
1

#SASGFSAS® GLOBAL FORUM 2020

Paper SAS4214 -2020

SAS® Viya® Monitoring Using Open-Source Tools
Bryan Ellington, SAS Institute Inc.

ABSTRACT
Did you know that SAS® Viya® has an event-driven infrastructure that gives you access to a
continuous flow of logs, metrics, and other activity? This paper discusses the event-driven
architecture of SAS Viya and demonstrates how you can leverage it to send logs, metrics,
and events to leading open-source tools. See how to export metrics to Prometheus and set
up custom alerts that are triggered when specified thresholds are met or exceeded.
Understand how to use Grafana to visualize metrics on dashboards that are customized to
your needs. Learn how to send logs and events to Elasticsearch, and how to efficiently filter,
search, and report on this data using Kibana.

INTRODUCTION
This paper builds on the introduction of the SAS Viya operations infrastructure in the paper
Exploring the SAS® Viya Operations Infrastructure. The event and payload formats are
described here in depth. In addition, this paper describes how metric and log events can be
used to integrate with best-of-breed open-source monitoring and log aggregation projects
such as:

• Prometheus - A metric collector, time-series database, and alerting system with a
robust query language that has become a de facto standard for Kubernetes monitoring

• Grafana - Browser-based application that supports Prometheus with dashboards for
metric visualization

• Logstash - A log processing pipeline that can push data to Elasticsearch

• Elasticsearch - Indexed document repository with powerful search and filtering
capabilities

• Kibana - Provides dashboards and visualization for data in Elasticsearch

EVENT-DRIVEN ARCHITECTURE
The monitoring and logging infrastructure of SAS Viya is designed around an event-driven
architecture. Events indicate that something potentially interesting happened in the
environment. For example:

• a service writes a log message

• metric collection for a resource completes

• an admin sends a notification

An event-driven architecture logically separates, or decouples, producers of events from
consumers of events. Events are published by producers, and consumers subscribe to a
subset of events that the consumers handle. The key component in the middle is the
message broker, which accepts published events and sends them to the appropriate
subscribers. If events are produced faster than they can be consumed, the events are
queued on a per-subscriber basis.

2

In SAS Viya, events are published in JSON format. All events share a common wrapper
format, while each event type (such as log, metric, or notification), defines its own JSON
‘payload,’ which is a specification very similar to a REST API media type.

For a more thorough description of the event-driven architecture and related tooling in SAS
Viya, see the paper Exploring the SAS® Viya Operations Infrastructure.

MONITORING
Monitoring in SAS Viya uses a push model. In this model, metrics are collected locally on a
schedule, then pushed out as events. This approach allows backend systems to easily collect
all metrics by simply connecting to the message broker and listening for these events.

Each machine in a SAS Viya deployment runs an instance of the sas-ops-agent process,
which serves as a task scheduler. Many of the recurring tasks run the sas-peek process to
discover local resources, gather metrics, and provide output (using the JSON format for the
metric payload described later in this paper.) The sas-ops-agent program takes this
output, wraps it into an event, and publishes it to the message broker (the sas.metric
exchange on RabbitMQ). At this point, all subscribers each receive their own copy of the
event.

LOG AGGREGATION
Log aggregation is a natural fit for an event-driven architecture. In SAS Viya, .log files in
the [sasConfigRoot]/var/log directory are actively watched (similar to the tail command)
by the sas-watch process. When each line is appended to a watched file, it is parsed into
the log payload JSON file described later. That payload file is then wrapped into an event
and published to the message broker (the sas.log exchange on RabbitMQ).

EVENT FORMATS

EVENT WRAPPER
All events published by SAS Viya components use a common event wrapper that includes
some key data about the event itself as well as information about the embedded payload
data.

An abbreviated event (with the payload removed) looks like this:
{
 "version": 2,
 "id": "625d61a3-d378-43e9-a50c-27521357a270",
 "type": "metric",
 "payloadType": "application/vnd.sas.event.metric;version=1",
 "user": "sas.ops-agent",
 "headers": {
 "__tenant": "provider",
 "routing-key": "metric.sas-peek-system",
 "sas-content-type": "application/vnd.sas.event",
 "sas-event-source": "sas-event-pub",
 "sas-published-timestamp": "2020-02-19T08:10:00.668260-05:00"
 },
 "payload": {…},
 "timeStamp": "2020-02-19T08:10:00.065789-05:00"
}

3

Field Type Description
version integer Version number of the event wrapper.

This is always 2 in SAS Viya 3.3 or later
id A generated GUID that uniquely identifies this event.

type The short payload type (such as “log”, ”metric”,
“notification”, ”security”, or ”resource”)

payloadType The full media type of the payload, Such as
application/vnd.sas.event.metric;version=1

timeStamp string Time the payload was created. The format must be of the
form:
yyyy-mm-ddThh:mm:ss.SSSSSS-[hh]:[mm]

For example:
2017-06-05T15:24:43.508084-04:00

user string Optional - The identity of the entity that created the
payload.

headers map
string:string

Event headers

Not all headers are available for every event.

__tenant - Identifies the tenant associated
with this notification. A value of ”provider” is
used if it is generated by the system or there
is no tenant.
routing-key - The routing key for this
event.
sas-content-type - The full event media
type, including version. The value is
application/vnd.sas.event;version=2 for
SAS Viya 3.3 or later.
sas-event-source - The component or
service that generated the event (such as
”folders”, ”comments”, ”sasstudio”, and so
on)
sas-published-timestamp - Indicates when
the event was published. This timestamp
might differ from the timestamp when it was
generated. However, it must never be
earlier. The format must be of the
form: 2017-06-05T15:24:43.508084-04:00

payload custom The event payload (see below)

Table 1 - SAS Viya Event Wrapper

METRIC EVENT
A full metric event published by the sas-peek system command is included here for
reference:

{
 "version": 2,
 "id": "625d61a3-d378-43e9-a50c-27521357a270",
 "type": "metric",
 "payloadType": "application/vnd.sas.event.metric;version=1",

4

 "user": "sas.ops-agent",
 "headers": {
 "__tenant": "provider",
 "routing-key": "metric.sas-peek-system",
 "sas-content-type": "application/vnd.sas.event",
 "sas-event-source": "sas-event-pub",
 "sas-published-timestamp": "2020-02-19T08:10:00.668260-05:00"
 },
 "payload": {
 "version": 1,
 "collectorName": "sas-peek-system",
 "collectorVersion": "1.5.19+a510145",
 "properties": {
 "consulNodeName": "ops.sas.com",
 "hostname": "ops.sas.com",
 "os": "linux_amd64"
 },
 "measurements": [
 {
 "resourceType": "system",
 "resourceId": "j2y9Xi/Ime2SCOEONdzuVA==",
 "properties": {
 "cpucount": "24",
 "resourceName": "ops.sas.com",
 "uname": "Linux ops 3.10.0-514.el7.x86_64 #1 SMP Wed Oct 19
11:24:13 EDT 2016 x86_64 (none)"
 },
 "metrics": [
 {
 "name": "totalCpu",
 "unit": "ms",
 "type": "counter",
 "detailLevel": 1,
 "value": 1802332229000
 },
 {
 "name": "userCpu",
 "unit": "ms",
 "type": "counter",
 "detailLevel": 2,
 "value": 60593052040
 },
 {
 "name": "systemCpu",
 "unit": "ms",
 "type": "counter",
 "detailLevel": 2,
 "value": 28030486090
 },
 {
 "name": "idleCpu",
 "unit": "ms",
 "type": "counter",
 "detailLevel": 2,
 "value": 1712990923770
 },
 {
 "name": "actualFreeMemory",

5

 "unit": "MB",
 "type": "gauge",
 "detailLevel": 1,
 "value": 42739
 },
 {
 "name": "usedMemory",
 "unit": "MB",
 "type": "gauge",
 "detailLevel": 2,
 "value": 85820
 },
 {
 "name": "freeMemory",
 "unit": "MB",
 "type": "gauge",
 "detailLevel": 2,
 "value": 10665
 },
 {
 "name": "actualUsedMemory",
 "unit": "MB",
 "type": "gauge",
 "detailLevel": 2,
 "value": 53746
 },
 {
 "name": "totalMemory",
 "unit": "MB",
 "type": "gauge",
 "detailLevel": 2,
 "value": 96485
 },
 {
 "name": "freeSwap",
 "unit": "MB",
 "type": "gauge",
 "detailLevel": 2,
 "value": 4063
 },
 {
 "name": "uptime",
 "unit": "s",
 "type": "counter",
 "detailLevel": 1,
 "value": 75483057
 },
 {
 "name": "loadAverage1",
 "unit": "none",
 "type": "gauge",
 "detailLevel": 1,
 "value": 2.54
 },
 {
 "name": "ioWaitCpu",
 "unit": "ms",
 "type": "counter",

6

 "detailLevel": 2,
 "value": 162469850
 },
 {
 "name": "stolenCpu",
 "unit": "ms",
 "type": "counter",
 "detailLevel": 2,
 "value": 0
 },
 {
 "name": "contextSwitches",
 "unit": "count",
 "type": "counter",
 "detailLevel": 2,
 "value": 1808713304515
 },
 {
 "name": "openFiles",
 "unit": "count",
 "type": "counter",
 "detailLevel": 2,
 "value": 16992
 },
 {
 "name": "maximumOpenFiles",
 "unit": "count",
 "type": "counter",
 "detailLevel": 2,
 "value": 9780545
 }
]
 }
],
 "timeStamp": "2020-02-19T08:10:00.065789-05:00"
 },
 "timeStamp": "2020-02-19T08:10:00.668254-05:00"
}

These are the metric payload fields for the previous example.

Field Type Description
version integer Version number of this payload format.

This value is always 1 for SAS Viya 3.x
timeStamp string The time the payload was created. The format

must be of the form:
yyyy-mm-ddThh:mm:ss.SSSSSS-[hh]:[mm]

For example:
2017-06-05T15:24:43.508084-04:00

collectorName string The name of the collector that produced this
metric payload.

collectorVersion string The semantic version number of the collector
that produced this metric payload.

7

Field Type Description
properties map

string:string
This optional field is an open set of key/value
pairs that specify additional details about the
payload. Keys must be 32 characters or less
and conform to these identifier restrictions:
^[_a-zA-Z][_a-zA-Z0-9\-]*$

Keys should use camelCase naming. Values are
always strings.
Properties might be helpful, but they are
optional. Consumers should not fail if a desired
property is not present.

measurements array of
measurement

Each measurement describes a single measured
resource and its associated metrics.

Table 2. Metric Event Payload – Top Level

Field Type Description
resourceType The type of resource for which metric data is

being reported.
The combination of resourceType and
resourceId uniquely identify a resource within a
deployment.

resourceId The identifier of resource instance for which
metric data is being reported. The value is an
opaque string that should not be parsed. Use
properties to distinguish instances in a human-
readable way.

properties map
string:string

Key/value pairs that provide additional details
about the payload, as described in Table 2

metrics array of metric Each metric describes one measurement of the
resource.

Table 3. Metric Event Payload - Measurement Object

Field Type Description
name The version number of this payload format.

This value is always 1 for SAS Viya 3.x
type Identifies the type of metric. If omitted a type

of "gauge" is used.
• gauge - A value that is absolute and

may go up or down: free disk space,
total memory, per second, percent, etc.

• counter - A 64-bit integer value that
always increases. Multiple values with a
timespan are needed to make sense of
the value to obtain value per unit time:
total HTTP requests, total writes, bytes
transferred, etc.

8

Field Type Description
unit string The unit of measure for the metric.

detailLevel integer The detail level of the metric:

• 0 - None: Although this is not used in
JSON, it can specify that a collector
should not collect any metrics (to
perform resource detection only, for
example.)

• 1 - Indicator: Specifies a common
metric for a resource that best
summarizes its performance or health.

• 2 - Normal: Specifies a standard metric
generally collected by default.

• 3 - Fine: Specifies a detailed metric that
is not normally collected by default,
because it is too expensive to collect, it
is not as well understood, or it is too
detailed to collect by default.

value float64 The value of the metric
properties map

string:string
Key/value pairs that provide additional details
about the payload, as described in Table 2

Table 4. Metric Event Payload - Metric Object

LOG EVENTS
A full log event is included here for reference:

{
 "version": 2,
 "id": "b2e94cfb-01c1-4788-89c9-1f6ca061280c",
 "type": "log",
 "payloadType": "application/vnd.sas.event.log",
 "user": "sas.watch-log",
 "headers": {
 "__tenant": "provider",
 "routing-key": "log.cas.info",
 "sas-content-type": "application/vnd.sas.event",
 "sas-event-source": "sas-watch",
 "sas-published-timestamp": "2020-02-19T08:17:19.085995-05:00"
 },
 "payload": {
 "version": 1,
 "level": "info",
 "source": "cas",
 "messageParameters": {
 "index": "05017999"
 },
 "message": "MAIN sas.appRegistry 505410 [casgeneral.c:4823] -
Launched session controller. Process ID is 27999.",
 "properties": {
 "consulNodeName": "ptnode21.ptest.sas.com",
 "directory": "/home/opt/sas/viya/config/var/log",

9

 "hostname": "ptnode21.ptest.sas.com",
 "rawType": "SAS Server"
 },
 "timeStamp": "2020-02-19T08:17:19.083000-05:00"
 },
 "timeStamp": "2020-02-19T08:17:19.085974-05:00"
}

5 describes the log payload.

Field Type Description
version integer Version number of this payload format.

This value is always 1 for SAS Viya 3.x.
timeStamp dateTime The time the payload was created. The format

must be of the form:
yyyy-mm-ddThh:mm:ss.SSSSSS-[hh]:[mm]

For example:
2017-06-05T15:24:43.508084-04:00

level string The level of the log message. Must be one of these
values: trace , debug , info , warn , error , fat
al , or none.

source string The source of the log message. This is usually the
short service name (folders , for example).

messageKey string This optional field is a language-independent
message identifier. This field is not used in SAS
Viya 3.x.

messageParameters map
string:string

This optional field is a string:string map of variable
fields in a log message. The fields provided are
highly dependent on both the source and the log
message.

message string The text of the log message.
properties map

string:string
Key/value pairs that provide additional details
about the payload, as described in Table 2

These are examples of meta content. These keys
are examples, so these specific keys are not
required or present in every payload.

• thread
• hostname
• consulNodeName

Table 5. Log Event Payload Specification

PROMETHEUS AND GRAFANA
Prometheus is based on a pull model for metric collection, which means that it actively
queries a list of targets. The targets may be statically configured, dynamically discovered, or
a mix of both.

Although there is no direct way to push metrics to Prometheus, there is a solution available,
called the Prometheus Pushgateway. The Pushgateway is a long-running service that
accepts metric pushes, caches them, and responds to scrape requests from the Prometheus

10

server. The primary use case for the Pushgateway is for metric collection for jobs or scripts
that execute and exit and that cannot respond to scrape requests.

For the purposes of this paper, metrics events are converted to Prometheus metrics and
sent to the Prometheus Pushgateway as they are received from the message broker.

RECEIVING AND TRANSFORMING METRICS
There are several ways to consume metric events including these commands:

• sas-event-sub --exchange sas.metric

• sas-ops metrics --format event (returns the full event)

• sas-ops metrics --format pretty (returns just the metric payload)

• Write code in your favorite language to connect to RabbitMQ

Any of these methods will return events as JSON strings. You must then convert the metric
payload into a format compatible with Prometheus. The transcoding has two parts - building
a metric name in the snake-case style used by Prometheus and adding labels.

Perform these tasks for the metric name:

• Prefix all metric names with the value of the collectorName field plus an underscore.
For example: 'sas_peek_system_"

• Add the metric name.

• Add the metric unit as a suffix (if it’s not a simple count or 'none').

• Add a _total suffix if the metric type is 'counter'

Perform these tasks for labels:

• Include detail_level from the detailLevel field of the metric.

• Include resource_type from the resourceType filed of the measurement.

• Include instance from the resourceName property of the measurement.

PROMETHEUS PUSHGATEWAY
The Prometheus client libraries are available for several programming languages. The library
includes a 'push' package that sends metrics to the Prometheus Pushgateway.

The Pushgateway acts as a Prometheus exporter, which means that it exposes a /metrics
HTTP endpoint that is suitable for scraping by Prometheus. There are several ways to get
Prometheus to find and scrape that endpoint, but for SAS Viya 3.x, a static scrape
configuration is the simplest way to collect the metrics. For example, if the Prometheus
Pushgateway was started on port 9091 on the same host as Prometheus, the Prometheus
configuration yaml file could be as simple as this:

scrape_configs:
- job_name: viya3-pushgateway

 honor_labels: true

 static_configs:
 - targets: ['localhost:9091']
 labels:
 viya_version: 3.x

After Prometheus successfully scrapes the Pushgateway, you can use the Prometheus web
application to see the time series and values:

11

Display 1. Testing queries in Prometheus

GRAFANA
After Prometheus is successfully scraping the Pushgateway, you can build Grafana
dashboards to visualize the metrics. A simple dashboard might look like:

Display 2. Visualizing Viya 3.x metrics in Grafana

LOGSTASH AND ELASTICSEARCH
Elasticsearch is a perfect match for the standardized structured JSON logging in SAS Viya,
because it includes excellent support for indexing JSON documents.

RECEIVING LOGS
Logstash includes native support for receiving events from RabbitMQ. A simple Logstash
input configuration looks like the following:

input{
 rabbitmq {
 host => "${RABBIT_HOST:YOU_DID_NOT_SET_RABBIT_HOST}"
 port => "${RABBIT_PORT:5672}"
 exchange_type => "topic"
 exchange => "sas.log"
 durable => true
 ssl => true
 queue => "${RABBIT_LOGQ:sas.log.shared-queue}"
 auto_delete => true
 passive => false

12

 user => "${RABBIT_USER:guest}"
 password => "${RABBIT_PASS:guest}"
 key => "#"

 tags => "sasviyalogs"
 }
}

The output configuration can be even simpler:
output {
 if ("sasviyalogs" in [tags]) {
 elasticsearch {
 hosts => ["localhost:9200"]
 index => "sas-log-${DEPLOYMENT_NAME:viya}-%{+YYYY.MM.dd}"
 }
 }
}

KIBANA
After logs are flowing to Elasticsearch, you can use Kibana to visualize, filter, and explore
the logs. Kibana supports custom dashboards, full text search, UI-based filters, and a
powerful query language for more advanced searching.

Display 3. Viewing Viya 3.x logs in Kibana

CONCLUSION
The event-driven architecture and JSON-based events of SAS Viya 3.x enables powerful and
flexible integration with popular open-source tools for both monitoring and logging. This
paper, while not a step-by-step guide, should demystify the event flows and help you get
started connecting SAS Viya to popular open-source tools.

REFERENCES
Venkataramani, Meera. 2020. “Essential Performance Tips for SAS® Visual
Analytics.” Proceedings of the SAS Global Forum 2020 Conference. Cary, NC: SAS Institute
Inc. https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4408-2020.pdf.

13

Crevar, Margaret. 2020. “Important Performance Considerations When Moving SAS® to a
Public Cloud.” Proceedings of the SAS Global Forum 2020 Conference. Cary, NC: SAS
Institute Inc. https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4312-2020.pdf.

RECOMMENDED READING
Ellington, Bryan, 2019. “Exploring the SAS Viya Operations Infrastructure.” Proceedings of
the SAS Global Forum 2019 Conference. Cary, NC: SAS Institute Inc. Available
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2019/3393-2019.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Bryan Ellington
SAS Institute Inc.
Bryan.Ellington@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

