

1

SAS 4248-2020

Best Practices for Scheduling in SAS® Viya®
Ursula H. Polo, SAS Institute Inc.

ABSTRACT

To help you harness the power of the SAS® Platform, SAS® Viya® contains numerous
scheduling capabilities. The SAS Viya documentation provides detailed instructions about
how to schedule a job or flow. However, to give you a better understanding about which
method might be best for you, this paper goes into depth about the five scheduling methods
available in SAS Viya. This paper discusses the advantages, disadvantages and alternate
approaches, and best practices for each scheduling procedure. This paper details the
scheduling types available and helps you take full advantage of the SAS Viya environment.

INTRODUCTION
You can use the following five methods to schedule in SAS Viya: CAS table state
management, the Jobs page in SAS® Environment Manager, SAS® Job Execution Web
Application, SAS® Studio, and the command line interface (CLI). Each scheduling method
has unique characteristics although they can perform the same basic functions. These
applications are your key to scheduling because they all use the Job Execution microservice
or the Scheduling microservice behind the scenes. The Scheduling microservice is used to
start the job, which is a synchronous operation to the Job Execution microservice that runs
the job. This paper explores each method's characteristics and discusses best practices for
scheduling. This paper is organized to discuss the methods based on their popularity with
SAS customers.

CAS TABLE STATE MANAGEMENT
CAS table state management is a feature in SAS® Environment Manager for SAS® Viya®. To
access this method, click the Jobs page in the left navigation pane in SAS Environment
Manager. If you are a SAS Environment Manager administrator, you see three sample jobs
on the Scheduling tab. You can use these jobs to manage CAS tables. Also, you can modify
these jobs as needed for your system.

ADVANTAGES
CAS table state management enables you to schedule jobs to unload, load, and import your
data into SAS® Cloud Analytic Services (CAS). This method contains both a graphical user
interface (GUI) and the ability to input code that you can use to schedule your jobs. To
make it easier, the SAS documentation contains CAS table state management samples that
you can modify to provide additional flexibility with unloading, loading, and importing your
data into CAS. Also, there are options that refresh the CAS data when the original data
source has been modified. Combined with the scheduling capabilities, this option can be a
time saver if data is updated often.

DISADVANTAGES
Not all input caslibs are visible from SAS Environment Manager. If you have more than 20
caslibs as shown in Display 1 below, you will not be able to view all of them through the
GUI.

2

Display 1. View Input Caslibs in SAS Environment Manager

One workaround to the caslib display limit is to run code via the CLI to list any input caslibs.
For example, here is sample JSON code, with the section where you can modify the
inputCaslib highlighted:

Note: For additional details, see Scheduling: How to (Command Line Interface) for SAS
Viya 3.3 or Scheduling Command Line Interface for SAS Viya 3.4.

Load JSON code
{
 "enabled" : true,
 "type" : "LOAD",
 "settings" : {
 "refresh" : false,
 "refreshMode" : "newer",
 "refreshAccessThreshold" : 0,
 "varChars" : false,
 "getNames" : true,
 "allowTruncation" : true,
 "charMultiplier" : 2,
 "stripBlanks" : false,
 "guessRows" : 200,
 "scope" : "global",

3

 "encoding" : "utf-8",
 "delimiter" : ",",
 "successJobId" : ""
 },
 "selectors" : [{
 "serverName" : "cas-shared-default",
 "inputCaslib" : "Public",
 "outputCaslib" : "Public",
 "filter" : "or(endsWith(tableReference.sourceTableName,'.sashdat'),
endsWith(tableReference.sourceTableName,'.SASHDAT'))",
 "settings" : { }
 }]
}

In the highlighted section, you can specify the inputCaslib that you are looking for. To learn
more about the using the CLI, see the Command Line Interface section in this paper.

Another possible disadvantage with this method is that it uses the following default file
types for importation: CSV, SAS7BDAT, or XLSX. In Display 2 below, the Filter field shows
the default file types available:

Display 2. Dialog Box Where You Can View Default File Types

4

If you require a different file type, you can code it as shown by using this example code:
{
 "enabled": true,
 "type": "IMPORT",
 "settings": {
 "varChars": false,
 "getNames": true,
 "allowTruncation": true,
 "charMultiplier": 2,
 "stripBlanks": false,
 "guessRows": 200,
 "encoding": "utf-8",
 "delimiter": ",",
 "refresh": true,
 "refreshMode": "newer",
 "successJobId": ""
 },
 "selectors": [{
 "serverName": "cas-shared-default",
 "inputCaslib": "Public",
 "outputCaslib": "Public",
 "filter": "or(endsWith(name,'.csv'),
endsWith(name,'.CSV'),endsWith(name,'.sas7bdat'),endsWith(name,'.SAS7BDAT')
,endsWith(name,'.xls'),endsWith(name,'.XLS'),endsWith(name,'.xlsx'),endsWit
h(name,'.XLSX'))",
 "settings": {}
 }]
}

The highlighted section is where you use JSON code to indicate the desired file type.

Here is an example of code modified to enable you to import an index file:

{
 "enabled": true,
 "type": "IMPORT",
 "settings": {
 "varChars": false,
 "getNames": true,
 "allowTruncation": true,
 "charMultiplier": 2,
 "stripBlanks": false,
 "guessRows": 200,
 "encoding": "utf-8",
 "delimiter": ",",
 "refresh": true,
 "refreshMode": "newer",
 "successJobId": ""
 },
 "selectors": [{
 "serverName": "cas-shared-default",
 "inputCaslib": "Public",
 "outputCaslib": "Public",
 "filter": "or (endsWith(name,'.idx'))",
 "settings": {}
 }]
}

5

BEST PRACTICE

This best practice saves you time by enabling you to use a single step to load and unload
data using the CLI. To do this, you must create a flow that contains both jobs. A job is
defined as a program that contains tasks that you need to run. A flow is defined as a
container of jobs. Flows must contain at least one job.

You can schedule flows to run individually or run as dependent flows. The load job can be
data dependent on the unload data or vice versa. Here is sample JSON code called
LOADTEST that loads data:

{
 "enabled" : true,
 "type" : "LOAD",
 "settings" : {
 "refresh" : false,
 "refreshMode" : "newer",
 "refreshAccessThreshold" : 0,
 "varChars" : false,
 "getNames" : true,
 "allowTruncation" : true,
 "charMultiplier" : 2,
 "stripBlanks" : false,
 "guessRows" : 200,
 "scope" : "global",
 "encoding" : "utf-8",
 "delimiter" : ",",
 "successJobId" : ""
 },
 "selectors" : [{
 "serverName" : "cas-shared-default",
 "inputCaslib" : "Public",
 "outputCaslib" : "Public",
 "filter" : "or(endsWith(tableReference.sourceTableName,'.sashdat'),
endsWith(tableReference.sourceTableName,'.SASHDAT'))",
 "settings" : { }
 }]
}

Here is sample JSON code called UNLOADTEST that unloads the data:
{
 "enabled" : true,
 "type" : "UNLOAD",
 "settings" : {
 "unloadAccessThreshold" : "P7D",
 "successJobId" : ""
 },
 "selectors" : [{
 "serverName" : "cas-shared-default",
 "inputCaslib" : "Public",
 "outputCaslib" : null,
 "filter" : "",
 "settings" : { }
 }]
}

6

Now, you can put these two jobs in a flow. This example flow called TestFlow contains the
two jobs. The UNLOADTEST job should start when the LOADTEST job finishes successfully.

{
 "version": 1,
 "id": "",
 "name": "TestFlow",
 "description": "Basic flow to load and unload data.",
 "triggerType": "manual",
 "triggers": [],
 "jobs": [
 "/jobFlowScheduling/jobs/LOADTEST",
 "/jobFlowScheduling/jobs/UNLOADTEST"
],
 "controlNodes": [],
 "dependencies": [{
 "target": "Unload Test",
 "event": {
 "type": "jobevent",
 "expression": "success(\"LOADTEST\") // exits with an
exit code of 0)"
 }
 }]
}

THE JOBS PAGE IN SAS ENVIRONMENT MANAGER
You can use the Jobs page in SAS Environment Manager Jobs to schedule or monitor jobs.
This function is available in the left navigation pane of the GUI.

ADVANTAGES
The Jobs page in the SAS Environment Manager left navigation pane makes it easy to
navigate your scheduled jobs. There are three applications—SAS® Data Explorer, SAS® Data
Studio, and SAS® Visual Analytics from SAS® Drive—that you can use to populate the GUI
to schedule jobs. Scheduling jobs using the Jobs page is easy because you can point and
click without needing to code through the CLI. After a job is scheduled, click the Job
Monitor tab to see whether the job started successfully. Also, you can easily grant non-
administrators access to the SAS Environment Manager GUI to schedule jobs. See SAS Viya
3.4 Administration: Identity Management for information about how to add grants to a
Uniform Resource Identifier (URI) using the Rules page in the left navigation pane. Here
are some example URIs that you would use to grant access to non-administrators:

Schedule jobs
 /jobExecution/jobRequests/*/

Edit scheduled jobs
/scheduler/jobs/**

Monitor jobs
 /jobExecution/jobs/**

7

DISADVANTAGES
You can populate the Jobs page only from certain applications, which correspond to the
following CAS actions: Manage Data works with SAS Data Explorer, Prepare Data works with
SAS Data Studio, and Explore and Visualize Data works with SAS Visual Analytics. You can
access these applications from the side menu on SAS Drive. The workaround is to use the
CLI or another application and make sure that you use Job execution as the type of job.
This workaround enables you to see the job in the GUI on the Monitoring tab of the Jobs
page.

The Jobs page in SAS Environment Manager uses time-based criteria only. Display 3 shows
the New Trigger dialog box where you put in the time-based criteria for your job:

Display 3. Dialog Box Where You Input Time-Based Criteria for the Job

If you want the job to be dependent on something other than a time event, then you can
use the CLI to create a flow. From the flow, you can set job dependencies on other jobs.
The code in the Best Practice section of CAS table state management contains a snippet of
dependencies. The Command Line Interface section of this paper also has helpful
information.

For running jobs, the token has a 12-hour limit. The token is not refreshed once a user is
logged in to SAS Environment Manager. For example, if you run a job at 8 a.m. and run
another job as the same user at 9 p.m., the second job is likely to fail because the token
has expired. The workaround is to use the SAS Job Execution Web Application, which uses a
fresh token for each job.

Note: The Monitoring tab for SAS Environment Manager has a limitation. It shows only the
status of jobs that are starting, not jobs that are in progress or finished.

8

BEST PRACTICE
This best practice gives you flexibility for how you use the time trigger and also saves time.
When you use the Jobs page in the SAS Environment Manager left navigation pane, there
are multiple ways to schedule jobs using various time patterns. You can create different
triggers, each with an optional start and end date. For example, if you want to schedule a
job to run three weeks, skip one week, and then run three weeks, you could write it as
three triggers in the New Trigger dialog box:

 Start on X, run one week, skip 3 weeks
 Start on X+1 week, run one week, skip 3 weeks
 Start on X+2 weeks, run one week, skip 3 weeks

For this pattern, you would need to use the weekly TimeEvent trigger, specify every
weekday in the daysOfWeek array, and specify skipCount=3.

Instead of specifying days, you can also run the job with list of dates.

SAS JOB EXECUTION WEB APPLICATION
SAS Job Execution Web Application is comparable to a SAS®9 stored process. You can
access it from a web browser with the SASJobExecution extension.

ADVANTAGES
When you submit a job in the SAS Job Execution Web Application, it uses a fresh 12-hour
token unlike the Jobs page in SAS Environment Manager. A REST request has a token on it,
which is based on whomever authenticated the application that is driving the REST request.
This is an important feature for long-running jobs. It can increase the time-out value so that
jobs can run longer. This setting is published in the Job Execution Time-out section of SAS®
Job Execution Web Application 2.1: User's Guide.

This application can schedule a wider variety of jobs than the previous two methods
discussed in this paper. From the SAS Job Execution Web Application, you can create jobs
by right-clicking and selecting Schedule Job as shown in Display 4.

Display 4. Page Where You Can Schedule Your Job

9

This action launches another web browser tab with the Jobs page from SAS Environment
Manager. On this tab, you can schedule and monitor the job that you created in the SAS Job
Execution Web Application.

DISADVANTAGES
The entry point to the SAS Job Execution Web Application is separate from SAS Drive. You
must either launch a separate web browser or you need to enter another URL to get to the
SAS Job Execution Web Application.

BEST PRACTICE
This practice can help improve the performance of long-running jobs. For longer-running
jobs, the fresh 12-hour token is key. If you have many long-running jobs, SAS recommends
running half of your jobs on the SAS Job Execution Web Application and the other half from
the Jobs page in SAS Environment Manager. This practice could help improve the
performance of running jobs on your server. However, if your environment performs better
running all the jobs through one application, then you should choose the best one for your
system's needs.

SAS STUDIO
SAS Studio is web-based programming environment for creating SAS code that you can
access from SAS Drive.

ADVANTAGES
If you want to use SAS®9 jobs in the SAS Viya environment, then this method is the one
that you should use. SAS Studio enables you to migrate SAS®9 jobs into SAS Viya for
scheduling. For details about how to use this method, see the SAS Viya 3.4: Schedule SAS
Studio 5.1 (Studio V) Program Files post in SAS Communities.

DISADVANTAGES
The main drawback to this method is that you must use both the SAS Job Execution Web
Application and SAS Environment Manager. This method requires a combination of
programming and pointing and clicking. Currently, there is no way around using two
applications.

BEST PRACTICE
SAS Studio is an application that can efficiently load a large amount of data from external
data sources. Instead of manually loading the data, you can schedule the load using the link
in the Advantages section above.

COMMAND LINE INTERFACE
The CLI is an administrative tool for programmers, which can be accessed directly from the
operating system on which the CLI is installed.

ADVANTAGES
The CLI offers the most flexibility and customization of these methods. It provides options
to schedule and unschedule flows, supports flows that contain jobs, and supports job
dependencies.

10

DISADVANTAGES

Familiarity with JSON is required to use this method. If you are not a JSON programmer,
there are several other scheduling methods that you can use, which are described in this
paper.

The CLI has a 12-hour authentication limitation for flows, which is documented in the
Command-Line Interface: Preliminary Instructions section of SAS® Viya® 3.4
Administration: Using the Command-Line Interfaces. Therefore, flows that run longer than
12 hours will not complete using this method. For longer-running jobs, it is best to use the
SAS Job Execution Web Application tool.

BEST PRACTICE
This method provides more flexibility with manipulating flows. There are different actions
and commands to schedule and unschedule flows. Display 5 shows a sample of usage and
commands of job flows for the CLI.

Display 5. Sample of Usage and Commands of Job Flows for the CLI

Here is an example of how to use the CLI to schedule a flow:

1. Before you attempt to use the CLI, make sure that you have a profile that is
authenticated based on the Command-Line Interface: Preliminary Instructions
section of SAS® Viya® 3.4 Administration: Using the Command-Line Interfaces.

2. To list all the jobs in your SAS Viya environment, run the .sas-admin job. The output
of the job requests list shows that aabd293c-4a5f-43b4-ab66-9c908c19723a is the
ID used in the example JSON code for jobs below:

sas> ./sas-admin job requests list
Id Name
Version Description
bda2ce72-feb2-4d3f-96d7-24908c5027a4 BINARY_BACKUP_SCHEDULE
3 This job is created by sas.deploymentBackup to run binary
backup first Saturday at 5AM every month

11

625f1059-67ba-4e2c-9377-68032eb4023d DEFAULT_BACKUP_SCHEDULE
3 This job is created by sas.deploymentBackup to run default
backup every Sunday at 1AM.
6df962fb-6b26-4f14-b46c-181ba8e62781 Sample: Import cas-shared-
default Public data 3 Imports csv, sas7bdat, and excel
files to sashdat files in cas-shared-default:Public
09459f84-1feb-4e28-83ca-96be5c36452c Sample: Load cas-shared-
default Public data 3 Loads data in cas-shared-
default:Public
35793268-d12c-4cd0-934e-77f0d3608757 Sample: Unload cas-shared-
default Public data 3 Unloads infrequently accessed data in
cas-shared-default:Public
0b059266-667b-4701-a1ca-f60df6a182f6 Simple JSON
3 JSON file created using PROC JSON.
aabd293c-4a5f-43b4-ab66-9c908c19723a Simple JSON
3 JSON file created using PROC JSON.

3. To list all the schedulers in your SAS Viya environment, run the sas-admin job. The
output of job schedulers list shows that 6e573f08-7498-443a-bd7c-3b0101ef5d75 is
the ID used in the example JSON code for scheduleID:

sas> ./sas-admin job schedulers list
Id Name
Version Description
6e573f08-7498-443a-bd7c-3b0101ef5d75 Default SAS Job Flow Scheduler
1 SAS Job Flow Scheduler

4. Here is an example of how to create a flow using a time-event trigger. You can use
Notepad to create the JSON code.

{

 "name": "opaque",

 "description": "Test object with time event opaque",

 "triggerType": "event",

 "triggers": [{

 "type": "timeevent",

 "active": true,

 "event": {

 "recurrence": {

 "type": "daily"

 },

 "hours": "12",

 "minutes": "0",

 "duration": "1"

 }

 }],

 "triggerCondition": "any",

12

 "jobs": [

 "/jobFlowScheduling/jobs/aabd293c-4a5f-43b4-ab66-
 9c908c19723a"

],

 "dependencies": [],

 "schedulerId": "6e573f08-7498-443a-bd7c-3b0101ef5d75"

}

This code is contained in a file called createflow.json and is saved on the UNIX
operating system.

5. In the CLI, the sas-admin command creates the flow in this example:

sas> ./sas-admin job flows create --file-in ~urpolo/createflow.json
POST /jobFlowScheduling/flows from
"/r/ge.unx.sas.com/vol/vol620/u62/urpolo/createflow.json completed."

sas> ./sas-admin job flows list
Id Name Version Description
86a2551e-84e6-4421-a013-3145a28bfce2 opaque <nil> Test object
with time event opaque

sas> ./sas-admin job flows schedule --id 86a2551e-84e6-4421-a013-
3145a28bfce2
Scheduled the flow "86a2551e-84e6-4421-a013-3145a28bfce2"

 In this example, Opaque is a schedule flow using a time event as a trigger.

CONCLUSION
As outlined in this paper, there are numerous options to meet your needs for scheduling
data. Scheduling options exist for specific tasks in SAS Viya as well as flexible and
customizable options for general job and flow submission. This paper has detailed the
advantages, disadvantages, and best practices for each method, enabling you to create the
most effective and efficient environment for your needs. SAS Viya makes it easy to schedule
your jobs. Now, it’s up to you to decide which is the best method for you.

REFERENCES
SAS Institute Inc. 2018. “Job Execution Time-out." SAS® Job Execution Web Application
2.1: User’s Guide. Cary, NC: SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=jobexecug&docsetTarget=p1ct9uzl5c7omun1t2z
y0gxhlqlc.htm&docsetVersion=2.0&locale=en#n1l1c94xox7r2vn1bzyp8on38so1

SAS Institute Inc. 2018. SAS® Viya® 3.4 Administration: Data. Cary, NC: SAS Institute Inc.
Available at
go.documentation.sas.com/api/docsets/caldatamgmtcas/3.4/content/caldatamgmtca
s.pdf

13

SAS Institute Inc. 2018. SAS® Viya® 3.4 Administration: Identity Management. Cary, NC:
SAS Institute Inc. Available at
go.documentation.sas.com/api/docsets/calids/3.4/content/calids.pdf

SAS Institute Inc. 2018. SAS® Viya® 3.4 Administration: Jobs. Cary, NC: SAS Institute Inc.
Available at
go.documentation.sas.com/api/docsets/caljobs/3.4/content/caljobs.pdf

MKQueen. “SAS Viya 3.4: Schedule SAS Studio 5.1 (Studio V) Program Files.” SAS
Communities Library. 2019. Available at communities.sas.com/t5/SAS-Communities-
Library/SAS-Viya-3-4-Schedule-SAS-Studio-5-1-Studio-V-Program-Files/ta-
p/550219

SAS Institute Inc. 2018. "Scheduling Command Line Interface. SAS® Viya® 3.4
Administration: Jobs. Cary, NC: SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=caljobs&docsetTarget=p1g6z2wnbs79lun1n5556
kigta2h.htm&docsetVersion=3.4&locale=en

SAS Institute Inc. 2017. "Scheduling: How to (Command Line Interface). SAS® Viya™ 3.3
Administration: Scheduling. Cary, NC: SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=calscheduling&docsetTarget=p108p296wpbvkjn
1cl76xlyoh8vt.htm&docsetVersion=3.3&locale=en

ACKNOWLEDGMENTS
Thanks to Russell Gonsalves, Jeff House, Bob Maggio, Paul Polo, Rayna Rowell, Casey
Thompson, George Wilder, Erica Williams, Randy Williams, and Connie Wu for their support
and knowledge.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Ursula H. Polo
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Email: support@sas.com
Web: support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

