
1

Paper SAS4197-2020

Git for the SAS® Programmer: Using Source Control to
Organize Your Code and Collaborate with Others

Amy Peters, Danny Zimmerman, Grace Whiteis, Joe Flynn, and Stan Polanski, SAS
Institute Inc.

ABSTRACT
Are you tired of using elaborate comments in your code or saving multiple copies of your
files to manage changes as you make them? Wish you could go back in time to that version
of your program that worked? Do you live in terror of clobbering someone else’s work?
Version control can help, and the front runner in the version control world is Git. Git is a
free and open source distributed version control system that you can use on your own or in
collaboration with others. It can also be used with a central, shared repository such as
GitHub or Bitbucket. Learn Git concepts such as clone, commit, and merge, and how to
execute them using the Git interfaces in SAS® Studio and SAS® Enterprise Guide® or in
code using SAS® functions.

INTRODUCTION
Git allows groups of developers to collaborate on the same files without overwriting each
other’s work. Git also tracks the history of any file changes, including what has been
changed, when the change occurred, and by whom it was made. Known as “version
control”, this system allows you to review a project’s history and revert to a specific version
later. Developers can use separate branches to segregate work and control when their
content is merged into the common copy. SAS programmers have many options for using
Git, including SAS Enterprise Guide features that use Git hidden in the background, SAS
functions for executing Git commands, and full-featured Git interfaces in SAS Studio and
SAS Enterprise Guide.

SINGLE SAS ENTERPRISE GUIDE CODER – PROGRAM HISTORY
If it’s just you, you use SAS Enterprise Guide, and all you need is help managing the
versions of your own code, then the simplest solution is to use the program history feature
in SAS Enterprise Guide. While this uses Git technology behind the scenes, the complexities
of Git are largely hidden, and there’s no extra setup needed to use it like there is for other
available Git integrations. Program history was introduced with SAS Enterprise Guide 7.1.

SETTING UP AND USING PROGRAM HISTORY
Make sure program history is enabled by selecting Tools > Options > Version Control
and clicking Enable program history for embedded files. Start a new project, open a
new code node, and notice there is now a Program History button on the toolbar. For this
example, you are manipulating a dataset in the code below using the assumption that one
of the variables is numeric. Since you are not completely sure this is the correct path to go
down, commit your current version, so that you have a snapshot of the code that you can
go back to later if needed.

2

Display 1. Committing Code You Might Need Later

You decide the way forward is to treat the variable as character, so you make a bunch of
changes under that assumption and commit them. Then you make more changes. But then
you realize you have completely messed up, and the original numeric approach was the
better one. Select Program History > History from the toolbar to see all the commits you
have made, how they differ from each other, and to revert to a version you were happy
with.

Display 2. Viewing Changes and Going Back in Time with Revert

There are more things to explore, such as using a more sophisticated diff tool to see side-
by-side comparisons, for example. See “Working with Programs” > “Understanding
Program History” in SAS Enterprise Guide: User’s Guide.

LIMITATIONS
Program history can only be used for programs that are embedded in a SAS Enterprise
Guide project. It is not available for stand-alone SAS files. The program history is stored
as part of the project, which means you need to have a robust backup process in place. Do
not think of program history as a backup; if something happens to the project, the program
history will be gone. Program history is also not ideal for multiple users. If you plan to
collaborate with others, then using the full Git interface is likely a better choice.

3

USING THE GIT INTERFACE IN SAS ENTERPRISE GUIDE OR SAS
STUDIO TO WORK WITH A REMOTE REPOSITORY
If the program history feature in SAS Enterprise Guide doesn’t fit your needs, you can move
up to the full Git interface in SAS Enterprise Guide 8.2, SAS Studio 3.8, or SAS Studio 5.2.
The interfaces are similar and offer a lot more control over the code management process,
but require that you set up a connection to a remote repository. There are also some Git
terminology and processes you’ll need to learn to be effective. Git terms will be shown
below in bold/italic font style.

First let’s work through a scenario where everything is already set up and you are working
in a team that is sharing a remote repository. SAS Studio 5.2 is shown, but the process is
the same for SAS Studio 3.8 or SAS Enterprise Guide 8.2. Later, we will talk through any
differences as well as work through the setup process.

Unlike the previous example, you are not working alone. You are on a project with others.
Instead of only working locally, you are working with a remote repository where you and
your co-workers are accessing (and potentially updating) the same files. You have cloned
the remote repository, which means you’ve taken a copy of all the remote files and their
history and put them in the file system you see in SAS Studio (on the SAS server) or SAS
Enterprise Guide (in a folder on your local machine). This copy is your local repository,
which is just a fancy name for a folder that you can see in SAS Studio or SAS Enterprise
Guide and that Git knows about and is tracking. Now as you make and save changes to
files in that folder, the changes appear in the Git interface as unstaged changes.

In this example, you got the project files from the remote repository when you cloned it.
You then created a new file PREPSTEP1.SAS. You also added two new files:
ANOVADATA.SAS and CARSPLOT.SAS. You’re ready to save this version of PREPSTEP1.SAS,
so you’ve moved it from unstaged to staged. The other two files aren’t ready for saving, so
they remain in the unstaged area.

Display 3. Git Interface in SAS Studio – Viewing Staged and Unstaged Changes

4

A way to think of this scenario is that Git is automatically tracking things as you change
them in the local repository (the folder you told Git to track). Your changes are shown as
unstaged files. You are in control of what constitutes a saved point, which is known as a
commit. To put together a commit, you stage one or more files and then describe the
changes in a comment before pushing the commit button. You must commit to be able to go
back in time to a previous commit, which is known as a reset. To say it a different way, we
have been talking about four levels of operating on files:

1. Editing an unsaved file – Undo/redo in the editor or using the submission history in
the editor are the ways to go back to a prior version, and those are only available
within your session. If you close an edited file without saving, everything is gone.
You are not using Git until you save a file.

2. Unstaged files – Every time you save a file with changes, Git shows that file in the
Unstaged Changes area of the Git Repositories pane, and you can see differences by
clicking on the file in the unstaged area. If you want to go back to a past version,
you can copy and paste from the differences report, or, if you are in the same
session, you can use the editor options in #1 above. If you close without saving,
you retain the last saved copy.

3. Staged files – There is really no difference between this and #2 in terms of
recovery. All staging does is serve as a waiting area for commits. Most people use
staging as a holding area for related changed and saved files, allowing them to work
on other files before committing a chunk of work. Some people stage and commit
immediately. It’s a matter of how you like to organize your work.

4. Committed files – You have decided you are at a level of quality in your code that
you want to keep, so you are asking Git to track these changes. Once you have
committed, the file changes in that commit become part of the Git history. Note
that in SAS Studio’s file navigation pane, you cannot tell a difference between these
four levels of files – it just looks like a file. It’s in the Git Repositories pane where
the distinction is made.

Going back to our example, you have made more changes to PREPSTEP1.SAS, so you have
saved it, staged it, and committed it. You can use the History tab to see what you’ve done
in the past and what is different between this version and the last committed version.

5

Display 4. Using the History Tab to See Progress and Differences in the Code

You have been using staging and committing to organize your iterations on this file for
yourself. Now you are comfortable with the quality and want to make it available to others
involved with the project. You do this by invoking a push to the remote repository. But
before you push, it’s a good practice to first do a pull. Pulling ensures that you have the
most current copy of what’s in the remote repository. After doing a pull, the History tab
shows that indeed someone else had pushed since your last copy, and a new file is
available, PREPSTEP2.SAS.

Display 5. Seeing New Content After a Pull

The new file does not conflict with the work you want to push, so you can confidently push
your changes.

DEALING WITH CONFLICTS
This all works great when you are not working on the same file at the same time. If,
however, your co-worker makes a change and pushes it, and you make and try to push a
change without having first pulled the co-worker’s changes, you will get an error.

6

Display 6. Conflicts in the Remote Repository

Information will be offered to help handle conflicts when possible. For this example, you do
a pull to try to get the most recent copy of a file multiple people are working on and get an
error that mentions the conflicts. Opening ENGINESIZE.SAS after the pull attempt, you see
documentation of the conflict. The local section contains the change from your local commit.
The remote section contains the conflicting line(s) from the commit(s) that were just pulled
down. It’s up to you to update the code, taking into account both sets of changes. When
saving the program, you will commit this updated version of the program as part of the
merge commit.

Display 7. Documentation on Conflicts

CREATING AND MERGING BRANCHES
One of the big advantages of using Git is its ability to manage changes to a repository
across multiple people. This can be as simple as sharing a remote repository, as we have

7

already seen, or something more complex, such as creating branches to segregate work and
then merging the new work back into the master branch. Branching can be used to work on
a new feature or experiment while protecting the “production” version. You can also use
branches to freeze in time a set of changes, as in the case of a patch or hotfix that will be
merged later.

Master is the default branch in which you have been working so far. You can create a
different branch to isolate your work by selecting any commit row (i.e., a point in time)
from the History grid. When Git creates your new branch, the files that appear in your local
repository when you check out that branch come from the point in time where you elected
to create the branch.

In our example, while your co-worker continues to make changes in master to the data prep
steps, you can create your own branch to work on some reporting by right-clicking on the
master branch in the History grid and selecting Create new branch. You will see a new
“branch badge” in that row of the History grid to indicate where your branch begins.

Display 8. Creating a Branch

Now that you are working in your own branch, add new code and go through a few cycles of
saving, staging, committing, and pushing. The history shows the timeline, and the code
differences reflect just what’s in the branch.

8

Display 9. Working in a Branch

To merge your branch into the master, in the History tab, select the current-branch
pulldown menu and click master to check out the master branch. Click Pull current-
branch > Pull to make sure you have the most recent updates. And, for this example, it’s
a good thing you did, since more work had been done on the data prep files. Now you can
right-click on your branch and select Merge into master and the branch name. Note that
the History grid now displays a graph line on the left to indicate where your branch was
originated and merged.

Display 20. Merging a Branch into Master

There is a lot more you can explore here including fetching versus pulling, rebasing, and
stashing. Consult the “Understanding Git Integration” section in the documentation of your
preferred interface.

9

SUMMARY OF GIT TERMS AND PROCESSES
Here is a brief summary of the terms described in the above examples.

• Remote repository – project files and folders that are stored on a website (e.g.
GitHub, Bitbucket) that provides support for Git version control functions.

• Clone –creates a local copy of a remote repository on your computer, including a set
of files and folders that are used by Git for managing changes.

• Local repository – a personal work area for developing and testing files within the
Git version control framework where you can create, modify, or delete files and
folders.

• Unstaged – local repository files that have been edited and saved but are still
considered as “in progress”.

• Staged – local repository files that you have tested and are ready for moving to the
shared remote repository, often grouped with related files in the same state.

• Commit – designates a set of staged files as an approved “unit of work” intended for
sharing with colleagues who have access to the remote repository.

• Push – promotes the files within a commit to the remote repository if the user has
proper permissions.

• Reset – undoes the changes in a staged or unstaged local repository file and
removes it from the Commit view.

• History – a log of all committed changes in a Git repository from which you can
create or merge branches, reset your local repository to a previous commit.

• Pull – updates your local repository with any changes that have been pushed to the
remote repository since the last time your local history was updated.

• Branch – a snapshot of the state of all files that comprise a selected commit in the
History grid.

• Checkout – switches to the selected branch and updates your local repository with
the files that belong to that branch.

• Merge – integrates the changes made in a secondary branch with the current
branch; usually followed by deletion of the secondary branch.

SAMPLE SCENARIO – WHAT’S HAPPENING BEHIND THE SCENES
To get a copy of an existing Git repository, you’ll need to clone it (typically you do this only
once) to your server or computer. The Git clone command creates a local repository in the
specified folder on your computer and pulls down all the data and history for that repository.

When you first clone a repository, all your files are tracked by Git. At this point, the status
of all the files is “unmodified” because you haven’t edited anything. You see them in the file
navigation, but they do not show up in the Git interface. Git has three main file states:
committed, modified, and staged. Committed means that the data is safely stored in your
local repository. Modified means that you have changed a file in your development
workspace but have not committed it to your local repository yet – these show as unstaged
in the Git interface. Staged means that you have marked a modified file to be committed.

10

Display 31. Parts of a Local Repository

Suppose you need to fix two files (for example, cars.sas and cowboy.sas) and delete one file
(demo.sas). In your development workspace, you make the changes and test them. As you
edit files, Git sees them as “modified,” because you’ve changed them since your last
commit. They are still in your development workspace as you have not marked them as
‘staged.’ You can’t commit files until they are staged.

Display 42. Staging Files

Now in your development workspace, you have a list of unstaged files that have been
modified: cars.sas, cowboy.sas, and demo.sas. Git commits only files in the “staged files”
list. These are also referred to as “indexed files.” The next step is to indicate which of these
modified files you want to include in your next commit. Put all of these files into the Git
staged area. Git commits all staged files together as a single commit to the local repository.

11

Display 53. Executing a Commit

Remember that the commit records the snapshot you set up in your staging area. Anything
you didn’t stage is still sitting there modified; you can do another commit to add it to your
history. Every time you perform a commit, you’re recording a snapshot of your project that
you can revert to or compare to later. This is done by storing only the lines modified as part
of each commit. All changes made to the file put together in sequence constitute its state at
any given point in the history. This ensures that the repository remains as small as possible
from a storage perspective. Prior to pushing your changes to the remote repository, you
first want to pull to get any changes someone else might have pushed to the remote
repository.

GETTING STARTED

There are two steps that need to be performed in SAS Studio to set up the Git interface.

1. Create a Git profile.

2. Set up a connection to a remote repository and clone to a local repository.

We are going to walk through setting things up to use the Git interface in SAS Studio.
Before the two steps above can be performed, we need a remote repository and a URL to
access it. If you are fortunate enough to have an administrator to set this up for you, enjoy
skipping this section. If you are on your own, follow these instructions to create a
repository on GitHub.

CREATE A GITHUB ACCOUNT AND A REPOSITORY
.

1. Create an account on https://github.com. You can open an account and create
repositories for free.

2. Create a repository on GitHub. Once you have verified your account from the email
address you chose, you will be taken to a screen to create a repository. Choose a
name for your repository and decide whether it will be Public or Private. You can
check Initialize this repository with a README as an easy way to add the first
file to the repository. Then add or create a new SAS program. You can upload files
from your PC or choose to create a new one. Once the .sas file is created or
uploaded, commit it. You are required to add a comment with every commit.

https://github.com/

12

3. While you’re here in GitHub, make a note of the location of the repository URL
address that we will need later. Click the green Clone or Download button. At a
later point, you will click the clipboard to the right of the URL to copy the address to
your clipboard. (You can do it now if you think you might make it through the next
few steps with it still on the clipboard.)

Now you have a remote repository to use. The other step you need to do outside of SAS
Studio is to generate your SSH keys.

GENERATE YOUR SSH KEYS
SSH keys are authentication credentials. By default, SAS Studio uses SSH keys to
authenticate with your repository hosting service. Your keys will be used in both your SAS
Studio profile and in your GitHub account.

You do not need to install Git on your Windows machine for the Git functionality; however,
you can use it to generate the required SSH keys. If your SAS Studio server is a Unix
machine, and you can access the operating system, you can skip the Git for Windows setup
and run the ssh command below.

You can download Git for Windows at https://git-scm.com/download/win. Once the software
is installed, you can use Git Bash to generate the SSH keys. Git on Windows, like GitHub,
has a graphical user interface to Git. Git Bash allows you to use a command line to run Git
commands. After opening Git Bash, either copy and paste or enter the following command:

ssh-keygen -t rsa -m PEM -b 4096 -C your_email@example.com

You can accept the default file locations and not enter a passphrase to get the keys created
quickly. Now you need to add your ssh key to your GitHub account. See
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-
github-account.

Now you have a remote repository, and you have your SSH keys. You are ready for the two
steps needed within SAS Studio.

CREATE A GIT PROFILE

You use the Add a Profile window to create a Git profile.
In SAS Studio 5.2, select Options > Manage Git Connections. Make sure Profiles is
selected in the navigation pane and click +.
In SAS Studio 3.8, click and select Preferences. Select Git Profiles in the navigation
pane and click +.

https://git-scm.com/download/win
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account

13

Display 64. Adding a Profile

Choose and enter a profile name, and enter your user name and email address.
The user name and email address will be used to identify you as the one who made a
change to the remote repository. If you’ll be working with a public repository, you may
want an alias to keep your identity private. If you’re working with a repository in your
organization, you may use your user id or some other organization standard. If you’re just
working on your own personal repository, you can put any text there.

Navigate to the location, including the filename, of your SSH keys. If the path to your keys
is not accessible from the server SAS Studio is running on, you will need to first upload the
files to a location SAS Studio can access.

Press OK to save your profile.

SET UP A CONNECTION TO A REMOTE REPOSITORY AND CLONE TO A LOCAL
REPOSITORY

You use the Clone a Repository window to clone a Git repository.
In SAS Studio 5.2, select Options > Manage Git Connections. Select Repositories in the
navigation pane and click + > Clone a repository.
In SAS Studio 3.8, click and select Preferences. Select Git Repositories in the
navigation pane and click +.

14

 Display 75. Cloning a Repository

At this point, you will need the URL of the repository you created on GitHub. Remember
that green Clone or Download button? Click that button to open a window with the path.
Make sure that the window displays “Clone with SSH” like below.

Display 86. Getting the Repository Information from GitHub

Click the clipboard icon to copy the address to your clipboard. Then paste it into the remote
repository name field in SAS Studio.

Determine the location where you want your local repository. The folder at the end of the
path you choose does not have to currently exist. If it does exist, it must be empty. This
field is labeled Local repository in SAS Studio 3.8 and Server location in SAS Studio 5.2.

15

Select the Git profile that will be used with this repository. At this point, you have just the
one profile that you defined previously, but in the future, you might have multiple profiles
that correspond with different repositories.

Click OK (SAS Studio 3.8) or Clone (SAS Studio 5.2) and your remote repository on GitHub
will be cloned (copied) to the folder location you have specified on the SAS Studio server.

You should now be able to go to the specified folder location in the navigation pane and see
that it is marked by the repository icon . Within the repository should be all the files you
had created in the repository on GitHub.

Now you are all set up to use Git functionality through the SAS Studio UI! For more details
about how to use all the features see SAS Studio: User’s Guide.

SAS Studio 3.8 and SAS Studio 5.2 also support HTTPS authentication. To use HTTPS, your
admin would need to configure SAS Studio to do so. The SAS Studio administration
documentation includes information on how to accomplish this. SAS Enterprise Guide only
uses HTTPS authentication when authenticating with a remote repository.

UNDERSTANDING THE DIFFERENCES USING GIT WITH SAS
ENTERPRISE GUIDE VERSUS SAS STUDIO
SAS Enterprise Guide 8.2 includes several features that are modeled after the SAS Studio
5.2 Git interface. Differences between the two versions include:

• SAS Enterprise Guide 8.2 supports local repositories that are stored on the client
machine rather than the SAS server.

• SAS Enterprise Guide 8.2 supports HTTPS authentication only; SAS Studio 5.2
supports SSH and HTTPS.

• SAS Enterprise Guide 8.2 does not support the Git Rebase or Stash functions; SAS
Studio 5.2 supports both Rebase and Stash.

• SAS Enterprise Guide 8.2 allows use of a Windows Diff tool for side-by-side file
comparisons.

• SAS Enterprise Guide 8.2 allows use of a Windows Merge tool for managing file
conflicts. In SAS Studio 5.2, such differences are highlighted in a file tab and
reconciled manually by the user.

• SAS Enterprise Guide 8.2 carries forward the program history feature from previous
releases, allowing file changes to be tracked independently without requiring a local
repository definition.

• Both applications allow limiting of commit history row retrieval for performance
reasons. To access this option in SAS Studio 5.2, select Options > Manage Git
Connections > Options.
To access this option in SAS Enterprise Guide 8.2, select Tools > Options >
Version Control.

A table summarizing the differences is available in the SAS Studio FAQ -
http://support.sas.com/software/products/sas-studio/faq/SASStudio_vsEG.htm .
USING CODE TO DO ALL OF THIS
Yes, you can use Git programmatically within the SAS language in the form of DATA step
functions. In fact, the entire SAS Studio 3.8 and SAS Studio 5.2 interfaces are driven by
these functions. In this section, you will go over the basic Git scenario of cloning a remote
repository, staging a file, committing, and then pushing that commit back to the remote
repository all within the SAS language. In this scenario, we will be using the Git functions
that were released with SAS Viya 3.5. They have refactored names compared to the SAS
9.4M6 versions of the functions that are easier to read.

http://support.sas.com/software/products/sas-studio/faq/SASStudio_vsEG.htm

16

The first thing you want to do is clone a remote repository. For this example, we will be
using the SAS Communities SAS Global Forum 2020 repository.
https://github.com/sascommunities/sas-global-forum-2020

NOTE: You will not be able to push changes to the SAS Global Forum 2020 remote
repository.

When using SSH authentication, the clone function takes 6 parameters.

• The SSH remote repository URL - If you’re logged in to GitHub, the green Clone or
download button opens a fly-out window that gives you the option to clone with
HTTPS or SSH. You need the SSH URL. In this scenario, you are going to use the
sascommunities/sas-global-forum-2020 GitHub repository.

• The location on the local file system where you want to clone your repository to - For
this scenario, choose a different location than the previous examples.

• The username - When using SSH authentication, the username needs to be whatever
comes before the @ sign in the SSH remote URL. With GitHub, it is “git”.

• The password - This is not required for SSH authentication, so leave as an empty
string as seen below.

• The path to the public SSH key on the file system - It would be the same value you
put in the SAS Studio Git profile in the previous example.

• The path to the private SSH key.

The clone function:
 data _null_;
 rc = GIT_CLONE(git@github.com:sascommunities/sas-global-forum-2020.git,
 C:\SGF2020_SASCommunities,
 “git”, “”,
 “C:\MySSHKeys\id_rsa.pub”,
 “C:\MySSHKeys\id_rsa”);
 run;

Now that you have cloned the remote repository successfully, navigate to the local
repository that was created and add your SAS Global Forum paper to the repository. When
you’re happy with your changes, the next step in this scenario is to stage your paper for
commit. That brings us to the GIT_INDEX_ADD DATA step function. Staging a file is adding
that file to the Git Index. The index is where changes to files that are waiting to be
committed are stored.

The staging function has 3 required parameters and N number of additional parameters,
which allows you to stage multiple files at one time.

• The path of the local repository.

• The path of the file that you want to stage relative to the local repository.

• The status of the file, in this case “new”.

The staging function:
 data _null_;
 rc = GIT_INDEX_ADD(“C:\SGF2020_SASCommunities”,
 “papers\4197-2020-Peters\SAS4197-2020.docx”,
 “new”);
 run;

https://github.com/sascommunities/sas-global-forum-2020

17

Now that your paper has successfully been staged, you can commit the staged paper to the
local repository. To do this use the GIT_COMMIT function. The GIT_COMMIT function takes
5 required parameters:

• The path of the local repository.

• The update reference - Use “HEAD” in this scenario. “HEAD” means you are
committing to the top, or head, of the current branch.

• Committer’s Name - This is informational (so that people can come find you when
you break something; you can use a fake name if you don’t want to be found).

• Committer’s Email - This is also informational. The name and email will show up in
the commit history.

• Commit Message - The message includes a detailed description of the commit.

The commit function:
 data _null_;
 rc = GIT_COMMIT(“C:\SGF2020_SASCommunities”,
 “HEAD”,
 “James Bond”,
 “007@MI6.gov”,
 “My SGF Paper”);
 run;

Now that your paper has been successfully committed to the local repository, it’s time to
push it up to the remote repository so that everyone who uses the SAS Communities GitHub
repository can see your paper. The Push function is very similar to the clone function
except that you only need to supply your local repository path. The local repository
remembers the remote repository URL you used when you cloned.

The push function:
 data _null_;
 rc = GIT_PUSH(“C:\SGF2020_SASCommunities”,
 “git”, “”,
 “C:\MySSHKeys\id_rsa.pub”,
 “C:\MySSHKeys\id_rsa”);
 run;

You can now navigate to the remote repository on GitHub and see your commit. To follow
best practices, you will want to pull before pushing, because you cannot push unless your
local repository is up-to-date with the remote repository. The pull function is GIT_PULL and
uses the same parameters as push. We left the pull example out to keep the scenario
simple.

You can find documentation on all the Git functions in the programming references.

CONCLUSION
Whether you choose to use basic versioning functionality in the program history feature in
SAS Enterprise Guide, go all out with branching and merging in the full Git interface in SAS
Enterprise Guide or SAS Studio, or write your own SAS Git function utilities, you have plenty
of options for keeping track of your own code and for collaborating with others.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Amy Peters

18

SAS
Amy.Peters@sas.com

Danny Zimmerman
SAS
Danny.Zimmerman@sas.com

Grace Whiteis
SAS
Grace.Whiteis@sas.com

Joe Flynn
SAS
Joe.Flynn@sas.com

Stan Polanski
SAS
Stan.Polanski@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	single SAS Enterprise guide coder – program history
	setting up and using program history
	limitations

	using the git interface in sas enterprise guide or sas studio to work with a remote repository
	dealing with conflicts
	CREATING And merging branches

	summary of git terms and processes
	Sample scenario – what’s happening behind the scenes
	GENERATE YOUR SSH KEYS

	Conclusion
	Contact Information

