
 

 

1 

Paper 4209-2020 

A Beginners Guide to Consuming RESTful Web Services in SAS® 

Laurent de Walick, PW Consulting 

ABSTRACT  

Web services are a method to exchange data between applications or systems using web 
technology like HTTP and machine-readable f ile formats like XML and JSON. 

Representational State Transfer (REST) is the most popular architecture used to implement 

web services. Web services using the REST architecture are called RESTful web services.  

In recent years SAS has included procedures and libname engines for all standards to 

support consuming RESTful web services. 

This paper presents how web services can be consumed in SAS. It will explore the PROC 

HTTP and discuss the different options that must be set correctly to consume a web service. 
It shows how parameters can be generated from existing SAS data using PROC STREAM and 
can be submitted when calling a web service. And f inally, it describes how the output from a 

web service can be read into SAS using the JSON and XML libname engine. 

INTRODUCTION  

There is a big chance you wanted to use data from an online service for some analysis. You 
can scrape the data from a website, or download it manually, but this is often not desirable. 
If you investigated how to automate the process to acquire the data, you've most likely 

come across the term REST API. So, what is a REST API? 

API 

An Application Programming Interface, or API, is an interface between two or more 
applications. The API is a set of rules that allow multiple applications to communicate with 
each other. This can be as simple as returning data from a database, but also perform 

complex calculations and return the results. The application is only allowed to connect to 
endpoints for posting or reading data, making it a secure method to allow to applications to 

interoperate. 

HTTP(S) 

HTTP stands for HyperText Transfer Protocol and is a client server protocol that it the 
foundation of any data exchange on the web. Web Services also rely on HTTP to exchange 
data between the client and server. HTTP send information in plain text and is not secure. 
HTTPS is the secure variant that encrypts data in transit. SAS supports HTTP, making it 

possible to use web services from SAS. 

Authentication 

Authentication is the process of identifying the client who is doing a request. HTTP supports 

multiple authentication schema such as anonymous authentication and basic authentication. 

In basic authentication passwords are encoded but not encrypted and not considered 
secure. This might be enough for internal applications, in combination with HTTPS, but very 
few public APIs will use on basic authentication. They will use the anonymous schema and 

use on authentication at the application level. 

  



2 

REST 

The most popular API standard for web applications is REST. This determines how the API 

looks like. REST stands for Representational State Transfer and was defined in 2000 by Roy 
Fielding in his PhD dissertation "Architectural Styles and the Design of Network-based 

Software Architectures" [1].  

The REST architecture is based on a client/server model. A stateless protocol is used for 
communication between client and server. Accessing a REST web service is called a request. 

The data returned by the web service is the response.  

Request 

A request consists of 4 elements 

• endpoint 

• header 

• method 

• data (optional) 

Endpoint 

The endpoint is the internet address where the web service can be accessed. It is Uniform 

Address Location (URL) and typically has the following format.  

https://api.example.url/users/memberships?type=free&sort=lastname 

 

In the above example the root-endpoint is https://api.example.url and 

/users/memberships are the path to a specif ic web service. The f inal part of the endpoint, 

?filter=free&sort=lastname, is optional. This the query string and can be used to add 

parameters to the web service.  

Method 

The method defines the type op request send to a web server. It indicates the action to 

perform for the requested resource. Possible actions are Create, Read, Update or Delete 
(CRUD). The method that supports those actions are GET, POST, PUT, PATCH and DELETE. 

Methods are case sensitive and should always be upper cased. 

Method Type of action 

GET Read a representation of a resource. The web service 

looks for data and sends the results back. 

POST Create new resources; Create new entries in the 

database 

PUT or PATCH Update existing resources; Change existing records in 

the database 

DELETE Delete a resource; Remove records from the database 

Table 1. Common methods 

Not all web services accept all methods. Each web service should have documentation 

available that describes what method is valid.  

For example, the following request will return a list of all available users. 

GET https://api.example.url/users/ 

 

  



3 

In the next example a new user with the name Mike will be created. 

POST https://api.example.url/users/mike 

Header 

Headers are used to send additional information to with a request. The information is 
needed by the server to understand how it should process the request. A header consists 
name-value pairs that are formatted by its case-insensitive name followed by a colon (:) 

and then by its value. A header can contain any number of name-value pairs. 

The following header tells the server that the server can expect data in the JSON format 

(Content-Type), but that the client expects the result to be in XML (Accept). 

"Content-Type: application/json" 

"Accept: application/xml" 

Data 

The data, also called the body, message or payload, contains information that is send to the 

server. Data is only valid when using the POST, PUT, PATCH or DELETE methods.  

Response 

The response consists of a header and data. Each response also has a status code indicating 

how the request was handled. 

HTTP Status Codes 

The status codes are part of the HTTP protocol and can be used to determine quickly if  a 
request has been complete successfully or failed and why. The status codes are grouped in 

f ive classes: 

• Informational responses (100–199) 

• Successful responses (200–299) 

• Redirects (300–399) 

• Client errors (400–499) 

• Server errors (500–599) 

Most status codes are defined in the HTTP/1.1 standard (RFC 7231), but servers can return 
non-standard code. If the code is not standard, the client should be able to determine the 

type of errors by the class. 

JSON 

In the past XML was the de facto standard used to exchange data between systems. The 
rise of SOAP as the default for APIs was an important driver for the popularity of XML. The 
introduction of REST was paired to the rise of JavaScript Object Notation (JSON) as format 

for data exchange. 

JSON is an open-standard file format or data interchange format that uses human-readable 
text to transmit or store data objects consisting of attribute–value pairs and array data 

types. It is lightweight and the most common data format used by REST web services. 

The REST architecture does not mandate the use of a specif ic format to exchange data. 
Both JSON and XML can be used and it's up to the published of the service to select the 

desired format.  



4 

JSON versus XML 

• Both JSON and XML are "self -describing" 

• Both JSON and XML are hierarchical 

• Both JSON and XML have well-documented open standards (RFC 7159, RFC 4825) 

• JSON is smaller. For the same data, JSON is almost always signif icantly smaller, leading 

to faster transmission and processing. 

• XML separates data from metadata via the use of attributes and elements 

• XML supports mixed content 

 

CONSUMING WEB SERVICES USING SAS 

Now that the basic concepts have been explained it's time to discuss how web services can 
be access from SAS. REST web services use HTTP and SAS provides to methods to access 

URLs over HTTP: 

• The FILENAME statement with URL access method 

• The HTTP procedure 

The f ilename statement only supports the GET method and can only be used to read data. 
PROC HTTP supports any method that conforms to the HTTP standard and can be used for 

the other methods.  

GET REQUEST 

In the f irst example we will do a get request to The Open Brewery DB [2]. The Open 
Brewery DB is a free API for public information on breweries, cideries, brewpubs, and bottle 
shops. In the following example we will use the API to retrieve a list of Brewpubs in cities 

named Washington. This is access from the following endpoint: 

https://api.openbrewerydb.org/breweries?by_city=washington&by_type=brewpub 

 

FILENAME statement 

The FILENAME statement with the URL access method creates a f ile reference to an online 

location. The FILENAME statement uses the following syntax: 

FILENAME fileref URL http://url.to/web-service-endpoint ' <url-options>; 

 

We use a data step to read its contents and write them to the SAS log. We also add the 

DEBUG option to have the HTTP headers written to the log.  

 

FILENAME request HTTP 

'http://api.openbrewerydb.org/breweries?by_city=washington&by_type=brewpub' 

DEBUG; 

 

DATA _NULL_; 

 INFILE request; 

 INPUT; 

 PUT _INFILE_; 

RUN; 

 

When run, the code returns the following output to the log:  



5 

NOTE: >>> GET /breweries?by_city=washington&by_type=brewpub HTTP/1.0 

NOTE: >>> Host: api.openbrewerydb.org 

NOTE: >>> Accept: */* 

NOTE: >>> Accept-Language: en 

NOTE: >>> Accept-Charset: iso-8859-1,*,utf-8 

NOTE: >>> User-Agent: SAS/URL 

NOTE: >>>  

NOTE: <<< HTTP/1.1 200 OK 

NOTE: <<< Date: Fri, 07 Feb 2020 09:22:28 GMT 

NOTE: <<< Content-Type: application/json; charset=utf-8 

NOTE: <<< Connection: close 

NOTE: <<< Set-Cookie: __cfduid=d4fc8d90c3c418c08b92614f29bba8dd91581067347; 

expires=Sun, 08-Mar-20 09:22:27 GMT; path=/;  

      domain=.openbrewerydb.org; HttpOnly; SameSite=Lax; Secure 

NOTE: <<< Cache-Control: max-age=86400, public 

NOTE: <<< Etag: W/"fab459aaa6d4afec7b8ccb593d6eec4b" 

NOTE: <<< X-Request-Id: 266e578e-1eab-4010-bd23-a3014d9d0163 

NOTE: <<< X-Runtime: 0.414939 

NOTE: <<< Strict-Transport-Security: max-age=31536000; includeSubDomains 

NOTE: <<< Vary: Origin 

NOTE: <<< Via: 1.1 vegur 

NOTE: <<< CF-Cache-Status: DYNAMIC 

NOTE: <<< Expect-CT: max-age=604800, report-uri="https://report-

uri.cloudflare.com/cdn-cgi/beacon/expect-ct" 

NOTE: <<< Server: cloudflare 

NOTE: <<< CF-RAY: 56144ca9dc231762-FRA 

NOTE: <<<  

NOTE: The infile REQUEST is: 

      

Filename=http://api.openbrewerydb.org/breweries?by_city=washington&by_type=

brewpub, 

      Local Host Name=sasglobalforum2020.paper.host, 

      Local Host IP addr=10.10.10.10, 

      Service Hostname Name=api.openbrewerydb.org, 

      Service IP addr=104.24.124.147, 

      Service Name=N/A,Service Portno=443, 

      Lrecl=32767,Recfm=Variable 

[{"id":1768,"name":"Bluejacket","brewery_type":"brewpub","street":"300 

Tingey St SE","city":"Washington","state":"District of Columb 

ia","postal_code":"20003-4625","country":"United States","longitude":"-

77.0006981","latitude":"38.8750965","phone":"","website_url": 

"http://www.bluejacketdc.com","updated_at":"2018-08-

24T00:26:14.349Z","tag_list":[]}, 

 

... 

 

{"id":1774,"name":"Gordon Biersch Brewery Restaurant - Navy  

Yard","brewery_type":"brewpub" 

,"street":"100 M St SE","city":"Washington","state":"District of 

Columbia","postal_code":"20003-3519","country":"United States","lon 

gitude":"-

77.0052971","latitude":"38.8766834","phone":"2024842739","website_url":"htt

p://www.gordonbiersch.com/locations/navy-yard?a 

ction=view","updated_at":"2018-08-24T00:26:16.619Z","tag_list":[]}] 

NOTE: 1 record was read from the infile REQUEST. 

      The minimum record length was 3763. 

      The maximum record length was 3763. 

 



6 

Let's examine the output. 3 lines are highlighted yellow are discussed next. 

The f irst highlighted line is from the header send by SAS to the server in the request. SAS 

tells the server that it accepts any kind of data. 

NOTE: >>> Accept: */* 

 

The next line is the HTTP status code returned with the response. The return code is 200 OK 

indicating that the request was successful. 

NOTE: <<< HTTP/1.1 200 OK 

 

The third and last highlighted line tells SAS that the output in the response is in json format 

and in the UTF-8 character set. 

NOTE: <<< Content-Type: application/json; charset=utf-8 

 

The data in the response is highlighted in gray. This is the JSON f ile that the web services 
returned. To be able to process the data we don't want the output written to the SAS log, 

but need it in a dataset.  

LIBNAME JSON Engine 

SAS introduced the JSON LIBNAME engine in Maintenance 4 of SAS 9.4. With the libname 
engine it is possible to read data from JSON like it is a data set. It is a read-only library and 

the JSON f ile is read only once, when the JSON engine LIBNAME statement is assigned. To 

read the JSON f ile again, you must reassign the JSON libref.  

For the brewpub request the LIBNAME statement has the following format: 

LIBNAME brewpub JSON FILEREF=request; 

 

This creates a library with several tables. Because the content is dif ferent for each JSON f ile, 
the libname engine always creates an ALLDATA and ROOT and root table. Other tables are 
created based on the data in the JSON f ile. It's like the XML engine some people might be 

familiar with. For the Open Breweries API this is the results: 



7 

 

Display 1 Contents of the BREWPUB library 

 
In this case the JSON structure is f lat and all data is in the ROOT table. The next code prints 

a list of brewpubs in Washington DC: 

proc print data=brewpub.root (where=(state='District of Columbia')); 

 var name street phone; 

run; 

 

That leads to the following results: 

 

Output 1 Contents of the ROOT data set 

  



8 

HTTP Procedure 

PROC HTTP can be used for more complex HTTP request, but nothing prohibits from using it 

for simple GET requests too. PROC HTTP has the following syntax; 

proc http 

 url="http://url.to/web.service.endpoint" 

 method=POST 

 in=request 

 out=response; 

 headers 

  "Content-Type"="application/json" 

  "Accept"="application/json"; 

run; 

 

The next code retrieves all breweries in Washington. The arguments provided to PROC HTTP 

are: 

• URL: The endpoint of the web service the request if  for. This is the only mandatory 

argument. 

• Method: The method used in the request. GET is the default value and the argument can 

be omitted in this case. 

• Out: The destination of the output. In this case we create a f ile reference to temporary 

location and assign a JSON libname to the response f ileref. 

filename response temp; 

 

proc http 

 url="https://api.openbrewerydb.org/breweries?by_city=Washington" 

 method=GET 

 out=response; 

run; 

 

The response is a JSON f ile with information about all the Washington breweries. 

[ 

    { 

        "id": 1767, 

        "name": "Bardo Brewpub", 

        "brewery_type": "micro", 

        "street": "25 Potomac Ave SE", 

        "city": "Washington", 

… 

        "phone": "", 

        "website_url": "", 

        "updated_at": "2018-08-11T21:39:47.705Z", 

        "tag_list": [] 

    } 

] 

 

The LIBNAME JSON engine can be used again to make the data in the JSON f ile useable in 

SAS. 

  



9 

POST REQUEST 

The GET request is easy to use but has limited possibilities. In the next example the request 

is a post request where data is sent in the body. The data in the body is a new person 
records this is "saved" in the database. The example uses the free Dummy Rest API 
Example [3] service that simulates a POST action and does not actually write the create to a 

database.  

The body is a JSON f ile that is placed somewhere on the SAS server. The JSON f ile looks 

like: 

{ 

 "name":"Laurent", 

 "age":"40" 

} 

 

PROC HTTP is used to use the web server. A POST request is done where the JSON is send 

as body content. The PROC HTTP requires the next arguments 

• URL: Endpoint to the web service 

• Method: POST 

• In: File reference to the JSON that is send as body content 

• Out: File reference to the results that are returned by the web service 

• CT: The mime type of the body, in this case application/json because our body content 

is in the JSON format. 

• PROC HTTP also has a debug option. In this case it's set to 1. 

filename payload '/data/payload.json'; 

 

proc http  

 url="http://dummy.restapiexample.com/api/v1/create"  

 method="POST" 

 in=payload 

 out=response 

 ct="application/json"; 

 debug level=1; 

run; 

 

When executed the following is written to the log: 

> POST /api/v1/create HTTP/1.1 

> User-Agent: SAS/9 

> Host: dummy.restapiexample.com 

> Accept: */* 

> Connection: Keep-Alive 

> Content-Length: 56 

> Content-Type: application/json 

>  

< HTTP/1.1 200 OK 

< Accept-Ranges: bytes 

< Access-Control-Allow-Origin: * 

< Cache-Control: no-store, no-cache, must-revalidate 

< Content-Type: application/json;charset=utf-8 

< Date: Fri, 07 Feb 2020 12:35:34 GMT 

< Expires: Thu, 19 Nov 1981 08:52:00 GMT 

< Host-Header: c2hhcmVkLmJsdWVob3N0LmNvbQ== 



10 

< Server: nginx/1.16.0 

<  

NOTE: PROCEDURE HTTP used (Total process time): 

      real time           0.59 seconds 

      cpu time            0.04 seconds 

 

The highlighted parts in from the log tells that a POST request was done with a body 
containing JSON. The request was successful (200 HTTP status code) and JSON body was 

returned. 

The JSON body contains the following : 

{ 

  "status": "success", 

  "data": { 

    "name": "Laurent", 

    "salary": null, 

    "age": "40", 

    "id": 99 

  } 

} 

 

Name and age correspond to the values I put in the body. Because no salary was posted it 

is set to null by the service. A new id is generated for the record. 

DELETE Request 

The DELETE request is like a GET request. An endpoint is accessed with the DELETE method 

and a record is deleted from the database.  

proc http  

 url="http://dummy.restapiexample.com/api/v1/delete/21"  

 method="DELETE" 

 out=response 

 ct="application/json"; 

 debug level=1; 

run; 

 

ADDITIONAL OPTIONS 

JSON maps 

The JSON libname engine has an automap function that generates a data set for each object 

in the JSON. It also generates a data set named ALLDATA, which contains all JSON 

information in a single data set. 

There are situations where the automap function is not the optimal solution to organize data 
in library. Complex hierarchies in the JSON f ile can lead to many datasets and datatypes are 
not always determined correctly. To improve data management the JSON libname engine 
has the possibility to provide a map f ile that that maps the data in data sets according to a 
user definition. In addition, the map f ile can be used to set the length, format and informat 

of each column. 

Using a map f ile can also improve performance when assigning a library on large JSON f iles. 
The automap function needs to read and parse all data to be able to determine what data 

sets are created. A JSON map contains this information and reduces the initial work. 



11 

The 2018 Global Forum Paper "Using Maps with the JSON LIBNAME Engine in SAS" [4] 

explains in more detail how a JSON map can be created. 

XML 

Extensible Markup Language (XML) is a markup language to create documents that are both 
human and machine-readable. The specification for XML is def ined in a free and open 

standard. XML is widely used for the representation of arbitrary data structures such as 

those used in web services [5]. 

Many standards use XML to structure and exchange data. As a result, XML is also a common 

format to exchange data using REST APIs. SAS has been able to process XML since SAS 9.1 
using a libname engine. In SAS 9.2 an improved version of the libname engine was 

introduced. 

The XML Libname engine works much like the JSON LIBNAME Engine. It also has an 
automap feature that generates data sets based on the contents and supports map f iles to 
describe data and have a user define the contents of the library. A libref for the XMLV2 
engine can be assigned to either a specif ic XML document or to the physical location of a 

SAS library in a directory-based environment. [6] 

LIBNAME response XMLV2 XMLFILEREF=response XMLMAP=mapflref; 

Authentication 

Many web services require the consumer to authenticate before a service can be consumed. 
The FILENAME statement with URL Access method only supports basic authentication while 

PROC HTTP supports most common authentication methods. 

• Basic Authentication: Uses the WEBUSERNAME and WEBPASSWORD arguments to 

submit the correct credentials in the HTTP call. 

• NTLM or Kerberos: Uses the current user running the SAS process to authenticate. 

• OATH_BEARER: For service that user OAuth authentication. 

OAuth Authentication 

Many web services are moving to OAuth for authentication. OAuth is an open standard 

authorization framework that allows a user to grant a website or application limited access 
to an HTTP service. OAuth works using tokens to authenticate and authorize an application 

to access a service 

The 2017 SAS Global Forum Paper "Show Off Your OAuth" [2] contains a step by step 

explanation on how to implement OAuth in SAS. 

Proxy 

Many SAS servers can only access outside service through a HTTP proxy server. If this is 

the case the proxy server and optional credentials can be provided in PROC HTTP. 

• PROXYHOST: The hostname of the proxy server 

• PROXYPORT: The port the proxy server listens to 

• PROXYUSERNAME: A username required to login to the proxy server (optional, only 

needed if  server requires credentials) 

• PROXYPASSWORD: The password for the username 

  



12 

CONCLUSION 

Improvements in PROC HTTP and the addition of the JSON libname engine has simplif ied 

the use of REST APIs in SAS. With many REST web services available online, adding third 

party or open data to SAS projects has never been easier. 

REFERENCES 

[1]  Wikipedia, “Representational State Transfer,” 2019. [Online]. Available: 
https://en.wikipedia.org/wiki/Representational_state_transfer.  

[2]  “Open Brewery DB API Documentation,” [Online]. Available: 
https://www.openbrewerydb.org/documentation. 

[3]  “Dummy Rest API Example,” [Online]. Available: http://dummy.restapiexample.com/.  

[4]  A. Gannon, “Using Maps with the JSON LIBNAME Engine in SAS,” in SAS Global Forum, 2018.  

[5]  Wikipedia, “XML,” [Online]. Available: https://en.wikipedia.org/wiki/XML. 

[6]  J. Henry, “Show Off Your OAuth,” in SAS Global Forum, 2017.  

[7]  SAS, “LIBNAME Statement: JSON Engine,” in SAS® 9.4 Global Statements: Reference, 2020.  

[8]  SAS, SAS® 9.4 XMLV2 and XML LIBNAME Engines: User’s Guide, 2020.  

[9]  SAS, “HTTP Procedure,” in Base SAS® 9.4 Procedures Guide, Seventh Edition, 2020.  

RECOMMENDED READING 

• Base SAS® Procedures Guide  

• SAS® 9.4 XMLV2 and XML LIBNAME Engines: User’s Guide 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Laurent de Walick 
PW Consulting 
laurent.de.walick@pwconsulting.nl 
https://www.pwconsulting.nl 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration.  

Other brand and product names are trademarks of their respective companies.  


