics  application. The article also explains how to look at the logs, what 

to look for, and how to identify the culprit that is causing the bottleneck.  

Developer Tools 

All modern browsers and most other environments support debugging tools, a special UI in 
an application that makes debugging much easier. Developer tools  enable you to trace the 

code step-by-step to see what exactly is going on. These are all tools that are built into the 
browser and do not require additional modules or configuration. If you are ambitious and 

curious, these tools can give you a lot of insight into how your SAS Visual Analytics 

application is behaving.  

The Fiddler Web Debugging Tool 

Fiddler is a web debugging proxy tool that logs all of the HTTP(S) traffic between your 

computer and the internet. Fiddler allows you to inspect traffic, set breakpoints, and “fiddle” 

with incoming or outgoing data. Fiddler is freeware and can debug traffic from virtually any 

application that supports a proxy, including Internet Explorer, Google Chrome, Apple Safari, 

Mozilla Firefox, Opera, and thousands more. Fiddler is particularly useful in recording the 

HTTP requests between your browser and the remote HTTP servers.  

Fiddler can also export the recorded HTTP requests in various formats include HAR files. 

It is very easy to download and use and I like the way the UI displays the traffic captures. 

 
You can download Fiddler from here: www.telerik.com/fiddler. Installation is very easy and 

straightforward. Once you’ve installed Fiddler, open it, and in the upper left corner select 
File > Capture Traffic to start capturing HTTP traffic. 
 

  

https://communities.sas.com/t5/SAS-Communities-Library/Debugging-SAS-Visual-Analytics-Report-Performance-Problems/tac-p/474291#M2953
www.telerik.com/fiddler


   

 

11 

SAS TECHNICAL SUPPORT 

SAS Technical Support’s mission is to help our customers make the best use of our software 

products through effective and responsive support, active advocacy, and a broad and 
flexible range of self-help resources. Get world class technical support via our SAS tracking 

system and please visit our wealth of knowledge-based resources at SAS Technical Support.  

 
Also please visit the SAS Support Communities for help if you are stuck on a problem.  

While you're there, get a SAS tip and share what you know. This community of SAS experts 
is there to help you to succeed. 

CONCLUSION 

While each problem is different and brings its own complexity with it, the general guidelines 

I’ve laid out and tests I recommended should help you diagnose or get closer to identifying 
the bottlenecks in your SAS Viya applications. Most often, precious time is lost from when 

the problem starts occurring to when a final diagnosis is made. And, lot of this downtime 

and frustration caused by this time loss can be avoided if the obvious basic issues with 
infrastructure, network, connectivity, latency, and other such issues are ruled out early on 

and we are focusing only on the complex and difficult hard to find issues.  

Lot of times the problems are complex and come masked in as something so hairy and 
weird that we spend endless wasted amount of time chasing the wrong issues, when a 

simple test to check network or connectivity could have given us useful information to begin 

with.   

The forensic process is almost like watching a mystery thriller and requires you to be 

curious and adventurous. It is not for everyone and certainly not for the faint at heart. For 
those who do want to be adventurous and embark on this adventure, you get to be the 

detective here. Either way, remember SAS Technical Support is always there to help you, so 

engage them early in your troubleshooting journey.   

REFERENCES 

Brown, Tony. 2019. “Engineering CAS Performance Hardware Network, and Storage 

Considerations for CAS Servers.” Proceedings of the SAS Global Forum 2019 Conference. 
Cary, NC: SAS Institute Inc. https://www.sas.com/content/dam/SAS/support/en/sas-global-

forum-proceedings/2019/3351-2019.pdf. 

 
Crevar, Margaret. 2020. “Important Performance Considerations When Moving SAS® to a 

Public Cloud.” Proceedings of the SAS Global Forum 2020 Conference. Cary, NC: SAS 

Institute Inc. https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4312-2020.pdf. 

 
Ellington, Bryan. 2020. “SAS® Viya® Monitoring Using Open-Source Tools.” Proceedings of 

the SAS Global Forum 2020 Conference. Cary, NC: SAS Institute Inc. 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4214-2020.pdf.  

 
George, Johann. “qperf(1) – Linux man page. https://linux.die.net/man/1/qperf.  

 

Kuell, Jim. 2020. “Diagnosing the Most Common SAS® Viya® Performance Problems” 
Proceedings of the SAS Global Forum 2020 Conference. Cary, NC: SAS Institute Inc. 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2020/4296-2020.pdf.  
 

https://support.sas.com/en/support-home.html
https://communities.sas.com/
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3351-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3351-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4312-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4312-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4214-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4214-2020.pdf
https://linux.die.net/man/1/qperf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4296-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4296-2020.pdf


   

 

12 

SAS Institute Inc. SAS® Cloud Analytic Services. Cary, NC: SAS Institute Inc. 

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calserverscas
&docsetTarget=n08000viyaservers000000admin.htm&locale=en#n08193viyaservers000000

admin.  
 

SAS Institute Inc. SAS Note 42197. “A list of papers useful for troubleshooting system 

performance problems.” http://support.sas.com/kb/42/197.html. 
 

SAS Institute Inc. SAS Support Communities. https://communities.sas.com/. 
 

Venkataramani, Meera. “Debugging SAS Visual Analytics Report Performance Problems”. 

https://communities.sas.com/t5/SAS-Communities-Library/Debugging-SAS-Visual-
Analytics-Report-Performance-Problems/tac-p/474291#M2953. Last modified September 7, 

2018. 

 
Website of Boemska. https://boemskats.com/products/esm/.  

 
Website of Grafana Labs. https://grafana.com/grafana/. 

 

Website of Prometheus. https://prometheus.io/. 
 

Website of Telerik. https://www.telerik.com/fiddler. 
 

Website of Tmux. https://github.com/tmux/tmux. 
 
Wieers, Dag. “Dstat: Versatile Resource Statistics Tool”. http://dag.wiee.rs/home-made/dstat/. 
Last modified March 28, 2016. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Meera Venkataramani 
SAS Campus Drive 

Cary, NC 27513  
SAS Institute Inc. 

meera.venkataramani@sas.com 

www.sas.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration. Other brand and product names are trademarks of their respective companies.  

https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calserverscas&docsetTarget=n08000viyaservers000000admin.htm&locale=en#n08193viyaservers000000admin
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calserverscas&docsetTarget=n08000viyaservers000000admin.htm&locale=en#n08193viyaservers000000admin
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calserverscas&docsetTarget=n08000viyaservers000000admin.htm&locale=en#n08193viyaservers000000admin
http://support.sas.com/kb/42/197.html
https://communities.sas.com/
https://communities.sas.com/t5/SAS-Communities-Library/Debugging-SAS-Visual-Analytics-Report-Performance-Problems/tac-p/474291#M2953
https://communities.sas.com/t5/SAS-Communities-Library/Debugging-SAS-Visual-Analytics-Report-Performance-Problems/tac-p/474291#M2953
https://boemskats.com/products/esm/
https://grafana.com/grafana/
https://prometheus.io/
https://www.telerik.com/fiddler
https://github.com/tmux/tmux
http://dag.wiee.rs/home-made/dstat/
mailto:meera.venkataramani@sas.com

	Abstract
	INtroduction
	Why is APPLICATION PERFORMANCE Important?
	Troubleshooting a PERFormance Issue Can Be a Nightmare
	SAS Viya Architecture
	IT Infrastructure
	Troubleshooting: A Step-by-Step Process
	General considerations and guidelines
	Designing for High-Performant Systems from the Start
	Identifying the Exact Issue
	Document Problems Correctly and Accurately
	Hardware Sizing
	Usage: Peaks and Lows
	Virtualization
	Browsers

	Infrastructure tests
	Network Latency and Bandwidth
	tgridperf
	qperf

	Live Performance Monitoring with Tmux and Dstat
	Opens Source Tools: Prometheus and Grafana

	SAS VIYA componentRY tests
	CAS: gridmon Console Application
	Microservices Analysis
	Boemska Enterprise Session Monitor (ESM) for SASTM

	SAS visual analytics TESTS
	Analyzing the SAS Visual Analytics Logs
	Developer Tools
	The Fiddler Web Debugging Tool


	SAS TEchnical support
	Conclusion
	REFERENCES
	Contact Information

