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ABSTRACT  
One of the core tools of any statistician is working with linear models, from simple or 
multiple regression models to more complex, generalized linear mixed models. Data 
simulation enables you to be more comfortable with new types of models, by providing data 
to a model that will give known results. This paper introduces you to the random number 
functions in the SAS® DATA step and shows you how to construct programs to simulate data 
for a variety of models. The paper briefly discusses basic areas of data simulation, such as 
linear regression. The paper then shows how to generate data for more complex mixed 
models, including repeated measures models under a variety of within-subject covariance 
structures. Also, the paper covers generalized linear mixed models like logistic and Poisson. 
Finally, nonlinear mixed models are discussed. After reading this paper, you should be able 
to better understand models with difficult parameterizations, especially in the covariance 
structure. 

INTRODUCTION  
Data simulation writes code that can generate a random sample of data for a statistical 
model. Simulation is a powerful tool for helping any statistician to better understand the 
structure of statistical models. By using simulation, you can see how the model pieces fit 
together to predict a response. With data that is simulated, you already know the 
approximate results of a model fit even before the parameter estimation is done. A quick 
look at the model results tells you if you have programmed the simulation correctly. The 
values that you use in the simulation code should match the parameters that you see in the 
SAS procedure output. You can even identify situations where parameters are confounded 
or inseparable. 

Another area where simulation is helpful is in prospective power analysis. Many power 
analyses have closed-form solutions, meaning that the power calculations can be done using 
formulas derived from the statistical model. SAS® Studio includes tasks within the software 
for many of these situations. If the power analysis does not have a closed-form solution, 
then simulation can approximate the power of a statistical test. See Chapter 4 of SAS for 
Mixed Models (Stroup et al. 2018) for an example of this use of simulation. 

This paper briefly introduces the simulation tools that are available in SAS. You will learn 
how to use simulation in more complex models. The paper discusses linear and generalized 
linear models and how to simulate data in terms of both R-side and G-side covariance 
structures. The paper also covers zero-inflated models and nonlinear mixed models. 

RESOURCES FOR SIMULATING DATA IN SAS® 
This paper uses the SAS DATA step for most of the examples. SAS/IML® software can be 
used for simulation as well. Wicklin (2013) is a great resource that discusses how to use 
SAS/IML in simulations. Although DATA step code is easier to interpret, SAS/IML code is 
more efficient in producing simulation results. In addition, some simulation tasks are easier 
to accomplish with SAS/IML. Simulating high-dimensional correlated data is one such task. 
This type of simulation uses matrix operations on the covariance matrix of the desired data. 
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The primary tool for simulation in the DATA step is the RAND function. The RAND function 
simulates data from 29 distributions, including normal, exponential, Poisson, and Gamma. 
The RAND function uses a hybrid Mersenne-Twister algorithm that provides good 
performance and good randomness traits in the streams that it generates. For more details 
about the RAND function and the available algorithms for generating random number 
streams, see the SAS® 9.4 documentation (SAS Institute Inc. 2019a). 

You can use older linear congruential-style random number generators (as used in functions 
like RANUNI, RANNOR, RANEXP, and so on) in simulation programs. However, the random 
streams provided by the RAND function are far superior, so you should use the RAND 
function in place of these older functions.  

SAS does have procedures that simulate random numbers. In SAS/STAT® software, the 
SIMNORMAL procedure generates multivariate random normal variates while the SIM2D 
procedure simulates spatial data in a random Gaussian field for two dimensions. The new 
SIMSYSTEM procedure in SAS® Visual Statistics 8.5 simulates data from distributions in the 
Johnson and Pearson systems. Simulation using PROC SIMSYSTEM is extremely flexible, 
enabling the specification of the distribution moments rather than a named statistical 
distribution. 

GETTING STARTED: A LINEAR MODEL WITH CLASS EFFECTS 
AND COVARIATES  
This section of the paper reviews simulation techniques that later sections of the paper 
demonstrate in more complex ways. This example uses a linear model that involves a class 
effect with three treatment levels, and two covariates, X1 and X2. The functional form of 
the model is as follows: 

Yij = μ + TRTi + 2.5*X1ij + 1.7*X2ij + εij 
 

X1 follows a uniform distribution on the interval [1,3], and X2 follows a normal distribution 
with a mean of 4.3 and a variance of 1.21. The intercept of the model, μ, is 1.5. The 
residual variance, which is the variance of εij, is 2.25. The simulation generates 50 
replications (reps) of 200 observations, or 10,000 total observations. 

Here is the SAS code for this simulation: 

data simulation; 
array trt{3} trt1-trt3 (10 30 20); 
call streaminit(689127); 
do rep=1 to 50; 

do i=1 to 200; 
x1=rand("uniform",1,3); 
x2=rand("normal",4.3,1.1); 
e=rand("normal",0,1.5); 
y=1.5 + trt{rand("integer",1,3)} + 2.5*x1 + 1.7*x2 + e;   
output; 

end;  
end; 

run; 
 

This simulation uses an array structure in the DATA step to store parameter values for the 
treatment effect. The first treatment level (TRT1) sees an adjustment to the intercept of the 
model of 10 units, the second level (TRT2) sees an adjustment of 30 units, and the third 
level (TRT3) sees an adjustment of 20 units. The array provides a compact and efficient way 
to specify the treatment effect for this model.  
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The CALL STREAMINIT routine provides a seed to begin the simulation. The seed value, 
when using the default hybrid Mersenne-Twister algorithm for generating random numbers, 
can be any positive integer value that is less than 4294967295 (2**32-1).  

The RAND function generates the values for the covariates, X1 and X2, as well as for the 
residual error, ε, for each observation. Observations generated from the uniform distribution 
default to the interval [0,1], with the ability to specify different endpoints to that interval as 
parameters in the function call. The normal distribution defaults to the standard normal, 
with a mean of 0 and a standard deviation of 1. With the use of function parameters, the 
function can specify a different mean and standard deviation.  

The RAND function also generates random levels for the treatment by using the INTEGER 
distribution. The INTEGER distribution returns a random integer on the interval, including 
the minimum and maximum values specified as the two arguments on the RAND function 
call. Here, the minimum value is 1 and the maximum value is 3, which generates random 
integers from the set {1,2,3}.  

The most efficient way to generate this simulation and process the results is to generate all 
the observations in a single SAS data set and process the simulation through BY processing 
in the model-fitting SAS procedure that is used. The data can be simulated and processed 
one simulation replication at a time, but that approach can take hours of system CPU time. 
Simulation of all the data at once and taking advantage of BY processing can cut model fit 
time by many orders of magnitude. However, for very large simulations, disk space 
becomes an issue. In some instances, you might need to split the simulation into smaller 
pieces to avoid storage constraints. 

After the simulation runs, it is easy to see whether the data and code have produced the 
correct results. Use the UNIVARIATE procedure to check the distribution of the covariates 
X1 and X2 and the residual error ε. Check the moments of each distribution and use plots of 
the generated data to make sure that these results are generated correctly. The goodness-
of-fit tests for distributional fit from PROC UNIVARIATE are very powerful and can detect 
any small departures from the distribution. You can ignore those tests for most simulation 
work. However, if you choose to use them, interpret them with considerable caution. 

Use the GLM procedure and BY-group processing to generate parameter estimates for each 
sample. You should suppress SAS® Output Delivery System (ODS) tables and graphs during 
this step (Wicklin 2013, p. 97). PROC UNIVARIATE can assess the distribution of the 
estimates of these parameters. 

A simulation like this example can build a bootstrap analysis of the parameters or of 
quantiles for the resulting dependent variable. The remaining simulation examples in this 
paper use a single replication but can be built in a similar fashion. 

RANDOM EFFECT MODELS: SPLIT-PLOT DESIGNS 
Specifying fixed effects in a simulation is simple to do, because the values needed for fixed 
effects are hardcoded into the simulation. More complicated simulations require the use of 
random effects. Specifying levels for G-side random effects is not quite as easy as it is to do 
for those hardcoded fixed effects. 

A split-plot model is a simple example of a model involving both fixed and random effects. 
Example 81.1 in the MIXED procedure chapter of the SAS/STAT 15.1 User’s Guide (SAS 
Institute Inc. 2019b) is a gentle introduction to random effects and the split-plot design. 
The design in that chapter has two experimental factors, A and B. Levels of A are randomly 
assigned at the whole-plot level, and levels of B are assigned to the split-plot levels within 
each whole plot. The design results in a balanced split-plot model, and the whole plots are 
arranged in a randomized complete block structure. 



 

4 

The model for the design in the code below involves those two fixed effects, A and B, as well 
as the random terms BLOCK and A*BLOCK. Stroup (1989) provides data for this design. 
You can simulate data for this balanced design in a DATA step, as shown here: 

data SplitPlot; 
array AEffect{3} A1-A3 (10 15 10); 
array BEffect{2} B1-B2 (5 10); 
array AxBEffect{6} AB1-AB6 (2 4 2 1 1 0); 
call streaminit(78124523); 
do block = 1 to 100; 

RandBlock = rand('normal',0,7.9); 
do A = 1 to 3; 

RandAxBlock = rand('normal',0,3.923); 
do B = 1 to 2; 

e = rand('normal',0,3.06); 
y = 10 + AEffect{A} + BEffect{B} + AxBEffect{(A-1)*2 + B} + 
RandBlock + RandAxBlock + E; 
output; 

end; 
end; 

end; 
run; 
 

You can vary the number of blocks to fit the simulation needs. A large number of blocks 
allows for verification of the simulation results. The BLOCK and A*BLOCK variances should 
be close to the values that are specified in the simulation (accounting for sampling 
variation). The parameter estimates or least square means (LS-means) for the fixed effects 
should be very close to the simulated values. 

You can construct the LS-means for the A*B interaction from the model parameters in the 
simulation. Table 1 presents those calculations. 

 

Effect LS-means Calculations LS-means Simulations 

A1B1 10 + 10 + 5 + 2 27 
A1B2 10 + 10 + 10 + 4 34 
A2B1 10 + 15 + 5 + 2 32 
A2B2 10 + 15 + 10 + 1 36 
A3B1 10 + 10 + 5 + 1 26 
A3B2 10 + 10 + 10 + 0 30 

Table 1. LS-means Calculations for the Split Plot in a Randomized Complete Block Design 

 

You can create output from the LSMEANS statement with the following code (see Output 1): 

proc mixed data=SplitPlot; 
class a b block; 
model y = a b a*b / s; 
random block a*block; 
lsmeans a*b; 

run; 
 

As you can see in the output, the simulated values agree very well with the fitted LS-means, 
indicating that the fixed-effects portion of this simulation is programmed correctly. 
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Output 1. Results from the LSMEANS Statement 

 

A slightly more complicated example of a split-plot design is presented in SAS for Mixed 
Models (Stroup et al. 2018). This example involves a semiconductor study. Several modes 
of a process condition (ET) are studied for their effect on resistance in computer chips. A 
random set of wafers is chosen, and three wafers are assigned to each of four modes of ET. 
Resistances are measured on each of four positions (POS) on each wafer after processing. 

In the following code, ET and POS are considered fixed effects. WAFER is a random effect. 
Either PROC MIXED or the GLIMMIX procedure can fit the appropriate model for this 
experiment: 

proc glimmix data=ResistanceStudy; 
class ET Wafer Pos; 
model Resistance = ET Pos ET*Pos; 
random int / subject=Wafer(ET); 

run; 
 

There are several good approaches for simulating data for this model. The following 
example uses the SAS DATA step and breaks the overall task of this simulation down into 
manageable pieces of code. The first step is to generate the realizations of the random 
effect of WAFER by using the RAND function. Random effects in a mixed model are assumed 
to follow a normal distribution with a mean of 0. This example applies a variance of 2.25 to 
the WAFER-level residuals. The RANDSORT variable holds a random uniform value that will 
be used to assign wafers to the modes of ET: 

data Wafers; 
call streaminit(789510345); 
do Wafer=1 to 12; 

RandSort=rand('uniform'); 
WaferEffect=rand('normal',0,1.5); 
output; 

end; 
run; 
 
proc sort data=Wafers; 

by RandSort; 
run; 
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Because the realizations of the random levels of WaferEffect are already random, this 
sorting step is not necessary. But it is included here to show one of the ways that wafers 
could be randomly assigned to levels of the process condition ET. 

Data for the rest of the design is generated by hardcoding levels for the fixed effects using 
arrays. Modes 1–4 of ET are assigned to the randomly sorted WAFER values. Each of the 
four POS levels is generated for each wafer, random error is generated for each observation 
(from a normal distribution with a mean of 0 and a variance of 0.49), and the linear 
predictor is built from the form of the model as specified in the PROC GLIMMIX model 
above:  

data ResistanceStudy(keep=Wafer ET Pos Resistance); 
array ETEffect{4} ET1-ET4 (10 12 8 12); 
array PosEffect{4} Pos1-Pos4 (2.5 2 1.5 2); 
set Wafers; 
call streaminit(153478); 
ET=ceil(4*_n_/12); 
do Pos=1 to 4; 

e = rand('normal',0,.7); 
Resistance=3 + ETEffect{ET} + PosEffect{Pos} + 
ETEffect{ET}*PosEffect{Pos} + WaferEffect + e; 
output; 

end; 
run; 
 

Note the use of the KEEP= data set option in the DATA statement. It is essential, especially 
in large simulations, to keep only the variables that are needed in the simulation. The fixed-
effects parameters for ET1–ET4, POS1–POS4, and the value of the residual ε—while 
important in simulating the response for this model—can all be dropped from the data set 
after the data is ready to be used in a simulation study. For the savvy DATA step 
programmer, temporary array elements can be used for the parameters on ET and POS. 
These temporary elements do not appear in the output data set for the simulation (Wicklin 
2013).  

An important aside here is that while the parameter estimates of POS1–POS4 and the 
residual variance can be estimated well from this simulation, the parameters of ET1–ET4 are 
more difficult to replicate. There are only 12 realizations of the random effect of WAFER, 
with three each assigned to each level of ET. One of the assumptions of this random effect 
model is that these realizations for WAFER will follow a normal distribution with a mean of 0 
for each level of ET. With only three realizations of this normal distribution for each ET, it is 
likely that the mean of those realizations will not be 0, which can interfere in duplicating the 
expected parameter estimates for ET.  

REPEATED MEASURES MODELS AND R-SIDE COVARIANCE 
STRUCTURES 
Simulating data for repeated measures models requires more complexity in the simulation 
code. R-side covariance structures need to specify the covariance matrix for the repeated 
effect. You can specify the covariance matrix either by using the DATA step and PROC 
SIMNORMAL or by using the IML procedure; the latter method is more straightforward.  

Here is the specification in PROC IML for one of the simpler structures, compound 
symmetry, for a three-level repeated measure effect: 

proc iml; 
cov={4 2 2, 

(code continued) 



 

7 

 
2 4 2, 
2 2 4}; 

mean={0 0 0}; 
n=2000; 
call randseed(61345); 
z=RandNormal(n,mean,Cov); 

  
create CSErrors from z; 
append from z; 

quit; 
 

The compound symmetry structure has the variances of the three repeated levels along the 
diagonal and the common covariance between the levels in the off-diagonal elements. 
Repeated measures models assume that the mean of the residual errors is 0. The 
RANDSEED function is used to specify a seed value, so that these results can be replicated. 
The RANDNORMAL function takes the number of simulation replications, the mean vector, 
and covariance matrix as arguments and produces N realizations of the random errors. If 
these realizations should be generated to a SAS data set, use the CREATE and APPEND 
statements to move the data from a SAS/IML matrix. To check that the errors are simulated 
correctly in SAS/IML software, use the MEAN and COV functions: 

SampleMean=mean(z); 
SampleCov=cov(z); 
print SampleMean, SampleCov; 
 

Alternatively, you can use PROC SIMNORMAL to generate repeated measures error 
structures in SAS. The specification of the covariance matrix and mean vector is done by 
using a special SAS data set structure. The _TYPE_ variable indicates the role of each 
observation in this data set. The _NAME_ variable indicates the order of the rows of the 
covariance matrix. To check that the simulation produced the correct error structure, use 
the CORR procedure with the COV option. 

Here is an example that uses a 3x3 unstructured covariance matrix: 
data UNCov; 

input  _type_  $ _name_ $ x1 x2 x3; 
datalines; 

COV X1 4 2 3 
COV X2 2 2 1 
COV X3 3 1 5 
MEAN .  0 0 0  
; 
run; 
 
proc simnormal data=UNCov(type=cov) out=simdata numr=2000 seed=6512345; 

var x1 x2 x3; 
run; 

 
proc corr data=simdata cov; 

var x1 x2 x3; 
run; 
 

Now that you know how to simulate correlated errors for a repeated measures model, here 
is a full example. Suppose that you have a treatment effect with three levels. A pool of 200 
subjects is randomly assigned to the treatment levels. Also, assume that the covariance 
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structure for the R-side errors is unstructured. The R-side errors are generated by using 
PROC IML: 

proc iml; 
cov={4 2 3, 

2 2 1, 
3 1 5}; 

mean={0 0 0}; 
n=200; 
call randseed(61345); 
z=RandNormal(n,mean,Cov); 
create UNErrors from z; 
append from z; 

quit; 
 

You can add in the treatment effect by using a SAS DATA step and then run the associated 
mixed model: 

data test; 
retain id 0; 
array e{3} col1-col3; 
array TRTEffect{3} trt1-trt3 (10 15 12); 
set UNErrors; 
call streaminit(561469); 
id+1; 
trt=rand("integer",1,3); 
do i= 1 to 3; 

y=5 + TRTEffect{trt} + e{i}; 
output; 

end; 
keep id trt y; 

run; 
 

/* run the model */ 
proc mixed data=test; 

class id trt; 
model y= trt/ s ddfm=kr; 
repeated / type=un subject=id r; 
lsmeans trt; 

run; 
 

The PROC MIXED output shows that the simulation produced the results desired. Output 2 
shows the estimated covariance matrix for the R-side errors, and Output 3 shows the LS-
means for the treatment levels. 

 

 
Output 2. Estimated Covariance Matrix 
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Output 3. LS-means for Treatment Levels 

 

If the R-side covariance structure is AR(1), then those errors can be generated by PROC 
IML. The AR(1) structure requires a residual variance and a correlation parameter. The 
covariances are generated using a power structure based on the residual variance, 
correlation, and number of time points (five, in this example): 
proc iml worksize=100; 

resid=2; 
rho=.8; 
m=5; 
cov=j(m,m,1); 
do i=1 to m; 

do j=1 to m; 
cov[i,j]=resid*rho**abs(i-j); 

end; 
end; 
mean={0 0 0 0 0}; 
n=200; 
call randseed(61345); 
z=RandNormal(n,mean,Cov); 
create AR1Errors from z; 
append from z; 

quit; 
 
You can add the treatment effect and estimate the mixed model by using the approach that 
was in the previous SAS DATA step example: 

data test; 
retain id 0; 
array e{5} col1-col5; 
array TRTEffect{3} trt1-trt3 (10 15 12); 
set AR1Errors; 
call streaminit(561469); 
id+1; 
trt=rand("integer",1,3); 
do i= 1 to 5; 

y=5 + TRTEffect{trt} + e{i}; 
output; 

end; 
keep id trt y; 

run; 
(code continued) 
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proc mixed data=test; 
class id trt; 
model y= trt/ s ddfm=kr; 
repeated / type=ar(1) subject=id r; 
lsmeans trt; 

run; 
 

Output 4 shows the estimated covariance matrix for the R-side errors for this AR(1) 
structure. It is easy to see the decay in the covariance over the five levels of the repeated 
effect. Output 5 shows the estimated covariance parameters for this model, matching the 
simulated parameters from the PROC IML code. 
 

 
Output 4. Estimated Covariance Matrix for R-side Errors 

 

 
Output 5. Estimated Covariance Parameters 

 

HIERARCHICAL LINEAR MODELS: ADDING LAYERS OF 
CORRELATION 
Hierarchical linear models, or HLMs, are very popular in the social sciences. These models 
have layers of correlated errors. An easy-to-understand example of an HLM comes from 
education-related data. When you collect test scores for students, you can expect that 
students with the same teachers have correlated scores, at least more so than students who 
had different teachers. Additional correlation could be expected at the school level, district 
level, and perhaps even state level. This correlation structure can be accommodated 
through a series of RANDOM statements in PROC MIXED. One RANDOM statement is used 
for each level in the hierarchy: 

random int / subject=state; 
random int / subject=district(state); 
random int / subject=school(district state); 
random int / subject=teacher(school district state); 
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The first RANDOM statement correlates all the students’ scores from the same state. The 
second RANDOM statement further correlates the students’ scores from the same district. 
The additional RANDOM statements add the layers of correlation from scores from the same 
school and teacher.  

Fortunately, simulating data for this type of model is easy to do in the SAS DATA step. A 
series of DO loops quickly and efficiently produces the data that you need. For example, a 
three-level hierarchical structure has 10 reps for the outermost layer, four reps for each of 
those 10 reps for the middle layer, and two reps for each of the four middle reps for the 
innermost layer. In terms of the education model, this structure could represent 10 school 
districts, with four schools in each, and two students within each school. The students are 
measured over five time periods. Also, a covariate is measured at each level of the 
hierarchy.  

The fixed-effect structure of the model is an intercept and a slope on the time effect. The 
hierarchical structure of the model adjusts these intercepts and slopes for each level of the 
hierarchy, adding a random adjustment to each intercept and slope for each hierarchical 
level. The code below generates data for this simulation: 

data hlm3; 
nlevel3=10; 
nlevel2=4; 
nlevel1=2; 
call streaminit(92821); 
do level3=1 to nlevel3; 

r_slp3=rand("normal",0,2);    /* variance of slopes 4 */ 
r_int3=rand("normal",0,1.5);  /* variance of intercepts 2.25 */ 
x3=rand("uniform",0,10); 
do level2=1 to nlevel2; 

r_slp2=rand("normal",0,1);  /* variance of slopes 1 */ 
r_int2=rand("normal",0,2);  /* variance of intercepts 4 */ 
x2=rand("uniform",5,10); 
do level1=1 to nlevel1;   

r_slp1=rand("normal",0,1.2); 
r_int1=rand("normal",0,.7); 
x1=rand("uniform",-5,5); 
do time=1 to 5; 

xe=rand("uniform",0,2); 
e=rand("normal",0,.5); 
y=(5 + r_int1 + r_int2 + r_int3) + (2 + r_slp1 + r_slp2 
+ r_slp3)*time + (xe + x1 + x2 + x3) + e; 
output; 

end;  
end;  

end;  
end;  
keep level3 level2 level1 time x1 x2 x3 xe y 

run;  
 
proc mixed data=hlm3 namelen=32; 

class level3 level2 level1; 
model y=time x1 x2 x3 xe / s ddfm=kr; 
random int time / subject=level3; 
random int time / subject=level2(level3); 
random int time / subject=level1(level2 level3); 

run; 
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For each LEVEL3 value, an adjustment to the slope on time and intercept is generated. The 
process repeats for each of the LEVEL2 and LEVEL1 values. Notice that the realization for 
the adjustment to the slope and intercept for each value of LEVEL3 is the same for all 
observations that share that LEVEL3 value. That structure is key to simulating this data 
correctly. 

The line that creates the response variable shows how the adjustments to the slope on time 
and intercept for the model come together. The DDFM=KR model option gives the best 
degrees of freedom (DF) calculation for this model type. However, this calculation is useful 
only for small data sets. Larger simulations need to use the DDFM=BW or DDFM=CONTAIN 
model options to facilitate a quicker run time when estimating the model. 

The PROC MIXED output (see Output 6, Output 7, and Output 8) shows that the parameter 
estimates for the fixed and random effects are close to the simulated values. These 
complicated covariance structures require large sample sizes in order to accurately match 
the simulated values with a good degree of precision. Another takeaway from the output is 
to watch the change in the DF for the fixed-effect tests. There is much more precision 
available for results measured at the residual level than those results measured at LEVEL3 
(the X3 covariate, for example). Also notice that the residual and LEVEL1 covariance 
estimates more closely match their simulated values. 

  
Output 6. Fixed-Effect Parameter Estimates for the HLM 
 

 

Output 7. Covariance Parameter Estimates for the HLM 
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Output 8. Tests of Fixed-Effect Covariates 

 

A LOGISTIC REGRESSION MODEL WITH A RANDOM EFFECT 
Simulating data for a generalized linear model adds an extra layer of complexity. A linear 
predictor is simulated, like what is done for a linear regression model. The LINK= function is 
applied to this linear predictor, transforming the linear predictor to the scaled response for 
the generalized linear model. 

A logistic regression model shows how this works. Suppose that you want to use PROC 
GLIMMIX to estimate the model, as shown here: 

proc glimmix data=test; 
class trt grp; 
model y=trt x1 x2 / link=logit dist=binomial s; 
random int / subject=grp; 
lsmeans trt / at x1=0 at x2=0; 
nloptions tech=nrridg; 

run;  
 

Assume that X1 and X2 are uniform covariates. Also, the treatment effect has three levels, 
and there are 200 levels in the random GRP model effect. There are 20 observations for 
each GRP level. 

The code for this simulation is as follows: 
data test; 

call streaminit(25345278); 
do grp=1 to 200; 

rgrp=rand('normal',0,.7); 
do i=1 to 20; 

x1=rand('uniform'); 
x2=rand('uniform'); 
trt=rand('integer',1,3); 
logit=-2 + 2*x1 + x2 + (trt-2) + rgrp; 
p=exp(-logit)/(1+exp(-logit)); 
if rand('uniform')>p then y=1; else y=0; 
output; 

end; 
end; 
keep trt grp x1 x2 y; 

run; 
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The simulation uses a variance of 0.49 for the random GRP effect. Slopes of 2 and 1 are 
used for the two uniform covariates, X1 and X2. The treatment effect is simulated randomly 
as an integer between 1 and 3, resulting in an unbalanced design. With a generalized linear 
model, even more simulation replications are needed to validate that the simulation is 
working correctly. The 200 levels for the GRP effect should enable validation of the results. 

Rather than use an array to enter the simulated values for the treatment effect levels, use 
an algebraic calculation to provide the simulated values. Here, the overall intercept is -2, 
and the intercept is adjusted for each treatment level with the calculation (trt – 2). With 
the GLM parameterization of the treatment effect (setting the intercept to the last treatment 
level and comparing all other levels to the last level), the expected simulated parameter 
estimates for the treatment levels are given in Table 2. 

 

Treatment Effect Level Parameter Estimate 
Calculation (LS-means) 

Parameter Estimate 

1 -2 + (1 – 2) = -3 -3 – (-1) = -2 
2 -2 + (2 – 2) = -2 -2 – (-1) = -1 
3 -2 + (3 – 2) = -1 -1 – (-1) = 0 

Table 2. LS-means and Parameter Estimates for the Logistic Regression Model 
 

Output 9, Output 10, and Output 11 show that the simulation is working. The estimated 
results from PROC GLIMMIX are close to the simulated values. If a greater degree of 
validation is required, then increase both the sample sizes for the GRP effect and the 
number of observations within each GRP level. 
 

 

Output 9. Estimated Covariance for the GRP Effect 

 

 
Output 10. Estimated Fixed-Effect Parameters 
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Output 11. LS-means for Treatment Levels  

 

A LOGISTIC REGRESSION MODEL WITH TWO RANDOM EFFECTS 
The complexity of the simulation code increases when you add a second random effect to 
the model. Suppose that the model now has two random effects, A and B, with 30 and 20 
levels, respectively. Nested DO loops cannot be used to generate the levels for these 
effects. The random realizations, or the draw from the associated normal distribution, need 
to be done outside of the overall loop used for the simulation. If nested DO loops are used, 
and the loop for B is nested in the loop for A, then a different realization for the levels of B 
would be generated for each level of A. Those realizations correspond to generating a 
random effect of B nested in A, not for a main effect of B.  

Arrays specify the variables to hold the random draw from the normal distributions. In the 
code below, the variance of the A effects is 4 and the variance for B is 0.49. When those 
realizations are created, they are used in the main loop of the simulation as part of the 
calculation for the linear predictor for the logistic regression model: 

data test; 
call streaminit(25345278); 
array AEffect{30} AEffect1-AEffect30; 
array BEffect{20} BEffect1-BEffect20; 
do a=1 to 30; 

AEffect{a}=rand('normal',0,2); 
end; 
do b=1 to 20; 

BEffect{b}=rand('normal',0,.7); 
end; 
do i=1 to 25000; 

x1=rand('uniform'); 
x2=rand('uniform'); 
trt=rand('integer',1,3)); 
a=rand('integer',1,30); 
b=rand('integer',1,20);  
logit=-2 + 2*x1 + x2 + (trt-2) + AEffect{a} + BEffect{b}; 
p=exp(-logit)/(1+exp(-logit)); 
if rand('uniform')>p then y=1; else y=0; 
output; 

end; 
keep trt a b x1 x2 y; 

run; 
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proc glimmix data=test; 
class a b trt; 
model y=trt x1 x2 / link=logit dist=binomial s; 
random int / subject=a; 
random int / subject=b; 
nloptions tech=nrridg; 

run; 

ZERO-INFLATED POISSON MODELS 
Zero-inflated Poisson models are popular in the field of medicine. They arise from data 
where the response follows a Poisson distribution, with an excess of zeroes in the data. 
Further, the process that gives rise to these extra zeroes is deemed to be independent of 
the Poisson process that defines the rest of the data. 

For example, a response variable Y follows a Poisson distribution with a mean parameter 
that depends on two covariates, X1 and X2. There are extra zero values in the response 
that researchers view as a valid issue with the data. That spike is also assumed to be a 
function of the two covariates. 

Data for this model can be created with the following simulation. The covariates X1 and X2 
are generated from the standard normal and uniform distributions. The mean of the Poisson 
is generated from the two covariates. The probability of the response coming from the zero 
spike is generated from a logit transform, and that probability depends only on the second 
covariate: 

data zip;  
call streaminit(576134); 
do i=1 to 10000; 

x1=rand("normal"); 
x2=rand("uniform",1,3); 
mu=exp(2 + .3*x1 - .2*x2); 
y=rand("poisson",mu); 
pzero=cdf('logistic',1+x2*2); 
if rand("uniform")<pzero then y=0; 
output; 

end; 
run;  
 
proc genmod data=zip; 

model y=x1 x2 / dist=zip; 
zeromodel x1 x2; 

run; 
 

The GENMOD procedure is used to estimate the model. (The COUNTREG procedure in 
SAS/ETS® software also estimates zero-inflated models.) Output 12 and Output 13 show 
that the estimated parameter values closely match the simulated values. Note that the 
estimate for X1 in the zero-inflated piece of the model is close to zero. That result is 
expected, because the zero-inflated probability in the simulation did not depend on X1. 
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Output 12. Estimated Parameters for the Poisson Model 

 

 
Output 13. Estimated Zero-Inflated Parameters 

 

A NONLINEAR MODEL: A WEIBULL DISTRIBUTION WITH 
CENSORING 
The NLMIXED procedure is a very flexible procedure for fitting nonlinear models that involve 
random effects. The procedure can also work with any custom log likelihood that can be 
programmed using SAS DATA step code.  

The Weibull distribution is often used to model survival data. One common aspect of 
survival data is censoring. Suppose that you have a survival time, days, that follows a 
Weibull distribution. The shape parameter is a constant, but the scale parameter is a 
function of a covariate X and the random GROUP effect.  

Each level of the random GROUP effect has a realization from a standard normal distribution 
associated with it (U, in the following code). The scale parameter, BETA, is a function of the 
covariate X and the random effect realization U. 

This model is complicated and requires a lot of replications in the data to get results in the 
simulation that match the simulated parameters. You should use 5,000 groups with 50 
observations for each group to ensure that the simulation results are close to the estimated 
parameters. 

Nonlinear models estimated with PROC NLMIXED are very sensitive to a good choice of 
starting values. The starting values chosen here are very close to the actual values to 
improve convergence. The censoring time is generated from a uniform distribution, and if 
the censoring time is less than the generated survival time, then that observation is 
considered censored.  
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There are several distributions built in to PROC NLMIXED, but Weibull is not one of them. 
The log likelihood for this Weibull distribution is programmed in two pieces: one for 
observations that are censored and one for observations that are not censored. The 
following code generates the data and estimates the model: 

data test; 
call streaminit(7235765); 
do group=1 to 5000; 

u=rand('normal'); 
do rep=1 to 50; 

x=rand('normal');   
beta=100 + x + u; 
sig=2; 
days=rand('weibull',sig,beta); 
cens=0; 
days_t=rand('uniform',100,200); 
if days_t<days then do; 

cens=1; 
days=days_t; 

end; 
output; 

end; 
end; 
keep group x days cens; 

run; 
 
proc nlmixed data=test gconv=0 fconv=0; 

parms int=110 b1=2 sig=1 logsig=0; 
beta=int + b1*x + u;  
ll=-(days/beta)**sig; 
if cens=0 then ll=ll + log(sig) - sig*log(beta) + (sig-1)*log(days);  
model days ~ general(ll); 
random u ~ normal(0,exp(2*logsig)) subject=group; 
estimate 'sig2' exp(2*logsig); 

run; 
 

The GCONV= and FCONV= options force PROC NLMIXED to find the best solution available. 
Output 14 shows the estimated parameters for this model. 

 

 
Output 14. Estimated Parameters for the Weibull Survival Model 
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CONCLUSION 
This paper has shown the power of both the SAS DATA step and SAS/IML software for 
simulating data for complex models. Although DATA step code can be easier to understand, 
SAS/IML code is more efficient and saves time when you create data sets for large 
simulations. Simulation data sets can get very big, especially when they store multiple 
replications for a Monte Carlo study. To manage memory issues with large simulations, 
remove unnecessary temporary variables by using the KEEP statement or the KEEP= data 
set option. Many of the complex linear models discussed here require large sample sizes to 
show that the simulation code is generating the data required for the associated model. 
Adjust the sample size until you are confident that the simulation is programmed correctly.  
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