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ABSTRACT

Simulation is a key element in how decisions are made in a wide variety of fields, from finance and insurance to
engineering and statistics. Analysts use simulation to estimate the probability that a business process will succeed,
that an insurance portfolio will fail, or that a statistical method will control Type I error. Often, the base case that is
used to devise such processes depends on assuming that random variation is normal (Gaussian). Normal variation is
common and is often easier to compute with. But it is still an assumption, so robust simulation studies should explore
what happens when that assumption is violated.

The SIMSYSTEM procedure, new in SAS® Visual Statistics 8.5, enables you to simulate random variation from a
wide class of distributions. You can use PROC SIMSYSTEM to generate random variates with any possible values for
skewness and kurtosis, which define the asymmetry and tail behavior of the underlying distribution. Key tools are
computational facilities for handling the Pearson and Johnson families of distributions, whose parameters span this
skewness/kurtosis space. This paper introduces PROC SIMSYSTEM and demonstrates its utility with examples that
simulate complex processes in science and industry.

INTRODUCTION—MOMENTS OF DISTRIBUTIONS

Simulation is widely used in science, engineering, and business to study the behavior of complex systems. It is an
essential tool for studying a real-world system for which conducting controlled experiments is not feasible; examples
include the earth’s climate, the global economy, or even (as in the extended example later in this paper) personal
finance. By varying the inputs to the simulation model and analyzing its outputs, you can understand and predict how
the actual system behaves under different conditions.

When the inputs to a system can be represented by random variables, you can use probabilistic simulation—often
called Monte Carlo simulation—to generate input data. After choosing appropriate probability distributions, you sample
the distributions to provide input to the system.

The position and shape of a probability distribution say a good deal about the random values it can produce. Often,
these characteristics are summarized by the following four quantities:

� the mean, which measures the distribution’s location

� the standard deviation, which measures its spread

� the skewness, designated as
p
ˇ1, which measures the distribution’s asymmetry

� the kurtosis, designated as ˇ2, which measures the heaviness of the distribution’s tails

These characteristics are all functions of the first four moments of the distribution. In particular, the mean is the first
moment; the standard deviation is the square root of the second moment around the mean; and the skewness and
kurtosis are functions of the third and fourth moments around the mean, divided by the third and fourth power of
the standard deviation, respectively. For this reason, skewness and kurtosis are called moment ratios, and they are
invariant to location and scale changes of the underlying random variable.

The interpretation of the mean and standard deviation is well known, but skewness and kurtosis might be less familiar.
A skewness of 0 indicates that the distribution is symmetrical, whereas a negative skewness indicates that values
below the median are more likely than values above, and vice versa for a positive skewness. Kurtosis, on the other
hand, says something about how likely are values above or below the median relative to values near the median.
Mathematically, skewness and kurtosis cannot always be computed for all probability distributions; when they do exist,
they satisfy the relationship ˇ2 � ˇ1 � 1 � 0.
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An alternative form of the kurtosis, ˇ2 � 3 is often used. Because ˇ2 D 3 for a normal distribution, this alternative
form is negative or positive for distributions that exhibit less or more kurtosis, respectively, than the normal distribution.
For this reason, ˇ2 � 3 is called excess kurtosis.

SIMULATION FROM FAMILIES OF DISTRIBUTIONS

For a simulation study to be effective, the inputs need to represent the range of possible operating conditions as
accurately as possible. The actual probability distribution of an input variable is usually unknown. Therefore, a thorough
simulation study should draw from a variety of distributions in order to study the robustness of any conclusions to the
nature of this underlying unknown. Traditionally, this involves selecting several families of distributions and specifying
different parameter combinations for each.

For example, many statistical methods assume that the data to be analyzed are drawn from a normal distribution. This
assumption is made not only because of the prevalence of normal distributions in real-world data, but also because
normal distributions have convenient mathematical properties. To study how robust a statistical method is when the
data are not normally distributed, you also simulate data from various other distributions. For example, you include
some lognormal distributions to allow for different degrees of skewness, and some t distributions for tails that are
heavier than those of the normal distribution. The following statements create and graph samples that are simulated
from five different distributions:

data SimNonNormal(drop=i);
call streaminit(15531);
do i=1 to 10000;

Norm = rand('NORMAL');
t_4 = rand('T', 4);
t_10 = rand('T', 10);
lN_2 = rand('LOGNORMAL', 0, 0.2);
lN_4 = rand('LOGNORMAL', 0, 0.4);
output;

end;
run;

proc univariate data=SimNonNormal noprint;
histogram;
inset mean stddev skewness kurtosis="Excess Kurtosis" min max / pos=ne;

run;

Figure 1 through Figure 5 show the resulting histograms. The mean, standard deviation, skewness, excess kurtosis,
and minimum and maximum values of the samples are displayed in insets in the graphs.

Figure 1 Normal Distribution Figure 2 t(4) Distribution

These histograms illustrate the different shapes of samples that are drawn from the five probability distributions. The
sample from the normal distribution has the familiar bell shape. The samples from the t distributions are basically
symmetric (low-magnitude skewness), but with longer tails (higher kurtosis) than the normal. The samples from the
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Figure 3 t(10) Distribution Figure 4 Lognormal(0, 2) Distribution

Figure 5 Lognormal(0, 4) Distribution

lognormal distributions are clearly right-skewed (positive skewness). These skewed and heavy-tailed shapes are also
reflected in the estimated moments and moment ratios. However, because the standard parameterizations for the
lognormal and t distributions affect all four of the moments, it’s not easy to disentangle the effect on just the skewness
and kurtosis.

These samples might be useful for the intended purpose, but selecting them requires considerable knowledge about
the t and lognormal distributions. Simulating from families of distributions presents the following challenges:

� The choice of a distribution family is not obvious. For example, the RAND function can generate random values
from 21 different families of continuous probability distributions. Which should you use? For some applications
the best choice is well established, but that isn’t true in general.

� The parameter choices are nonintuitive. Among the most useful descriptors of a probability distribution are
its mean, standard deviation, skewness, and kurtosis. However, these measures are usually complicated
mathematical functions of the distribution’s parameters. For example, Table 1 shows the relevant formulas for a
lognormal distribution with scale parameter � and shape parameter � .

� Any single distribution family covers only a portion of the possible distribution shapes, which makes systematic
simulation difficult.
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Table 1 Formulas for Lognormal Distribution Descriptors

Mean exp.�C �2=2/

Std Deviation
p
.exp.�2/ � 1/ exp.2�C �2/

Skewness
p

exp.�2/ � 1.exp.�2/C 2/

Kurtosis exp.4�2/C 2 exp.3�2/C 3 exp.2�2/ � 3

The SIMSYSTEM procedure was designed to surmount these difficulties in the design of simulation experiments over
a variety of distributions. It chooses distributions for you, according to a natural and universal parameterization in
terms of the first four moments. Thus, it makes it easy to use simulation to study the behavior of a phenomenon with a
broad, systematic selection of distribution shapes.

What can you discover by being more systematic in choosing your distributions? As an example, consider the problem
studied by Wheeler (2010), the coverage of so-called “three-sigma limits”—that is, what proportion of samples from an
arbitrary distribution lie between three standard deviations below and above the mean .��3�; �C3�/? Theoretically,
Chebychev’s inequality says that this coverage proportion will be bounded below by 1 � 1=32 � 89%, but the
observed proportion is much higher for these five distributions.

The following statements find the proportion of samples that lie within three-sigma limits that are computed from the
theoretical mean and standard deviation of each of the five corresponding distributions. The results are shown in
Figure 6.

%let mNorm = 0; %let sNorm = 1;
%let mt_4 = 0; %let st_4 = 1.4142;
%let mt_10 = 0; %let st_10 = 1.1180;
%let mlN_2 = 1.0202; %let slN_2 = 0.2061;
%let mlN_4 = 1.0833; %let slN_4 = 0.4512;

data SimNonNormal; set SimNonNormal;
CovNorm = (&mNorm - 3*&sNorm <= Norm <= &mNorm + 3*&sNorm);
Covt_4 = (&mt_4 - 3*&st_4 <= t_4 <= &mt_4 + 3*&st_4 );
Covt_10 = (&mt_10 - 3*&st_10 <= t_10 <= &mt_10 + 3*&st_10);
CovlN_2 = (&mlN_2 - 3*&slN_2 <= lN_2 <= &mlN_2 + 3*&slN_2);
CovlN_4 = (&mlN_4 - 3*&slN_4 <= lN_4 <= &mlN_4 + 3*&slN_4);

run;
proc means data=SimNonNormal mean;

var Cov:;
run;

Figure 6 Coverage of Three-Sigma Limits for Five Distributions

The MEANS Procedure

Variable Mean

CovNorm
Covt_4
Covt_10
CovlN_2
CovlN_4

0.9964000
0.9862000
0.9937000
0.9935000
0.9873000

All these values are well above the lower bound of 89%. Is Chebychev’s inequality too conservative to be useful?
Figure 7 shows the expected coverage for distributions that have a systematic variety of skewness and kurtosis values.
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Figure 7 Three-Sigma Coverage as a Function of Skewness and Kurtosis

The definition and interpretation of this type of map are discussed in the following sections, but for now you can see
that Chebychev’s inequality is indeed approached for distributions that have high values of both skewness and kurtosis.
The computations for this figure were in fact performed by PROC SIMSYSTEM. For more information, see Example 2
in Chapter 22, “The SIMSYSTEM Procedure” (SAS Visual Statistics: Procedures).

SYNTAX AND FEATURES OF THE SIMSYSTEM PROCEDURE

The SIMSYSTEM procedure makes it easy to perform systematic simulations. Its basic grammar is relatively simple.
You can provide moment values that define the distributions to be sampled in three ways: using the MOMENTS
statement to specify a series of distributions, using the MOMENTGRID statement to specify a grid of such distributions,
or using the DATA= option to provide the moment values in a data set. The N= and NREP= options specify how to
draw samples from the specified distributions, and the OUTPUT statement specifies a data set to hold the drawn
samples. In addition to random samples, you can use the CDF=, PDF=, and QUANTILES= options to compute the
cumulative distribution function, probability density function, and particular quantiles, respectively, of the specified
distributions.

For more information, see the section “Syntax” in Chapter 22, “The SIMSYSTEM Procedure” (SAS Visual Statistics:
Procedures).
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USING THE SIMSYSTEM PROCEDURE TO SIMULATE DATA

Instead of using the traditional approach of simulating from designated families of distributions, the SIMSYSTEM
procedure simulates data by using systems of distributions. Each of the Pearson (Pearson 1895, 1901, 1916) and
Johnson (Johnson 1949) systems of continuous univariate distributions consists of complementary distribution families
that cover all the possible combinations of skewness and kurtosis. You don’t need to know about the idiosyncratic
parameters of any particular distribution family and how they relate to these moments. Instead, you need only specify
a distribution system and the desired mean, standard deviation, skewness, and kurtosis. This makes it much easier to
simulate data from a series of distributions whose descriptors vary intuitively and systematically. PROC SIMSYSTEM
provides generality and convenience that enables you to design sound, comprehensive simulation studies.

Pearson System of Distributions

Karl Pearson introduced the Pearson system of continuous distributions in 1895 as a tool to model skewed data
(Pearson 1895, 1901, 1916). The following statements use PROC SIMSYSTEM to specify 12 Pearson distributions
that represent different families in the Pearson system. Note that because this example code includes no options that
specify how these distributions should be sampled, these statements do not produce samples from the distributions.

data mycas.Families;
input simindex skewness kurtosis;

datalines;
1 0 3
2 0.7 3
3 1.4 4.5
4 1.75 4.5
5 0 1.8
6 1.1547 5
7 1 7
8 1.3923 7
9 1.7642 9

10 0 9
11 2.16025 10
12 3 10.5
;
proc simsystem system=pearson data=mycas.Families plots=mrmap(indexlabels);
run;

Because no means or standard deviations are specified in the MOMENTS statement, the procedure uses default
values (0 and 1, respectively) for these moments for each distribution. The PLOTS=MRMAP(INDEXLABELS) option
uses the simulation index of each distribution to mark its coordinates on the resulting moment-ratio map, shown in
Figure 8.
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Figure 8 Pearson Distributions

By convention, the origin of the kurtosis axis is at the top of the graph. The blank region of the map corresponds to the
combinations of skewness and kurtosis that are not possible—those that do not satisfy the ˇ2�ˇ1�1 � 0 relationship.
The Pearson moment-ratio map identifies the various types of distributions that compose the Pearson system and
where they lie in the skewness-kurtosis plane, and it also shows where each of the 12 designated distributions lies.

PROC SIMSYSTEM also prints a table that has more information about the types of the designated distributions
and their parameters, as shown in Figure 9. The Family column identifies the Pearson family to which a distribution
belongs. The Distribution Notes column specifies the parameters of the equivalent distribution from a well-known
family, when there is one. For example, distribution 5 is a Pearson Type II distribution that is equivalent to a beta
distribution whose shape parameters are both equal to 1, which also happens to be a uniform distribution.

Figure 9 Parameters of Selected Pearson Distributions

Parameters for Pearson Distributions

Skewness Kurtosis Family Distribution Notes Shift Scale

1 0 3 Normal 0 1

2 0.700 3 Type I Beta(1.631,4.533) -1.605 6.068

3 1.400 4.500 Type I(J) Beta(0.539, 2.67) -0.921 5.489

4 1.750 4.500 Type I(U) Beta(0.071,0.353) -0.536 3.193

5 0 1.800 Type II Beta(    1,    1) -1.732 3.464

6 1.155 5 Type III Gamma, shape parameter =     3 -1.732 0.577

7 1 7 Type IV Alpha =     -3, m =      4 -1.000 2.000

8 1.392 7 Type V Inverse gamma, shape parameter = 12.16 -3.187 35.55

9 1.764 9 Type VI F(DF1=7.182,DF2=24.03) -1.569 1.439

10 0 9 Type VII Students t, DF =     5 0 0.775

11 2.160 10 Type III Gamma, shape parameter = 0.857 -0.926 1.080

12 3 10.50 Type I(U) Beta(0.021,0.229) -0.337 4.049
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As the map and the table indicate, there are three main types of distributions for the Pearson system, designated as
Type I, Type VI, and Type IV. The first two main types are based on beta distributions and F distributions, respectively.
The Type IV distributions correspond to no familiar family; you can think of them as a family of skewed t distributions.
Two subclasses of Type I distributions are identified on the map, those that have one sharp mode (Type I(J)) and
those that have two sharp modes (Type I(U)). On the edges and between the main types are the transitional types,
Types II, III, V, and VII, which are based on beta, gamma, inverse gamma, and t distributions, respectively. Finally, two
important individual distributions, the normal and the uniform, are identified for reference. Although not identified on
the map, a distribution that is based on the exponential lies at the intersection of the Type I, Type I(J), and Type VI
regions.

The important thing to note is that you didn’t have to choose these distributions and figure out how to set their various
parameters in order to achieve the desired skewness and kurtosis values. PROC SIMSYSTEM determines the
parameter values that produce a distribution with the specified skewness and kurtosis. It then shifts and scales the
distribution in order to achieve the requested mean and standard deviation. The values by which the distribution is
shifted and scaled are displayed in the Shift and Scale columns of the parameters table.

The centered and scaled density plots in Figure 10 show the shapes of the 12 distributions, which are identified by
Pearson family and skewness and kurtosis values.

Figure 10 Pearson Distribution Density Plots
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Figure 10 continued

For detailed descriptions of the distribution families within the Pearson system of distributions, see the section “Pearson
System of Distributions” in Chapter 22, “The SIMSYSTEM Procedure” (SAS Visual Statistics: Procedures).

Johnson System of Distributions

An alternative system of continuous distributions that cover the entire space of possible combinations of skewness
and kurtosis was introduced in 1949 by Norman L. Johnson, who derived the system by constructing a set of
transformations (translations) to normality (Johnson 1949). The following statements use PROC SIMSYSTEM
to specify the 12 Johnson distributions that have the same values of skewness and kurtosis as the 12 Pearson
distributions from the preceding section. The code is identical except that the SYSTEM= option requests that the
Johnson system be used.

proc simsystem system=johnson data=mycas.Families plots=mrmap(indexlabels);
run;

By default, the mean and standard deviation of each distribution are again 0 and 1, respectively. The resulting Johnson
moment-ratio map is shown in Figure 11, and the corresponding table of distribution families and parameters is shown
in Figure 12. The table includes the values of the parameters ı and  that define the translation of the underlying
normal variate.
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Figure 11 Johnson Distributions

Figure 12 Parameters of Selected Johnson Distributions

Parameters for Johnson Distributions

Skewness Kurtosis Family Delta Gamma Shift Scale

1 0 3 SN 0 1

2 0.700 3 SB(1) 1.158 1.135 -1.850 6.172

3 1.400 4.500 SB(1) 0.707 1.333 -1.046 5.290

4 1.750 4.500 SB(2) 0.181 0.999 -0.546 3.194

5 0 1.800 SB(2) 0.646 -1E-15 -1.815 3.631

6 1.155 5 SB(1) 1.870 3.877 -2.123 17.32

7 1 7 SU 1.689 -0.720 -0.663 1.267

8 1.392 7 SU 2.130 -2.620 -1.722 0.986

9 1.764 9 SL 1.988 -1.864 1.642

10 0 9 SU 1.349 0 0 1.000

11 2.160 10 SB(1) 1.129 3.147 -1.172 15.09

12 3 10.50 SB(2) 0.104 1.402 -0.340 4.041

As with the Pearson system, the Johnson system has a few main types, with transitional types between those, but the
number of transitional types is fewer. The two main types are SB and SU , where the subscripts B and U indicate that
the types are bounded and unbounded, respectively. These two types do not, in general, correspond to more familiar
distributions, although the boundary between them (SL) is based on the family of lognormal distributions and the
limiting member of this family with a skewness of 0 is the normal distribution. As with the Type I family of the Pearson
distribution, the different subsets of the SB Johnson distributions are distinguished as having one mode (SB.1/) or
two modes (SB.2/).

Figure 13 shows density plots for each of the 12 Johnson distributions. Note that each curve is very similar, but not
identical, to the density curve of the Pearson distribution that has the same skewness and kurtosis.
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Figure 13 Johnson Distribution Density Plots
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For detailed descriptions of the distribution families within the Johnson system of distributions, see the section
“Johnson System of Distributions” in Chapter 22, “The SIMSYSTEM Procedure” (SAS Visual Statistics: Procedures).

SIMULATING PORTFOLIO VALUES

There are many situations that call for the type of systematic simulation that PROC SIMSYSTEM enables, but
writing about them can be challenging, at least if your focus is PROC SIMSYSTEM itself. PROC SIMSYSTEM is
streamlined for what it does, whereas the code for doing simulation with what SIMSYSTEM produces can often
be very involved. This is true for the following example, which is reproduced from Example 3 in Chapter 22, “The
SIMSYSTEM Procedure” (SAS Visual Statistics: Procedures).

This example demonstrates how you can use PROC SIMSYSTEM to perform an experimental simulation over a grid
of potential distributions. The procedure plays two different roles in this application: screening the shapes of potential
distributions and simulating samples from selected distributions. Other SAS® tools (the DATA step and the SUMMARY
and RSREG procedures) are used to complete and analyze the simulation.

Suppose you are interested in studying the likely performance over the next 30 years of a $1,000,000 portfolio that is
managed to track the performance of the S&P 500 stock index. Of course, key information that you are missing is the
future performance of the S&P 500, but you can simulate it for a variety of potential distributions.

Your first question is, What are the potential shapes for the true distribution of total annual returns of the S&P 500? You
can use PROC SIMSYSTEM to get an idea of this, by specifying several potential values for skewness and kurtosis
that seem feasible according to historical data, as shown in the following code, and reviewing the density plots for
them:

proc simsystem system=johnson;
momentgrid Skewness = -1.0 -0.5 0.0

Kurtosis = 2.3 3.1 3.9;
run;

The MOMENTGRID statement specifies a distribution for each combination of skewness and kurtosis values.

The table of parameters for these distributions, shown in Figure 14, indicates that they are mostly of the bounded
type. Also, as you can see in Figure 15, most of the densities seem reasonable, except for the first one, which has the
lowest values of both skewness and kurtosis.

Figure 14 Parameters of Representative Distributions for S&P 500 Returns

The SIMSYSTEM Procedure

Parameters for Johnson Distributions

Skewness Kurtosis Family Delta Gamma Shift Scale

1 -1 2.300 SB(2) 0.190 0.627 0.739 -2.674

2 -1 3.100 SB(1) 0.647 0.931 1.146 -4.311

3 -1 3.900 SB(1) 1.259 1.779 1.730 -7.785

4 -0.500 2.300 SB(1) 0.799 0.565 1.598 -4.346

5 -0.500 3.100 SB(1) 2.109 1.917 3.109 -10.49

6 -0.500 3.900 SU 2.931 -1.378 1.276 -2.469

7 0 2.300 SB(1) 1.225 19E-15 -2.796 5.592

8 0 3.100 SU 6.441 0 0 6.363

9 0 3.900 SU 2.417 0 0 2.213
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Figure 15 Representative Densities for S&P 500 Returns

The extreme density in Figure 15 is omitted by a DS2 procedure step after the PROC SIMSYSTEM step, as shown
in the following statements. The grid discussed earlier is expanded with typical values for the mean and standard
deviation of annual S&P 500 returns. For each set of moment values, the code creates 1,000 replicates of potential
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sequences of N=30 years of total annual returns, using the Johnson system of distributions. You will use these
potential sequences of returns to explore the success rate of your portfolio for each distribution, as defined by the
moments.

proc simsystem n=30 system=johnson seed=12345 noprint nrep=1000;
momentgrid

Mean = 7.5 12.0 16.5
StdDev = 17.0 20.0 23.0
Skewness = -1.0 -0.5 0.0
Kurtosis = 2.3 3.1 3.9;

output out=mycas.Sim_raw Mean=Mean Std=StdDev;
run;
proc ds2 sessref=mysess;

data Sim / overwrite=yes;
rename Variate=AnnualReturn;
method run();

set Sim_raw;
if ^((Skewness = -1) & (Kurtosis = 2.3)) then output;

end;
enddata;

run;
quit;

The resulting data table has over 2,000,000 observations. These observations will be processed in groups that are
defined by the simulation index SimIndex and the replicate number Rep, each group being a potential sequence of
returns for the hypothetical 30 years of interest. The value of your portfolio for any particular sequence of returns
is adjusted annually by the simulated return and also by a fixed withdrawal of $40,000 per year. The sequence is
successful for your portfolio if its value never falls below $0. The following PROC DS2 code evaluates the success of
each simulated sequence of 30 returns, using a thread block to process different replicates in parallel. A subsequent
MDSUMMARY procedure step computes the mean of these 0j1 success values, which is thus the observed success
rate for each set of moment values that are defined by the MOMENTGRID statement.

%let Start = 1000000;
%let Withdraw = 40000;
proc ds2 sessref=mysess;

thread Success_thd / overwrite=yes;
dcl double Value minVal;
dcl int Success;
retain Value minVal;
keep SimIndex Mean StdDev Skewness Kurtosis Rep Success;
method run();

set Sim; /*being parallelized*/
by SimIndex Rep;
/*BY statement takes the BY groups as batches in threads*/
if FIRST.Rep then do; /* First year in a sequence: */

Value = 1000000; /* Initialize the portfolio */
minVal = Value; /* value. */

end;
/*
/ The value at the end of the year is the sum of the
/ original value and the annual return, minus the amount
/ withdrawn.
/---------------------------------------------------------*/
if Value then do;

Value = Value + (AnnualReturn/100)*Value - 40000;
minVal = min(minVal, Value);

end;
if LAST.Rep then do; /* Last year in a sequence: */

Success = (minVal > 0); /* Evaluate success and */
output; /* output. */

end;
end;
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endthread;
data Success / overwrite=yes;

dcl thread Success_thd Success_thd_instance;
method run();

set from Success_thd_instance threads=1;
end;

enddata;
run;
quit;

proc mdsummary data=mycas.Success;
groupby Mean StdDev Skewness Kurtosis SimIndex;
var Success;
output out=mycas.ProbSuccess;

run;

proc cas;
session mysess;
table.alterTable /

name="ProbSuccess"
columns={{name="_Mean_" rename="ProbSuccess" label=""}};

quit;

Finally, you use PROC RSREG, as in the following statements, to apply response surface analysis methods to the
simulated success rates. PROC RSREG fits a quadratic function to these values and plots the predicted surfaces.

proc rsreg data=mycas.ProbSuccess plots=contour(nodesign);
model ProbSuccess = Mean StdDev Skewness Kurtosis;
ods select FactorANOVA Contour;

run;

Selected PROC RSREG results are shown in Figure 16 and Figure 17. The ANOVA for individual factors shows
that although the mean rate of return is the most influential factor in portfolio success, all four moments of the return
distribution have some effect. In the plots of predicted success rates, you can see that a $40,000 withdrawal gives
your portfolio about a 95% probability of success in the center of the experimental region, near the historical estimates
for the moments of the return distribution. This is encouraging, but the predicted probability of success drops off
precipitously as the moments of the return distribution change.

Figure 16 Response Surface Analysis of Simulated S&P 500 Returns

The RSREG Procedure

Factor DF
Sum of

Squares Mean Square F Value Pr > F Label

Mean 5 0.596046 0.119209 991.49 <.0001 Mean

StdDev 5 0.150055 0.030011 249.61 <.0001 Standard Deviation

Skewness 5 0.010481 0.002096 17.43 <.0001 Skewness

Kurtosis 5 0.001393 0.000279 2.32 0.0551 Kurtosis
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Figure 17 Predicted S&P 500 Returns
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CONCLUSION

The SIMSYSTEM procedure provides three major benefits in practice:

� You can request a range of distributions just by specifying their combinations of mean, standard deviation,
skewness, and kurtosis. These descriptors control the location, scale, and shapes of the distributions—aspects
that are intuitive to understand and can be visualized in graphical displays that the procedure creates.

� You can specify any feasible combination of skewness and kurtosis, because there is a unique distribution in
each system whose theoretical skewness and kurtosis match that combination. By comparison, families of
better-known distributions, which are smaller than these systems, cover only a limited set of combinations.

� By specifying a grid of evenly spaced combinations of skewness and kurtosis, you can explore their effects more
thoroughly and form conclusions that are more general than those you would obtain from an ad hoc selection of
distributions.
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