

1

Paper SAS4347-2020

SAS® Intelligent Decisioning: An Approach to High Availability

for Real-Time Integration

Michael Goddard, SAS Institute Inc.

ABSTRACT

Are you thinking about real-time analytics—integrating your analytics with your business

applications? Do you understand the deployment patterns for SAS® Micro Analytic Service?

Do you understand high availability with SAS® Viya®?

This paper outlines two approaches to implementing high availability for SAS Viya, which is

used for real-time analytics using SAS® Intelligent Decisioning. In order to implement high

availability, you need to understand the deployment patterns and you need to understand

that SAS Intelligent Decisioning can be used for batch and real-time processing.

Learn about the architecture considerations, deployment patterns, and an approach to high

availability using a shared-nothing deployment architecture pattern.

INTRODUCTION

Architecting for real-time transactional systems is different from architecting for discovery

analytics platforms. Once the analytics has been embedded into an operational system or

business process, the stakes are raised! You need to be concerned with the business (calling

application) service level agreements (SLAs), business continuity, high availability, and

system performance.

The following aspects are important to consider when architecting the SAS platform:

• The availability and redundancy requirements. It is important to understand the end-

to-end requirements.

• The integration pattern that will be used. For example, is integration via a service

bus, message broker, or direct REST calls?

• System response time and latency become very important when integrating with on-

line systems. The integration with the analytics platform should not make the calling

application run slow.

• Are all the inputs for running the model or decision flow passed on the call or does

the model need to reference other external data (reference data)?

• Does the model or decision flow execution need to write out data?

• What are the supporting batch run-time requirements versus the real-time run-time

requirements?

• What are the Software Development Lifecycle (SDLC) environment requirements?

In addition to the above, there are also good practices for the model development that are

beyond the scope of this paper, but it is sufficient to say that good model design is an

essential aspect to achieving good system performance. For the purposes of this discussion

2

I use the term “model” to refer to an analytical model, decision flow, SAS® Event Stream

Processing project or program that is being deployed to SAS® Micro Analytic Service.

SAS MICRO ANALYTIC SERVICE OVERVIEW

SAS Micro Analytic Service is available on both SAS® 9.4 and SAS® Viya®. This paper will

only focus on SAS® Viya® 3.5 implementation.

SAS Micro Analytic Service is a memory-resident, high-performance program execution

service that is included in selected SAS solutions. SAS Intelligent Decisioning, SAS Event

Stream Processing and SAS® Model Manager include SAS Micro Analytic Service. Table 1

provides a high-level comparison, as of January 2020.

Function / Component

SAS

Intelligent

Decisioning

SAS

Model

Manager

SAS Event

Stream

Processing

SAS®

Environment

Manager

Provides SAS Micro Analytic

Service

Yes Yes SAS Micro

Analytic

Service core

only

-

Create decision flows Yes - - -

Create SAS Event Stream

Processing projects

- - Yes -

Manage models - Yes - -

Publish to SAS Micro

Analytic Service

Yes Yes - -

Create publishing

destinations

- - - Yes

Note:

SAS Event Stream Processing contains only the SAS Micro Analytic Service core

engine, not the SAS Micro Analytic Service REST microservice.

Table 1. Functional Comparison

SAS Micro Analytic Service provides the capability to publish (or expose) SAS analytics,

business rules, and user-written modules into operational environments. SAS Micro Analytic

Service provides hosting for DS2 and Python programs and supports a “compile-once,

execute-many-times” usage pattern.

SAS Micro Analytic Service has a layered architecture consisting of the SAS Micro Analytic

Service core engine, a Java layer, and the REST layer (interface). See SAS® Micro Analytic

Service 5.4: Programming and Administration Guide for more information.

When deployed as part of SAS Intelligent Decisioning, SAS Micro Analytic Service is called

as a web application with a REST interface by both SAS Intelligent Decisioning and by other

client applications. The REST interface (known as the SAS Micro Analytic Score service)

provides easy integration with client applications and adds persistence and clustering for

scalability and high availability.

https://go.documentation.sas.com/?docsetId=masag&docsetTarget=p0gwwa5e42y6wqn1t1nzwdpv0297.htm&docsetVersion=5.4&locale=en
https://go.documentation.sas.com/?docsetId=masag&docsetTarget=p0gwwa5e42y6wqn1t1nzwdpv0297.htm&docsetVersion=5.4&locale=en

3

PLANNING FOR AVAILABILITY AND RELATED TERMINOLOGY

Before getting into the detail of what a high-availability configuration might mean for a SAS

Viya platform, let’s first look at some definitions:

• Availability is a measure of a systems readiness for usage.

• Fail-tolerance is the ability of a system to continue to work in the event of the

failure of some of its components. It does not imply continuous operations.

• Continuous operations means that the system is available at all times. It requires

components to be fully redundant.

 “High availability (HA) does NOT mean continuous (non-stop) operations”

Now that we have some baseline definitions, we need to consider the availability and

recovery requirements. The two key requirements here are the Recovery Time Objective

(RTO) and Recovery Point Objective (RPO). They are what we call “architecturally

significant” as they will drive the deployment approach (architecture) that is taken.

When the real-time analytics is being integrated with your organization’s core system(s),

the SAS platform will (or should) inherit the availability and recovery requirements of the

core system, the calling application. The system as a whole is only as good as its weakest

link. This may mean that the availability requirement for SAS could be 4 nines (99.99%), or

higher!

As an example, Table 2 illustrates the acceptable unscheduled outage for the different levels

of availability. You can see how demanding the requirement quickly becomes.

Availability Unscheduled Outage per Year

99% 3.6 days

99.9% 8.7 hours

99.99% 52.3 minutes

99.999% 5.2 minutes

Note, the availability calculation shown is based on 4 hours of scheduled maintenance
per month.

Table 2. Availability Calculation

Remember, availability is a measure of a system’s readiness for usage. The availability

calculation excludes the scheduled maintenance (outage) time.

But what does this mean for the SAS platform?

Most real-time analytics platforms also have an associated batch or scoring process to

support the real-time decisioning. Therefore, a key question to ask is—does the availability

requirement apply to both the batch and real-time processing?

“Does the availability requirement apply to both the batch and real-time processing?”

4

For both the batch and real-time processing, the RTO and RPO are key requirements. We

need to consider this and not just focus on the real-time platform in isolation.

For SAS Intelligent Decisioning, batch and interactive processing uses the SAS Cloud

Analytic Services (CAS) server, while real-time processing is supported by SAS Micro

Analytic Service.

This is depicted in Figure 1 below.

Batch and interactive processing

CAS

SAS Micro Analytic

Service

SAS Micro Analytic

Service

CAS

Real-time processing

S
e

rv
e

r
c
a
p

a
c
it
y

Figure 1. Batch, Interactive, and Real-Time Processing

In this generic illustration, I use the term “batch processing” to refer to pre-processing of

data to support the decisioning, the running of models in batch, and batch scoring.

Interactive processing is referring to using the visual interfaces.

Figure 1 illustrates that typically SAS Micro Analytic Service is not used for batch

processing, though it would be possible to call the SAS Micro Analytic Service REST API from

a batch program.

On the right, the CAS server has a question mark as it is possible to call CAS using the SAS

Viya REST APIs. However, from a SAS Intelligent Decisioning perspective, SAS Micro

Analytic Service supports the real-time (REST) integration.

You need to understand these usage patterns when considering system sizing and the

requirements for availability. Typically, the batch, interactive, and real-time processing may

have different service level (availability) requirements.

Finally, the last bit of terminology that we need to discuss is “design” versus “production”

environments. Typically, the development of decision flows and models occurs in a design

environment. This may also be the analytics “discovery” environment that your analysts and

data scientists use.

A key part of the planning is to determine if the design processing (activities) will be

undertaken in the production environment or whether strict SDLC processes need to be

followed, with separate platforms for development, test, and production. To implement real-

time integration, a good practice is to have separate environments.

In the next sections we will focus on designing for availability of the SAS platform for the

real-time analytics, supporting the real-time integration.

5

APPROACH 1: SAS VIYA HIGH-AVAILABILITY CONFIGURATION

There is an old saying in computing, that the last “9” of availability that you implement will

be the most expensive IT spend. This is where the cost of an HA deployment is weighed

against the business impact and costs.

Once you have established your availability requirements for the platform (batch,

interactive, and/or real-time) you can start planning your deployment.

If your availability requirements aren’t particularly high, they may be met by providing a

level of redundancy within the platform. For example, for CAS this can be achieved using an

MPP CAS server deployment with a secondary CAS controller and multiple workers. For SAS

Micro Analytic Service, this would entail installing the MicroAnalyticService host group on

multiple servers.

However, if high availability is required, we need to understand the SAS Viya software

components and their dependencies. As SAS Micro Analytic Service has several

dependencies on the wider SAS Viya platform, you can’t just deploy the

MicroAnalyticService host group as a standalone entity. You require a full SAS Viya platform

deployment. Therefore, a SAS Micro Analytic Service HA deployment also needs a SAS Viya

platform HA deployment.

In order to service the REST API calls, SAS Micro Analytic Service has dependencies on a

number of core platform services, including: SAS® Configuration Server (Consul), SAS®

Infrastructure Data Server (PostgreSQL), and SAS® Message Broker (RabbitMQ).

To provide HA for these core components, a minimum of three servers is required.

Therefore, the absolute minimum HA configuration would be using three servers. However,

additional servers may be required, depending on your requirements. For example,

separation of CAS and SAS Micro Analytic Service workloads, and/or separation of the

platform servers and services from CAS and SAS Micro Analytic Service components leads to

the use of additional servers.

Focusing on the real-time transactions with a three-server deployment, an SMP CAS server
can be used. In this pattern, the CAS server, the SAS Compute Server (the ComputeServer

host group) and the Operations host group are only deployed on “Server 1”. The three-

server deployment is illustrated in Figure 2.

6

Production real-time environment

Calling business
application(s)

ASTORE storage
/models/astores/viya

Server 2

Services and
servers

Apache HTTP
Server

Server 3

Services and
servers

Apache HTTP
Server

Server 1

SAS Compute
Server

SMP CAS
Server

Apache HTTP
Server

Services and servers
(Operations)

SAS Micro
Analytic Service

SAS Micro
Analytic Service

SAS Micro
Analytic Service

Load Balancer /

external reverse proxy

Figure 2. Minimum HA Deployment

Note the Operations host group is a singleton and there can only be one instance of this

within the platform deployment. It should be noted that the loss of this function will not stop

the platform from operating.

The figure also illustrates the need for shared storage for the analytic store (ASTORE) files.

This is described in more detail later in this paper.

However, separation of SAS Micro Analytic Service from the other platform services and CAS

processing provides a better model, as SAS Micro Analytic Service hosts can be optimized to

support the real-time processing workloads. This is illustrated in Figure 3.

7

Production real-time environment

Calling business
application(s)

Load Balancer /

external reverse proxy

ASTORE storage
/models/astores/viya

Real-time Server 2

Apache HTTP
Server

Real-time Server n

Apache HTTP
Server

Real-time Server 1

Apache HTTP
Server

Services Server 2

Services and servers

Services Server 1

CAS Controller
(Primary)

Services and servers
(Operations)

Services Server 3

Services and servers

Worker Server 2..n

CAS Worker

CAS Controller
(Secondary) CAS Worker

SAS Compute
Server

SAS Compute
Server

SAS Micro
Analytic Service

SAS Micro
Analytic Service

SAS Micro
Analytic Service

Figure 3. HA deployment with MPP CAS

This pattern can be implemented using five or more servers, depending on the number of

SAS Micro Analytic Service servers required and whether you chose to implement an SMP

CAS Server or an MPP CAS Server as illustrated in Figure 3.

Figure 4 provides a snippet of the inventory file that would be used to install the

configuration shown in Figure 3, showing the key host groups illustrated in the figure.

8

Figure 4. Inventory File Snippet

Note, the figures do not illustrate all the fine details for implementing a SAS Viya HA

configuration. For example, shared storage is not only required for the ASTORE files. Please

refer to the SAS documentation for these details.

In both examples, an external load balancer is required. This would also be configured as

the reverse proxy for the platform. The load balancer is not a component provided by SAS.

9

ASTORE STORAGE

As briefly discussed above, there is a need for shared storage for the ASTORE files.

An Analytic Store, or ASTORE, represents the state of a trained predictive model that has

been saved in a transportable form, a binary file. This enables it to subsequently be used to

score new data in a variety of environments. Many SAS analytical procedures save the

results from the training phase of model development as ASTORE models. A key feature of

an ASTORE is that it can be easily transported from one platform to another. When an

ASTORE is published to SAS Micro Analytic Service, the state of the predictive model is

restored and is available for scoring new data.

The use of shared storage avoids having to manually copy files to each server running SAS

Micro Analytic Service.

While there are numerous options for sharing storage, with a high-availability configuration,

the best option is the use of highly available network attached storage, such as a NAS or a

clustered file system.

What do you need to know?

• The SAS Compute Server extracts the ASTORE file from the analytic store’s CAS

table in the ModelStore caslib and copies it to the /opt/sas/viya/config/data/modelsvr/astore

directory path.

This happens when an ASTORE model is published or set as a champion with SAS

Model Manager or when an ASTORE model-based decision flow is tested with SAS

Intelligent Decisioning.

• At run time, SAS Micro Analytic Service requires the model’s analytic store (ASTORE)

file to be accessible from the /models/astores/viya directory path.

Specifically, in order to publish analytic store models or decisions that use analytic

store models to the maslocal (SAS Micro Analytic Service) publishing destination, the

model’s ASTORE file must be accessible from the /models/astores/viya directory path.

As can be seen, the SAS Compute Server and SAS Micro Analytic Service are using different

locations, which has been done to allow for scaling SAS Micro Analytic Service.

Therefore, in order to make the model’s ASTORE file accessible, you must map the

/opt/sas/viya/config/data/modelsvr/astore directory on the SAS Compute Server to the

/models/astores/viya directory on each server running SAS Micro Analytic Service.

This can be done in several ways. The simplest approach is to use a network share (NFS

mount) to the host running the SAS Compute Server. However, this approach doesn’t

provide any HA. This is shown in Figure 5.

10

Compute Server
(Programming Run-time)

read/write

SAS Compute

Server

Shared as

/opt/sas/viya/config/data/

modelsrv/astore

Real-time Server

SAS Micro

Analytic Service

read

/models/astores/viya

Real-time Server

SAS Micro

Analytic Service

read

/models/astores/viyaNetwork share

/models/astores/viya

.

.

Figure 5. ASTORE Storage with Separate SAS Micro Analytic Service Servers

In this example, the /opt/sas/viya/config/data/modelsvr/astore directory on the SAS Compute

Server is shared and has been directly NFS mounted as /models/astores/viya on each SAS

Micro Analytic Service (real-time) servers.

A better approach for an HA configuration is to use a highly available network location. This

is also the best option when implementing an HA deployment that is using multiple SAS

Compute Servers and multiple SAS Micro Analytic Service servers. This is illustrated in

Figure 6.

Real-time Server

SAS Micro

Analytic Service

read

/models/astores/viya

Network share

/models/astores/viya

Real-time Server

SAS Micro

Analytic Service

read

/models/astores/viya

Compute Server
(Programming Run-time)

read/write

SAS Compute

Server

links to

/opt/sas/viya/config/data/

modelsrv/astore

Compute Server
(Programming Run-time)

read/write

SAS Compute

Server

links to

/opt/sas/viya/config/data/

modelsrv/astore

/models/astores/viya/models/astores/viya

.

.

Figure 6. ASTORE Storage with Multiple Servers

In this example, the shared storage is external to the servers, network storage has been

used. The shared storage has been NFS mounted as /models/astores/viya on each server, with

a symlink being used on the machines that are running the SAS Compute Server. The
symlink maps the /opt/sas/viya/config/data/modelsvr/astore path to the /models/astores/viya

directory path.

11

APPROACH 2: SAS VIYA SHARED-NOTHING CONFIGURATION

An HA configuration adds complexity in configuration, administration, and operation. This

complexity will have an impact on maintenance and upgrades. The advantages of an HA

SAS Viya deployment outweigh the complexities, especially for real-time operation of critical

production systems.

However, depending on your requirements, and if you truly have to run 24x7x365, an

alternative approach is to use a shared-nothing architecture rather than a single platform

with an HA configuration.

Definition:
A shared-nothing architecture (SN) is a distributed-computing architecture in which
each node is independent and self-sufficient, and there is no sharing of components

across the system.

The shared-nothing, or Active/Active, pattern involves implementing two or more SAS Viya

servers to process the transactions, this is depicted as the “Run-time” servers in Figure 7.

Development / Design environment

Export decision flows to the real-time environment (servers)

Real-time environment

Calling business
application(s)

Load Balancer

Design Server

SAS Intelligent
Decisioning Design

environment

Models are exported to

be published in the

real-time servers

Run-time server 1

SAS Intelligent Decisioning
(full SAS Viya deployment)

ASTORE storage
/models/astores/viya

Run-time server 2

ASTORE storage
/models/astores/viya

Run-time server n

ASTORE storage
/models/astores/viya

SAS Intelligent Decisioning
(full SAS Viya deployment)

SAS Intelligent Decisioning
(full SAS Viya deployment)

Figure 7. Real-Time Shared-Nothing Architecture

Each server is an independent (self-sufficient) full SAS Viya deployment. The decision flows

are developed in a development or design environment, and are then imported and

published on each SAS Micro Analytic Service run-time server. They can have their own

instance of the ASTORE storage, as depicted, or they can make use of shared storage,

which will eliminate file handling. See Figure 5 and Figure 6.

The shared-nothing (SN) architecture (as with an HA configuration) requires the use of an

external load balancer in this case to direct the traffic to each SAS Micro Analytic Service

run-time server. The smarts are in the configuration of the load balancer to detect an

outage and to control (direct) the traffic to the remaining servers. Typically, this would be

configured as an active-passive pair of load balancers.

12

The SAS Viya Transfer CLI would be used to deploy the decision flows to each server. This

could be managed through Ansible to make the administration a little easier and to ensure

(enforce) consistency of the commands being issued.

Depending on the SAS licensing, an SN deployment will most likely have an impact on the

software costs. However, the additional cost of the extra licensing may even out when

compared to the Total Cost of Ownership (TCO) of setting up and maintaining an HA

environment. (TCO is an estimate of all the direct and indirect costs involved in acquiring

and operating a product or system over its lifetime.) The extra cost should be traceable

back to meeting the availability requirements.

Expanding on this concept, a hybrid approach would be to implement an Active/Passive

configuration, where each SAS Viya deployment is a multi-server installation. This provides

the option of scaling a SAS Micro Analytic Service deployment in each environment. You

might also take this approach to implement an Active/Active configuration across two

availability zones or data centers.

Some additional considerations are the contact history information and token management,

which are discussed below.

IMPLEMENTATION APPROACH

To implement the shared-nothing pattern, as each SAS Viya deployment is independent, the

calling application or “client” needs to be registered with each SAS Viya platform. Once the

client has been registered, an access token and refresh token must be requested

(generated). Therefore, you need a process to handle using the tokens and refreshing them.

By default, the access token has a life of 10-hours.

As part of the client registration, it is possible to set the token validity, which is the time-to-

live for the token. Depending on your security policies, it may be possible to set a longer

token lifetime to help reduce the token management overhead. For example, you could set

the token validity to expire after a month or longer.

Additionally, as with any application integration, there is more to the integration than just

sending a request to a REST API. You need to implement the application (business) logic for

error handling and transaction retries. Also, in our case, you need to implement the

management of the access tokens.

The transaction load balancing process needs to include the logic to flag that a server is

unusable (unavailable), and the ability to detect that a server is available again and has

returned to normal service. Some form of “health-check” transaction may be required as

part of this process.

Three integration patterns have been identified.

Direct application

integration

This pattern is mentioned for completeness, but it is seen as the

least desirable, as it tightly couples the business application(s) to

the SAS platform. Using this approach, the error recovery and

token management is handled by the calling application. It is the

client to the SAS Viya platform.

The business application needs to be aware of all the SAS servers,

including which servers are available. The application is

responsible for any load balancing or fail-over logic.

This is not a good, sustainable approach to application integration.

13

Intelligent Proxy /

Load balancer

This pattern isolates some or most of the integration complexity

from the calling application. For example, with an intelligent load

balancer, the server load balancing and access token injection is

handled by the load balancer.

The load balancer functions as a proxy, in that the calling

business application does not specify which SAS Micro Analytic

Service server to use. Rather, the request is directed to a virtual

IP address or service host name for a SAS Micro Analytic Service

cluster. However, the application still needs to handle the error

recovery and transaction retries. This is illustrated in Figure 7.

To assist with the error handling and token management, the

client or load balancer needs to be able to identify the session or

SAS Micro Analytic Service server using a header token. See an

example configuration later.

Some form of “health-check” transaction should still be

implemented, and this could be run from the load balancer.

There are many options for implementing this functionality

depending on whether the platform is running in-house or in the

cloud. For example, the F5 BIG-IP appliance or software could be

used. This has a virtual server functionality, which would be the

client to the SAS Viya platforms.

Broker / Middleware

Integration

This pattern loosely couples (isolates) the business application

from the SAS platform(s), with the middleware handling message

delivery, the access tokens and their management. It also enables

the implementation of a generic interface contract and message

definition for integration with the business application.

This is discussed in more detail below.

The “Broker / Middleware Integration” pattern is illustrated in Figure 8. There are many

options for implementing this pattern, and this is one example. As can be seen, each SAS

Micro Analytic Service run-time server is a full SAS Viya deployment, with its own set of SAS

Viya services and servers.

As stated above, this pattern loosely couples (isolates) the business application from the

SAS platform(s), with the middleware handling message delivery, the access tokens and

their management. It also enables the implementation of a generic interface contract and

message definition for integration with the business application.

14

REST API calls

Input

Output

Read &
format

message

Call REST interface

Token
management

process

Select server
& insert token

Send /
Receive
process

Server status
table

Calling business
application(s)

Integration platform

1 2 3 4

Health check
process

Health-check transaction

5

Run-time server n

SAS Intelligent Decisioning
(full SAS Viya deployment)

ASTORE storage
/models/astores/viya

SAS Micro
Analytic Service

Apache HTTP Server

SAS Logon
Manager

Services and servers

Run-time server 2

SAS Intelligent Decisioning
(full SAS Viya deployment)

ASTORE storage
/models/astores/viya

SAS Micro
Analytic Service

Apache HTTP Server

SAS Logon
Manager

Services and servers

Run-time server 1

SAS Intelligent Decisioning
(full SAS Viya deployment)

ASTORE storage
/models/astores/viya

SAS Micro
Analytic Service

Apache HTTP Server

SAS Logon
Manager

Services and servers

Figure 8. Broker / Middleware Integration Example

In this example, the business application “posts” the transactions to an input queue. The

message format could include a sequence number to help with message delivery and

sequencing. The responses from the “Run-time” servers are put in an output queue for

delivery to the calling business application.

If there are multiple business applications, you would implement input and output queues

for each application.

The major steps are illustrated in the diagram, namely:

1. Read and format message. The read message process reads a message from the

input queue and formats the message for the SAS Micro Analytic Service REST API

call.

2. Select server and insert token. This step selects an available SAS Micro Analytic

Service (“run-time”) server using the status information stored in the Server Status

15

Table and inserts the token for that run-time (SAS Micro Analytic Service) server.

The message request is updated for the target server and the associated token.

3. Send / Receive process. This step implements the business logic to call the REST API

and handle error retries. If the selected SAS Micro Analytic Service server is found to

be unavailable, the Server Status Table is updated to reflect this status.

An implementation choice is whether this process selects a new SAS Micro Analytic

Service server and resends the transaction, or whether it returns a failed request

(return code) and the business application is responsible for the message retry.

4. Token Management Process. The token management process handles the refresh of

the tokens. It monitors the token expiry for each run-time (SAS Micro Analytic

Service) server and requests a new token. It updates the Server Status Table with

the new access token for the run-time server.

5. Health check process. The health check process is a side, or out-of-band process to

monitor the availability of the run-time servers.

The Server Status Table would contain the following information: server name and status,

the server access token, the Time-to-Live (TTL) for the access token and the server refresh

token. For example.

ID serverName serverStatus accessToken accessTTL refreshToken

1 mas01 1 … … …

2 mas02 0 … … …

To assist with the error handling and token management the integration platform may need

to be able to identify the session or SAS Micro Analytic Service server using a header token.

This can be achieved through the httpd configuration on each server.

Within the SAS platform the httpd configuration (/etc/httpd/conf/httpd.conf) can be updated to

include a server identifier using the following statement. For example,

Header Set X-MAS-INSTANCE <server_ID>

Using this format, the httpd.conf file for the “Run-time server 2” (mas02) server would be

updated with the following:

Add Header Identifying Apache Instance

Header Set X-MAS-INSTANCE MAS02

Finally, it is good process to implement a health-check process to monitor the run-time

server status and to flag the server as being available. It updates the Server Status Table

based on the results of running the health-check transaction. This could be a decision flow

that has been created for this purpose.

The scope of the health-check transaction also needs to be considered. Is it just that the

REST API (SAS Micro Analytic Service) endpoint is contactable or does the dummy decision

touch upstream resources such as databases, and so on?

The Spring Boot framework also provides a number of built-in endpoints that could be used.

For example, the “health” endpoint provides basic application health information. There may

16

be other features provided by the chosen middleware that could be used to build out the

health-check process.

Again, this is not the only way to implement this pattern. This is an example.

TOKEN MANAGEMENT PROCESS

An initial part of the application integration is the client registration and the process to

obtain an access token. I won’t go through this in detail as it is covered in the SAS manuals.

Also see the SAS paper OpenID Connect Opens the Door to SAS® Viya® APIs for more

information.

As previously stated, by default, SAS Logon Manager issues access tokens with a 10-hour

expiration and refresh tokens with a 30-day expiration. When the access token has expired,

a service may call the authorization server with the refresh token and obtain a new access

token.

Note, you do not get a refresh token when using client_credentials as the authorization grant

type.

When you register the client, it is possible to set the time-to-live (TTL) for the Access Token

and Refresh Token using the access_token_validity and refresh_token_validity parameters. These

should be set in accordance with your organization’s security policies. Note, the parameter

is specified in seconds.

For example, the following command can be used to register a client with a 24-hour (86,400

second) access token. The variable $CONSUL_TOKEN has been used to store the Consul

access token that is used to register the client in Consul:

curl -X POST http://<your_server>/SASLogon/oauth/clients \

 -H "Content-Type: application/json" \

 -H "Authorization: Bearer $CONSUL_TOKEN" \

 -d '{

 "client_id": "<client_ID>",

 "client_secret": "<my_client_secret>",

 "scope": ["openid", "*"],

 "resource_ids": "none",

 "authorities": ["uaa.none"],

 "authorized_grant_types": ["password"],

 "access_token_validity": 86400}'

The client registration is needed on each SAS Viya server (each of the “SAS Micro Analytic

Service run-time” servers).

Using the example integration model (shown in Figure 8), the token management process

should update the Server Status Table to mark the server as unavailable prior to refreshing

the token. Therefore, the flow would be as follows:

1. Set server status to unavailable.

2. Refresh the server (client) Access Token.

3. Test the token using the health-check transaction.

4. On confirmation of a valid token, update the server status to available.

Ideally, this process should be run prior to token expiry to avoid failed transactions.

The token management approach illustrated in this paper is one approach. However, it is

not the only way to implement the platform.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1737-2018.pdf

17

CONTACT HISTORY INFORMATION

As is often the case, the devil is in the detail, and the shared-nothing approach is no

different. In addition to the token management, the contact history information is another

area of complexity.

As each SAS Micro Analytic Service server is an independent SAS Viya platform, there isn’t

any consolidated view of the contact history information. A process would have to be

developed to extract the information from each platform and to create a consolidated

contact history database. You need to understand this if you are currently using or are

planning to use the contact history information as an input.

If you are planning to make use of the contact history information, it is critical to

understand that currently, with SAS Intelligent Decisioning 5.4, there is not any

functionality for the contact information to be used to dynamically change the decisioning

process. This is not a restriction of the SN architecture.

However, there are two macros that can be used to build a contact history database or

analytical base table.

The %DCM_GET_SUBJECTCONTACT_HISTORY macro retrieves subject contact history

information for the specified decision from the subjectContact microservice.

Then the %DCM_BUILD_SUBJECTCONTACT_SMP_ABT macro can be used to build an analytical

base table (ABT).

The %DCM_BUILD_SUBJECTCONTACT_SMP_ABT macro reads the output tables that were

produced by the %DCM_GET_SUBJECTCONTACT_HISTORY macro and builds an analytical base

table (ABT) using the data in those output tables.

You can then consolidate the ABT tables from each platform in a shared contact history

database, consolidated ABT. The consolidated ABT can be used as input for a modeling or

reporting process in order to discover which attributes and variables are driving the decision

process.

This functionality became available with SAS Intelligent Decisioning 5.3. See SAS Intelligent

Decisioning 5.4 Macro Guide for more information on the

%DCM_GET_SUBJECTCONTACT_HISTORY macro and the

%DCM_BUILD_SUBJECTCONTACT_SMP_ABT macro.

Response Tracking Codes

Another consideration associated with the contact history is the Response Tracking Code

(RTC) associated with a specific treatment or decision. This is returned to the calling

application.

For example, when a customer service application or other calling application uses the

subject ID to send a request to SAS Intelligent Decisioning that invokes a decision, a

response tracking code and the set of offers for which the subject qualifies are returned to

the calling application.

The calling application or a customer service representative can present the offers to the

customer. The calling application can use the response tracking code to update the subject

contact history data. For example, you could record which treatments are presented to the

customer and the subject’s response to the treatments.

The consideration here is that the RTC is specific to a SAS Viya platform. It is not shared

across the SAS Viya platforms. However, as stated previously about the contact history, it is

important to note that the RTC cannot be used to dynamically change the decision process.

https://go.documentation.sas.com/?cdcId=edmcdc&cdcVersion=5.4&docsetId=edmmacro&docsetTarget=n0l81crmfs1zffn1qdgh5nvtcez0.htm&locale=en
https://go.documentation.sas.com/?cdcId=edmcdc&cdcVersion=5.4&docsetId=edmmacro&docsetTarget=p0pnlqr0sorbzgn15xyghj0u4wux.htm&locale=en

18

If you need to keep track of the RTC and which platform issued it, then an HTTP header

token (server identifier) could be used as described earlier. The calling application would

need to capture the response and save this data for later processing or storing as part of

the contact history ABT.

Note, the response including the responding SAS Micro Analytic Service server needs to be

saved. This can be done using the HTTP header token identifying the SAS Micro Analytic

Service server.

Summary

It is important to note that the use of these macros isn’t the sole domain of using the

shared-nothing architecture, but the need to consolidate the records is.

Currently, if you need contact history with response tracking, then the best option is the use

of a single HA SAS Viya platform.

COMPARING THE TWO APPROACHES

Both approaches have their advantages and disadvantages. The key items are summarized

in Table 3.

Approach High-Availability Deployment Shared-Nothing Deployment

Advantages

Decreased administration

compared to the shared-nothing

pattern, as it is a single platform.

No single points of failure.

Single action to deploy a decision

flow to the SAS Micro Analytic

Service servers.

Each SAS Micro Analytic Service

server is fully independent –

failure of one server will not affect

another SAS Micro Analytic

Service server.

There is a single management

interface (SAS Environment

Manager) for the platform.

Less complexity from a SAS

server build perspective.

Uses standard licensing, as it is a

single platform.

Maintenance – each SAS Micro

Analytic Service server can be

patched independently.

Disadvantages

Increased build and configuration

complexity due to clustering of

components.

Increased administration and

maintenance.

Platform maintenance is more

complex, especially if using the

pgpool HA configuration.

More complex to deploy a flow

and to synchronize ASTORE data

across all servers.

19

Approach High-Availability Deployment Shared-Nothing Deployment

Most maintenance will require a

system outage. All SAS Micro

Analytic Service servers need to

be updated at the same time.

The contact history records need

to be merged into a single

database.

 There is no single management

interface.

Table 3. Approach Comparison

CONCLUSION

This paper has presented two approaches for implementing high availability for a SAS Viya

3.5 platform to support SAS Micro Analytic Service and real-time transactions. We looked at

deployment patterns for SAS Viya high availability and using a shared-nothing architecture

pattern.

While the shared-nothing pattern adds complexity when it comes to token management and

the creating a single contact history record, it has advantages in providing a true

Active/Active configuration for the SAS Viya platform, which enables non-disruptive

maintenance.

However, depending on your requirements, a single SAS Viya platform using a high-

availability configuration may be the best approach, as it simplifies token management and

creation of any contact history ABT.

As discussed, there is more to application integration than just calling a REST API. The end-

to-end application business logic needs to be designed, including transaction retry and

recovery. You will also need to have a process (manual or automated) for managing the

tokens.

When dealing with critical business systems, the integration needs to be carefully planned

and well designed.

Finally, the installation, configuration, and support of any load balancer or integration

middleware is your responsibility. These are not components provided by SAS, but HA for

these components also needs to be considered.

REFERENCES

Riva, Edoardo. 2019. “Proper Planning Prevents Possible Problems: SAS® Viya® High-

Availability Considerations” Proceedings of the SAS Global Forum 2019 Conference. Cary,

NC: SAS Institute Inc.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2019/3481-2019.pdf

Roda, Mike. 2018. “OpenID Connect Opens the Door to SAS® Viya® APIs” Proceedings of

the SAS Global Forum 2018 Conference. Cary, NC: SAS Institute Inc.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/1737-2018.pdf

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3481-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3481-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1737-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1737-2018.pdf

20

SAS Institute Inc. 2019. SAS Intelligent Decisioning 5.4 Macro Guide. Cary, NC: SAS

Institute Inc.

http://documentation.sas.com/?cdcId=edmcdc&cdcVersion=5.4&docsetId=edmmacro&docs

etTarget=titlepage.htm&locale=en

SAS Institute Inc. 2019. SAS Micro Analytic Service 5.4: Programming and Administration

Guide. Cary, NC: SAS Institute Inc.

https://documentation.sas.com/?docsetId=masag&docsetTarget=masagwhatsnew.htm&doc

setVersion=5.4&locale=en

SAS Institute Inc. 2019. SAS® 9.4 and SAS® Viya® 3.5 Programming Documentation: DS2

Programmer’s Guide. Cary, NC: SAS Institute Inc.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=ds2pg&

docsetTarget=titlepage.htm&locale=en

ACKNOWLEDGMENTS

I would like to thank the following people for taking the time to review and contribute to this

paper:

• Chris Upton

• Glenn Clingroth

• David Duling

• Prasenjit Sen

• Mike Roda

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Michael Goddard

SAS Institute Inc.

michael.goddard@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

http://documentation.sas.com/?cdcId=edmcdc&cdcVersion=5.4&docsetId=edmmacro&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=edmcdc&cdcVersion=5.4&docsetId=edmmacro&docsetTarget=titlepage.htm&locale=en
https://documentation.sas.com/?docsetId=masag&docsetTarget=masagwhatsnew.htm&docsetVersion=5.4&locale=en
https://documentation.sas.com/?docsetId=masag&docsetTarget=masagwhatsnew.htm&docsetVersion=5.4&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=ds2pg&docsetTarget=titlepage.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=ds2pg&docsetTarget=titlepage.htm&locale=en

