

1

SAS4195-2020

Your Data Will Go On: Practice for Character Data Migration

Edwin (You) Xie, SAS Institute Inc.

ABSTRACT

With the rapid advancement of technology, you inevitably face continual upgrades and

changes in your working platforms. No matter how greatly the platform evolves, your work

can keep in high continuity, and reliability if your data is successfully ported without being

destroyed. Character data can be at risk during data migration, which is determined by its

internationalization features such as encoding sensitivity and semantics dependence. This

paper discusses the potential issues when moving your character data across environments,

such as a migration to SAS® with UTF-8 or other encoding environments. It also

demonstrates the use of common tools during the migration, such as the character variable

padding (CVP) engine. By using these tools flexibly, no matter how the environment

changes, your data will go on.

INTRODUCTION

Smith is working for a global commercial bank, which is turning to analytical insights

powered by the SAS® Platform and its SAS® Viya® products. When porting the company

data, he gets the message in Output 1. Although he is not clear about how “Cross

Environment Data Access” (CEDA) works, he does not think it is a problem. It is acceptable

for him to spend a little more time during initial migration if no data is lost.

NOTE: Data file BANKLIB.CLASS.DATA is in a format that is native to another

 host, or the file encoding does not match the session encoding. Cross

 Environment Data Access will be used, which might require additional

 CPU resources and might reduce performance.

Output 1. Note Message during Data Access

However, Smith gets into trouble when facing the warning below. He is confused because he

does not know the reason why it happens, and what the solutions are.

WARNING: Some character data was lost during transcoding in the dataset

 BANKLIB.CLASS. Either the data contains characters that are not

 representable in the new encoding or truncation occurred during

 transcoding.

Output 2. Warning Message during Data Access

This is a common issue that frequently occurs in environment migration. This article

analyzes its essential nature and discusses the principle of the solutions.

UNDERSTAND CHARACTER DATA

Character data is varied because it may have different encodings and lengths in different

environments. However, once you have mastered its characteristics, you will never lose the

direction when thinking and solving problems.

CHARACTER SET AND ENCODING

2

Different languages might be used in different regions in the world. The collection of

characters in each language forms the “character set”. Encoding is the way these characters

live as a unique identifier or code point in the computer world. Character data migration is

just like a traveler who needs to cross different regions. For the traveler, he needs to

translate a foreign language to the native language so that local people can understand him.

For data migration, a character string may also need to be “translated” to the SAS session

encoding so that it will be recognized. When data is translated like this, it is called

“transcoding”.

To migrate character data smoothly, encoding awareness is the most primary prerequisite.

The following example shows the attributes of a data set by the CONTENTS procedure. The

encoding attribute indicates the way that characters live in the data file.

proc contents data=sashelp.class;

run;

 The CONTENTS Procedure

 Data Set Name SASHELP.CLASS Observations 19

 Member Type DATA Variables 5

 Engine V9 Indexes 0

 Created 11/03/2019 19:58:29 Observation Length 40

 Last Modified 11/03/2019 19:58:29 Deleted Observations 0

 Protection Compressed NO

 Data Set Type Sorted NO

 Label Student Data

 Data Representation WINDOWS_64

 Encoding us-ascii ASCII (ANSI)

Output 3. Output from a CONTENTS procedure

In Output 3, “US-ASCII” is the encoding of this data set. The US-ASCII is a 7-bit encoding

method that was developed in the US and is widely used to encode English data. There are

other typical examples of encoding, such as Latin1 or Latin2 used in the Americas and

Europe, Shift-JIS and EUC-CN in East Asia, and Unicode encoding schemes like UTF-8.

Encoding compatibility is another important concept to determine if transcoding is needed.

The following program may help you check if the specified data set encoding is compatible

with SAS® session encoding.

/* Get the encoding of the data set */

libname mylib 'path to library';

%let dsid=%SYSFUNC(open(mylib.class));

%let dsenc=%KSCAN(%SYSFUNC(attrc(&dsid,ENCODING)), 1, " ");

%let rc=% SYSFUNC(close(&dsid));

/* Get the session encoding */

%let sessenc=%SYSFUNC(getOption(ENCODING));

/*Check the compatibility */

%let isCompat=%SYSFUNC(encodCompat(&dsenc, &sessenc));

%put &isCompat; /* 1: compatible; 0: incompatible */

Once the data encoding is not compatible with the current session, CEDA can automatically

transcode the source data into session encoding. That is the reason why Smith gets the

message that CEDA is enabled.

Different encodings define different characters. When transcoding from one encoding to

another, there may be characters that are not supported by the target encoding. Such as

the Latin1 encoding does not contain Ideographs in Chinese. When getting the error

3

message of “the data contains characters that are not representable in the new encoding”,

you need to realize the source contains characters that are invalid in the target

environment. Successful transcoding requires the target encoding to contain all the

characters in the source data.

SINGLE-BYTE, DOUBLE-BYTE, AND MULTIBYTE CHARACTER SET

A single-byte character set (SBCS) always uses exactly one byte for each graphic character.

For example, the ISO 8859 and Windows single-byte encodings use only one byte to

represent each character. When a character representation needs more than one byte, it is

a multibyte character set (MBCS). A double-byte character set (DBCS) is one of MBCS that

encodes characters in one or two bytes, such as Shift-JIS and EUC-CN. UTF-8 uses one to

four bytes to represent a character in SAS products, so it is also an MBCS.

The preceding section mentioned transcoding might happen during data migration.

However, when a character is transcoded among SBCS, DBCS, and MBCS, another issue

arises: its byte length may also change. For example, the Euro sign, “€”, is included in the

encoding WLATIN1(Windows cp1252) where it is represented as a single-byte and has a

code point represented as the hexadecimal value 0x80. When that character is transcoded

to UTF-8, it requires 3 bytes. The hexadecimal value of the “€” in UTF-8 is 0xE282AC. This

characteristic is the root reason for those outstanding truncation issues happening in

character data migration. When transcoding from SBCS to MBCS, or DBCS to MBCS, the

data byte length often needs to be increased. If SAS variable length is not long enough for

the target string, you will be in trouble with data loss because of unexpected string

truncation. Even worse, if the truncation happens in the middle of an MBCS character, the

character will be corrupted to garbage, which would be risky in the subsequent string

manipulation.

Another thing to keep in mind is that a character variable is often bound with a character

format. To avoid string truncation during output the format length may need to be

expanded along with the variable length.

ACCOMMODATE DATA EXPANSION

The previous discussion helps to clarify the reasons and potential risks during character data

migration. To guarantee a successful migration, you need to know the way that source data

is encoded. Then, figure out the encoding of the target environment. If the transcoding is

from SBCS or DBCS to MBCS, you also need to consider changing variables length when

needed. This session discusses the possible solutions in this adjustment.

EXPAND CHARACTER VARIABLES BY CVP

Character Variable Padding (CVP) engine is a read-only SAS® I/O engine. It is a

recommended data pre-process platform for character data migration because of its

efficiency, flexibility, extensibility, and centralized processing ability.

The data set below is created in Latin1 and contains student information of an international

school class. For each student, the data set records name, gender, and age. The code below

generates a subset of the data set:

libname mylib 'path to library';

data mylib.class;

 length Name $ 8 Sex $ 1;

 input Name $ Sex $ Age;

 format Name $8. Age best2.;

 datalines;

André M 14

Valérie F 13

4

Béatrice F 13

;

run;

If you print this Latin1 data set in UTF-8, you will get the warning as Output 2, and the

string “Béatrice” is truncated to “Béatric”:

proc print data=mylib.class; run;

 Obs Name Sex Age

 1 André M 14

 2 Valérie F 13

 3 Béatric F 13

Output 4. Output from a PRINT Procedure.

The truncation happens because the string “Béatrice” needs 9 bytes in UTF-8, but the

variable “Name” only has 8 bytes. To avoid the truncation, a solution is to specify “CVP” in

the LIBNAME statement:

LIBNAME mylib CVP 'path to library';

proc print data=mylib.class; run;

 Obs Name Sex Age

 1 André M 14

 2 Valérie F 13

 3 Béatrice F 13

Output 5. Output from a PRINT Procedure with CVP.

In Output 5, All the names are printed successfully without any warnings, and the

truncation issue is also solved.

By checking variables attributes with the CONTENTS procedure, you will see the length of all

the character variables is expanded, and the numeric variable has no change. To your

surprise, the width of the character format is also adjusted along with the size of character

variables:

proc contents data=mylib.class; run;

 Variables in Creation Order

 # Variable Type Len Format

 1 Name Char 16 $16.

 2 Sex Char 2

 3 Age Num 8 BEST2.

Output 6. Output from a CONTENTS Procedure with CVP.

Besides using the default setting above, the CVP engine also provides several options to

control the adjustment of character variables and formats. The CVPMULTIPLIER= option

specifies a multiplier value that expands the length of character variables in the processed

SAS data file. In the case above, all character variables have been doubled by default in

SAS Viya (In SAS 9, the length expands to 1.5 times by default). The valid number for

CVPMULTIPLIER= is from 1 to 5.

Alternatively, you can specify a value of 0 to enable CVP to estimate the expanding rate to

avoid truncation in transcoding. The auto-value of CVPMULTIPLIER is detected depending on

5

the SAS session encoding of the target environment and self-adjusted based on each file

encoding in the library. For example, you have a library that contains 3 data sets with 3

different encodings: US-ASCII, Latin1, and EUC-CN. When using “CVPMULTIPLIER=0” in a

UTF-8 session, the multipliers will be 1, 2 and 1.5 accordingly.

The CVPBYTES= option supplies another way of expansion. By explicitly specifying the exact

number of bytes, the length of each character variable can be incremented by the fixed size.

The CVPFORMATWIDTH= option is the mechanism to ensure the width of format that can

keep synchronization with character data length expansion. The default value is YES

meaning that character formats will be expanded together with character variables.

The CVP engine offers great possible flexibility in selecting operations. CVPINCLUDE= or

CVPEXCLUDE= can be used to filter data expansion by specifying variable names. The

CVPINCLUDE= specifies which variables to process and the CVPEXCLUDE= specifies which

variables not to process. The two options cannot be used together. If both options are

omitted, then all character variables are processed. Both options support case-insensitive

Perl regular expressions. For example, when specifying CVPINCLUDE="name", all variable

names that contain “name” will be selected, such as “First_Name” and “Last_Name”. You

can also use CVPINCLUDE="^name$" to fully qualify the variable name to “name”. Both “^”

and “$” are Perl regular expressions metacharacters. The “^” matches the beginning of a

string and the “$” matches the end of a string. You can refer to Tables of Perl Regular

Expression (PRX) Metacharacters for the complete list for the metacharacters.

If at least one CVP option is specified, the CVP engine is automatically called, and the

keyword “CVP” can be omitted in the LIBNAME statement.

The following example demonstrates how the CVP engine integrates CVPBYTES= and

CVPEXCLUDE= together for the precise adjustment. Only the character variable “Name” will

be increased 1 byte in size, as well as the associated character format:

libname mylib 'path to library' cvpbytes=1 cvpinclude="name";

proc contents data=mylib.class; run;

 Variables in Creation Order

 # Variable Type Len Format

 1 Name Char 9 $9.

 2 Sex Char 1

 3 Age Num 8 BEST2.

Output 7. Output from a CONTENTS Procedure with CVP.

The CVP engine does not directly access data files. Instead, it always cooperates with other

engines for special adjustments in data sets. The CVPENGINE= option can specify the

engine to process SAS data files (the default is BASE engine). For example, if the “class”

data set above is stored by the SAS® Scalable Performance Data Engine (SPD Engine), the

following statement may help to expand its character variables with CVP engine:

libname mylib 'path to library' cvpengine=SPDE;

proc contents data=mylib.class; run;

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lefunctionsref&docsetTarget=p0s9ilagexmjl8n1u7e1t1jfnzlk.htm
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lefunctionsref&docsetTarget=p0s9ilagexmjl8n1u7e1t1jfnzlk.htm

6

 Engine/Host Dependent Information

 Underlying Engine Accessing Data SPDE

 Blocking Factor (obs/block) 43690

 Data Partsize 134217216

 Variables in Creation Order

 # Variable Type Len Format

 1 Name Char 16 $16.

 2 Sex Char 2

 3 Age Num 8 BEST2.

Output 8. Output from a CONTENTS Procedure with SPD Engine.

CVP is a read-only engine. It does not save modifications back to data files. You may use

the COPY statement in the DATASETS procedure to make permanent storage. For example:

libname oldlib "path to the original library" cvpmultiplier=0;

libname newlib "path to save the converted data sets";

proc datasets nolist;

copy in=oldlib out=newlib override=(encoding=session outrep=session)

 memtype=data;

run; quit;

In the case above, all the data sets in the original library are copied to a new library. By

specifying “override=(encoding=session outrep=session)”, the data sets encoding is

transcoded to the SAS session encoding, and the data representation is converted to the

representation of the operating environment where your SAS session is running. After this

operation, all the new data sets are native to the current environment. You do not need any

help from CEDA to access them, and no truncation occurs.

EXPAND CHARACTER VARIABLES IN CAS SERVER

SAS Viya often needs to load data sets to SAS® Cloud Analytic Services (CAS) whose

session encoding is UTF-8. As described above, you may realize that character data might

also have truncation risk if the client encoding is different from CAS server. There are 3

options that are ready to serve you here:

• System options CASNCHARMULTIPLIER=

• LIBNAME option NCHARMULTIPLIER=

• Data Set option NCHARMULTIPLIER=

These 3 options are used to define a multiplier whose value is greater than 1 and less than

or equal to 4. The CASNCHARMULTIPLIER= system option affects all CAS engines. The

NCHARMULTIPLIER= LIBNAME option works for only one CAS engine, and the

NCHARMULTIPLIER= data set option just acts for single data set. If multiple options are

specified, the latter ones overwrite the previous ones. The default value of these options is

based on the encoding of the clients: 1 for SBCS clients and 1.5 for DBCS clients.

Assuming that a SAS client is working under a Latin1 session and has already connected to

a CAS server (whose session encoding is UTF-8), the code below attempts to load a data set

to CAS tables with these options:

data class;

 name="Béatrice";

7

run;

libname sys cas;

libname lib cas NCHARMULTIPLIER=1.5;

data sys.class_sys;

 set class;

run;

data lib.class_lib;

 set class;

run;

data lib.class_ds(NCHARMULTIPLIER=2);

 set class;

run;

The data set “class” is in the client session encoding Latin1. It has a character variable

“name” that has a length of 8. The sample code creates two CAS librefs. The “sys” libref

uses the default system option CASNCHARMULTIPLIER=. Since the client encoding Latin1 is

SBCS, the default multiplier is 1, meaning no variables will be expanded. The LIBNAME

statement for the “lib” libref specifies LIBNAME option NCHARMULTIPLIER= to 1.5. All

character variables read by this engine will have 1.5 times size increment, regardless of

whether CASNCHARMULTIPLIER= is specified.

The code above should create three CAS tables. Even though the SAS session encoding is

Latin1, all the CAS tables are encoded in UTF-8 because CAS server session encoding is

UTF-8. The “class_sys” table should be generated under the effect of the default system

option CASNCHARMULTIPLIER=. The “class_lib” table is generated by the specifying

NCHARMULTIPLIER=1.5 in LIBNAME. And the “class_ds” table is the result of the specifying

NCHARMULTIPLIER=2 in the data statement.

However, the creation of “class_sys” will fail with the error message in Output 9 because the

string “Béatrice” needs 9 bytes in UTF-8, but the variable has only 8-bytes length.

ERROR: Some character data was truncated during transcoding in the dataset

 CAS1.CLASS1. Use of the NCHARMULTIPLIER option is recommended.

ERROR: An error has occurred.

Output 9. Error Messages in SET Statement

To prevent the error and force CAS to store the truncated string into the “class_sys” table,

specify the LIBNAME option TRANSCODE_FAIL=WARN. The string will turn to “Béatric” in

this case.

The variable “name” in “class_lib” has a length 12 because the LIBNAME option overrides

the system option and expands the variable to it 1.5 times. The same variable in “class_ds”

has a length 16 because the data set option overrides the LIBNAME option.

EXPAND CHARACTER VARIABLES IN TRANSPORT FILE

Character data migration also happens in SAS transport files when data is ported from one

environment to another. The CPORT procedure exports data to a transport file in the source

environment. In the target environment, the CIMPORT procedure reads the transport file

and converts it to a native format.

Using a similar policy as the CVP engine, PROC CIMPORT provides options to expand

character variables and formats. The “EXTENDVAR=multiplier | AUTO” option specifies the

multiplier. It supports a value between 1 to 5, or “AUTO” to let the procedure automatically

choose the multiplier based on the encodings of the current session and the transport file.

8

The “EXTENDFORMAT=YES | NO” controls the extension of character formats. In the

example below, MYLIB.CLASS data set is exported from a Latin1 environment and then

imported into a UTF-8 environment:

/* Export the data set to a transport file in the source environment */

libname mylib 'SAS-data-library';

filename cportout 'transport-file';

proc cport data=mylib.class file=cportout; run;

/* Import the transport file in the target environment */

/* Extend all the character variables and their format */

/* 1.5 times to avoid truncation. */

filename infile 'transport-file';

libname target 'SAS-data-library';

proc cimport infile=infile library=target extendvar=1.5; run;

CHARACTER SEMANTICS AND DATA MIGRATION

It would be interesting to look at character migration from semantics perspective – byte and

character semantics. Byte semantics is usually machine-oriented because the inside of

computer processing and storage are based on byte. However, character semantics is

human-oriented with linguistic meaning. The regions using SBCS might be less sensitive to

the difference between byte and character where a character always occupies one byte, and

the number of bytes is always equal to the number of characters. But this behavior has an

obvious difference in the regions that are using MBCS and in UTF-8, where many characters

need more than 1 byte. Treating a character as a byte there is incorrect. When people step

into the Cloud, data must have liquidity for free exchange. Character-based processing is a

feasible strategy for migration and is more consistent and intuitive than byte semantics.

CHARACTER SEMANTICS CONVERSION WITH CVP

Besides expanding character variables, the CVP engine can also convert byte semantics

variables to character semantics variables. The following example demonstrates how the

CVP engine converts CHAR variable (byte semantics) to VARCHAR data (character

semantics). After the conversion, no matter where the string goes, truncation will not

happen because character semantics supported environments already guarantee the

integrity of the character data:

libname original 'path to library';

proc contents data=original.class; /* The original data set */

run;

libname mylib 'path to library' cvpvarchar=yes;

proc contents data=mylib.class; /* The data set is a read-only copy */

run;

 Variables in Creation Order

 # Variable Type Len Format

 1 Name Char 8 $8.

 2 Sex Char 1

 3 Age Num 8 BEST2.

Output 10. The Variables in the Original Data Set.

9

 Variables in Creation Order

 # Variable Type Bytes Chars Format

 1 Name Varchar 32 8 $32.

 2 Sex Varchar 4 1

 3 Age Num 8 BEST2.

Output 11. The Variables Converted by CVP Engine.

The CVPVARCHAR= option helps to enable the CVP engine to convert variables from CHAR

to VARCHAR. In Output 11, the character variables have 2 length properties: “Bytes” and

“Chars”. The “Chars” indicates the length in characters, which values are equal to the length

of the original variables in Output 10. The “Bytes” is the storage length in bytes, which

values depend on the session encoding. For example, the current session encoding is UTF-8,

and one UTF-8 character can be up to 4 bytes in SAS. Thus, for an 8-char length variable,

its storage length in bytes is 8 x 4=32 bytes.

Since VARCHAR columns are only supported in CAS tables, to keep the converted data set,

you may need to save it into a CAS table:

/* Specify the connection information. */

option casport=5570 cashost="cloud.example.com";

/* Create a CAS session. */

cas sascas1 user=&SYSUSERID;

/* The libref mycas is associated with the active caslib. */

libname mycas cas;

libname mylib 'path to the client library' cvpvarchar=yes;

/* Load the data set to CAS using CAS engine. */

proc copy in=mylib out=mycas;

 select class;

run;

CHARACTER SEMANTICS CONVERSION WITH DATA CONNECTOR

CAS Data Connector is another useful tool that can convert character variables. For

example, you may want to do the following tasks at the same time:

• Load the data set “MYLIB.CLASS” to CAS.

• Convert the variable “Name” to VARCHAR.

• Keep the variable “Sex” as CHAR but double its length.

Before loading the data file, the CASLIB statement may help to list caslibs and their

settings:

caslib _all_ list;

10

NOTE: Session = SASCAS1 Name = CASUSER(userid)

 Type = PATH

 Description = Personal File System Caslib

 Path = /u/userid/

 Definition =

 Subdirs = Yes

 Local = No

 Active = No

 Personal = Yes

NOTE: Session = SASCAS1 Name = CASUSERHDFS(userid)

 Type = HDFS

 Description = Personal HDFS Caslib

 Path = /user/userid/

 Definition =

 Subdirs = Yes

 Local = No

 Active = Yes

 Personal = Yes

Output 12. Output from a CASLIB Statement.

In Output 12, “CASUSER(userid)” points to your personal file system and

“CASUSERHDFS(userid)” is the active caslib to access HDFS in CAS. The data file at the

specified path “/u/userid/data/class.sas7bdat” needs to be load into CAS:

proc casutil;

 load casdata="data/class.sas7bdat" /* relative path to the data file */

 incaslib="CASUSER(userid)" /* input caslib that points to */

 /* /u/userid */

 casout="class_cas" /* CAS table name, using the active */

 /* caslib CASUSERHDFS(userid) */

 importOptions={ filetype="basesas", /* Data Connector options */

 VarcharConversion=2,

 CharMultiplier=2 };

 altertable casdata="class_cas" columns={{name="Name", format="$9."}};

quit;

Data Connector option “VARCHARCONVERSION=2” defines a threshold. Only the variables

longer than 2 will be converted to VARCHAR. Option “CHARMULTIPLIER=2” doubles the size

of the rest of CHAR variables. Since Data Connector does not change the format width, an

ALTERTABLE statement is used to update the character format width after the loading. The

output from the CONTENTS procedure below shows the final table attributes:

libname mycas cas;

proc contents data=mycas.class_cas; run;

 Variables in Creation Order

 Max

 Bytes

 # Variable Type Bytes Chars Used Format

 1 Name Varchar 32 8 9 $9.

 2 Sex Char 2

 3 Age Num 8 BEST2.

Output 13. Output from a CONTENTS Procedure.

11

HANDLE UNEXPECTED CHARACTERS

Unexpected characters may exist in data sets and cause troubles before and after data

migration. Dealing with them properly can smooth the data migration process.

CONVERT UNEXPECTED PUNCTUATION MARKS

When a United States customer creates data using an SBCS encoding (such as WLATIN1),

all characters are expected to be US-ASCII (basic English in 7 bits, non-extended ASCII)

that only contains English alphabets and plain symbols. However, some punctuation

characters might be automatically converted to extended ASCII characters (8-bit) by

another software product that supports AutoFormat. For example, when pressing the

apostrophe on the keyboard, the AutoFormat feature may place left or right curly double

quotation (0x93 or 0x94 in WLATIN1) in the string instead of the straight double quotation

(0x22). Since extended ASCIIs are not represented directly in UTF-8, you may see garbage

when the quotation marks are present (treated as ASCIIANY under Unicode session). Data

size expansion also needs to be considered because the extended ASCIIs turn to multiple

bytes after transcoded to UTF-8.

The KPROPDATA function provides an option “PUNC” to convert commonly used 8-bit

punctuation marks to 7-bit ones. It can be used to look through data and normalize

unexpected punctuation for a better migration experience.

Suppose a school class keeps all its notification messages in a WLATIN1 data set. Below is

an example of one of the messages:

libname mylib 'path to library';

data mylib.notice;

 message="We will visit the “National Museum” next Friday";

run;

The message contains curly quotation marks. If the data set is opened in a SAS session with

UTF-8, the string will be truncated because these quotation marks are extended ASCII and

need extra bytes in UTF-8:

proc print data=mylib.notice; run; /* execute it in UTF-8 session */

 Obs message

 1 We will visit the “National Museum” next Fr

Output 14. Output from a PRINT Procedure in UTF-8.

Since all characters in “MYLIB.NOTICE” are in 7-bit except for some unexpected 8-bit

punctuation, KPROPDATA with option “PUNC” may help to access the data successfully

without any loss under the UTF-8 session. Specifying “inencoding=asciiany” in the LIBNAME

statement will disable the transcoding by CEDA. Then KPROPDATA will explicitly convert the

punctuations to ensure that all data is real US-ASCII, which size will not change across

environments:

libname mylib 'path to library' inencoding=asciiany;

data test;

 set mylib.notice;

 message = kpropdata(message, 'PUNC', 'wlatin1');

run;

proc print data=test; run;

12

 Obs message

 1 We will visit the "National Museum" next Friday

Output 15. Output from a PRINT Procedure in UTF-8.

ELIMINATE UNPRINTABLE CHARACTERS

Unsuccessful data migration may leave some binary garbage in strings. Those binaries are

usually generated by mismatched encoding or corrupted multi-byte characters and are not

valid. They are the so-called unprintable characters here. These characters not only cause

garbage to display but are also risky in character manipulation because they may lead to

unexpected results. To be safe, it is better to remove unprintable characters from the data.

Suppose there is a UTF-8 data set that contains an unprintable character:

data corrupted;

length text $ 30;

 text = 'The SAS® System in UTF-8';

 output;

 text = 'The SAS' || 'ae'x || ' System in Latin1';

 output;

run;

The 0xAE in the second observation represents the register trademark symbol in Latin1 but

is invalid in UTF-8. KPROPDATA with the “TRIM” option removes that unprintable character

and makes the data clear:

data removed;

 set corrupted;

 text = kpropdata(text, 'TRIM');

run;

proc print data=removed; run;

 Obs text

 1 The SAS® System in UTF-8

 2 The SAS System in Latin1

Output 16. Output from a PRINT Procedure.

If the string is suspected to contain Latin1 characters, KPROPDATA will help to detect

unexpected 8-bit Latin1 characters and revise the binaries into the valid UTF-8 characters:

data fixed;

 set corrupted;

 keep new;

 new = kpropdata(text, 'REMOVE'); /* Remove the data string if any */

 /* unprintable characters are found */

 if new = ' ' then

 new = kpropdata(text, 'REMOVE', 'latin1'); /* Transcode as Latin1 */

run;

proc print data=fixed; run;

 Obs new

 1 The SAS® System in UTF-8

 2 The SAS® System in Latin1

Output 17. Output from a PRINT Procedure.

13

In the code above, the “REMOVE” option tells the first call to KPROPDATA to remove the

whole string if any invalid characters are found. If a blank string is returned, that triggers

the second call to KPROPDATA. The string is explicitly transcoded from Latin1 to session

encoding UTF-8 because the invalid characters binaries are already known as Latin1

characters. Finally, the string is repaired as expected.

CONCLUSION

In today's big data era, data is a valuable asset for many companies. Mastering data

migration methods and techniques, helps you minimize the possibility of data corruption

when switching platforms. According to the characteristics of character data, this paper

analyzes the common issues during data migration and gives the corresponding solutions.

This paper does not cover everything that happens in data migration. Each product may

supply special tools or solutions for its data migration support. You may also encounter

other issues not discussed in this article. However, as long as you understand the principles

of character data migration, you can identify potential problems and solve them gracefully.

In this way, no matter how the platform changes in the future, you can transfer your data

to the new platform without any obstacles. Your data will be your most solid asset, along

with the latest analytics technology, to ensure the success of your business.

REFERENCES

Elizabeth Bales and Wei Zheng. 2017. “SAS® and UTF-8: Ultimately the Finest. Your Data

and Applications Will Thank You!” Proceedings of the SAS Global 2017 Conference, Cary,

NC: SAS Institute Inc. Available at

http://support.sas.com/resources/papers/proceedings17/SAS0296-2017.pdf.

ACKNOWLEDGMENTS

I would like to express my gratitude to the people who helped make this paper possible.

Elizabeth Bales, Lane (Li) Li supported my efforts in researching and writing this paper.

RECOMMENDED READING

• Moving and Accessing SAS® 9.4 Files, Third Edition

• Migrating Data to UTF-8 for SAS®Viya® 3.5

• SAS® Cloud Analytic Services 3.5: User’s Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Edwin (You) Xie

SAS Research and Development Co., Ltd., Beijing

+86 10 83193674

you.xie@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings17/SAS0296-2017.pdf

	Abstract
	Introduction
	Understand Character Data
	Character Set and Encoding
	Single-byte, Double-byte, and Multibyte Character Set

	Accommodate Data Expansion
	Expand Character Variables by CVP
	Expand Character Variables in CAS Server
	Expand Character Variables in Transport File

	Character Semantics and Data Migration
	Character Semantics Conversion with CVP
	Character Semantics Conversion with Data Connector

	Handle unexpected characters
	Convert Unexpected punctuation marks
	Eliminate Unprintable characters

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

