

1

Paper SAS4157-2020

Python and the SAS® Quality Knowledge Base for Better Data

Quality and Entity Resolution

Arnold Toporowski, SAS Institute (Canada) Inc

ABSTRACT

Python coders can now leverage the power of the SAS® Quality Knowledge Base and

dramatically improve their data quality and data matching results. This session explores the

capabilities now available to Python coders and gives coding examples and

demonstrations showing how to leverage SAS Quality Knowledge Base capabilities such as

parsing, standardization, and match-coding to better prepare data for analytics. Techniques

for entity resolution and duplicate elimination are also explored.

INTRODUCTION

Data quality is a pervasive problem. There are some Python packages for data quality, but

they are mostly about detecting or reporting on data quality, not for improving data quality.

If you are using Python to improve data quality today, you are probably writing a lot of your

own regular expressions and np.where() code.

For over twenty years SAS users have been able to use SAS® Data Quality and the SAS

Quality Knowledge Base (QKB) to quickly and easily improve data quality, enrich data, and

to facilitate duplicate elimination and entity resolution using fuzzy matching techniques.

Now, with SAS® Data Quality on SAS® Viya®, Python coders have access to the rules-based

AI contained in the QKB and can leverage that same rich set of data quality capabilities.

Those capabilities include the following:

• Identification Analysis (to highlight data that is in the wrong place)

• Parsing (to take apart data into its constituent parts)

• Standardization (to correct inconsistent formatting)

• Gender Analysis (to get gender values from name information)

• Match Coding (to generate consistent codes for similar data values)

• And more! (Casing, Extraction, Pattern Analysis, Locale Guess, Language Guess)

The SAS QKB currently has support for 42 locales in 27 different languages, including

languages using non-latin characters, such as Chinese, Japanese, Arabic, and Russian.

This paper will use a typical data quality problem and show you how the first five

capabilities of the SAS QKB mentioned above can be leveraged from a Python/Jupyter

notebook to transform data exhibiting a poor level of data quality into a higher level of data

quality that you would require for downstream analytics.

2

EXAMPLE PROBLEM

The spreadsheet shown below contains the data that we will be using for our example.

Figure 1. Spreadsheet Data That Exhibits Poor Data Quality

This data contains multiple rows per individual. Say for the type of analysis we want to do

with this data we would like to have just six rows, one for each person, with a total Amount

per person, and the other data cleansed and consolidated. Also, we would like to have a

Gender field (Male/Female/Unknown) added.

Here are the data quality challenges that we are facing:

• no unique identifier per individual.

• various formats of names, including nick-names and initials.

• various formats of phone and address information.

• missing data and incomplete data (e.g., some phone numbers missing area codes).

• data in the wrong places (e.g., Email in the Phone column).

• concatenated data that needs parsing (e.g., “Calgary AB T2T1T5” all in the City field).

• typos (“Toporowski” vs “Toperowski”, PostCode “G0L1TO” vs “GOL1T0”, etc.).

The simplified business rules that we will use for this example are that we would like to get

the longest Name, Address, City, Phone, and Email for each individual, along with total

Amount, standardized Province, PostCode, Phone, and a generated gender code, like this:

Figure 2. Results of the Data Quality Processing That We Would Like to Achieve

3

LOADING DATA INTO SAS® CLOUD ANALYTIC SERVICES

SAS Cloud Analytic Services (CAS) is the cloud-based server running on the SAS Viya high-

performance, fault-tolerant analytics architecture. The smallest unit of work for the CAS

server is a CAS action. CAS actions can load data, transform data, perform analytics, and

create output.

To use CAS in Python and Jupyter notebook you need to make sure that you have the SAS

Scripting Wrapper for Analytics Transfer (SWAT) installed. See

https://github.com/sassoftware/python-swat for details.

From a Jupyter notebook we can then import the SAS SWAT package (import swat) and

connect to SAS CAS (swat.CAS), and then set the active library with the setsessopt

action.

Display 1. Setting Up the Environment and Connecting to CAS

Then we need to upload the data, in this case we used the read_excel method. To display

the uploaded data, we can use CASTable, a swat DataFrame-like object:

Display 2. Uploading Data and Then Fetching That Data Back for Display

Display 3. Output From the Display Data Action

https://github.com/sassoftware/python-swat

4

DATA QUALITY AND DATA ENRICHMENT OPERATIONS

IDENTIFICATION ANALYSIS

The first data quality operation we will invoke is the dqIdentify function, through the

dataStep.runCode CAS action. This inspects the City, Prov, PostCode, and Phone using the

“Field Content” definition, in the English Canadian locale (ENCAN) of the QKB.

The results that come back show where these fields are empty, or where we are getting

data different than we expected, using the newly created _Ident fields:

• The Phone_Ident field shows where Phone is empty or looks like an email.

• The Post_Ident field shows where PostCode is empty or looks like a phone number.

• The Prov_Ident field show where the Prov Field is empty or contains Postal Code.

• The City_Ident field shows where the City fields contains more than just City.

Display 4. Commands and Output from the Identification Analysis

For a real-world problem, you might want to invoke the dqIdentify function on more fields,

or even all fields, depending on the extent of the problems. In this case, we are only

working on these four fields since we know from previous data profiling work on the

spreadsheet that the problem of misplaced data is limited to these four fields.

5

RIGHT-FIELDING

Next, we want to use the intelligence gained with the use of the dqIdentify function within

SAS DATA step code that is invoked with the dataStep.runCode CAS action.

In the simple example code below, we find those cases where Email, Phone and Postal Code

are in the wrong spot, and move them to the correct spot (and update the _Ident indicator

fields as well).

Display 5. The Code Used for Right-Fielding and the Results

6

PARSING

Next, we will use the dqParse and dqParseTokenGet functions to fix those rows where

City, Province, and Postal Code have been concatenated together.

Display 6. The Code Used for Parsing Apart the City, Province, and Postal Code,

and the Results

Now that we have all information in the correct place, we can move on to standardizations,

corrections, and enrichment.

7

STANDARDIZATION AND ENRICHMENT

We want to standardize the Prov, PostCode, and Phone fields using the dqStandardize

function. You want to use the correct standardization definition on each data type. (for

example, the “State/Province (Postal Standard)” definition on the Prov field). We also

specify the locale as “ENCAN”, so that the data gets standardized to “English, Canadian”

standards (note that the ENCAN and FRCAN definitions handle data in both French and

English). If we had some USA data, we would want to use the “ENUSA” definition on those

rows.

Here we also invoke the dqGender function to generate the gender field. It will get a value

of M, F, or U, depending on what it finds in the Name field. It considers name prefixes (Mr.,

Ms, Mme, etc.) and uses a lookup table of given names that skew toward a specific gender.

Display 7. Standardization of Prov, Phone, and PostCode, and Generating Gender

8

ENTITY RESOLUTION OPERATIONS

MATCH-CODING

Next is the dqMatch function. Sensitivity is the third parameter, which determines how

much “fuzziness” is allowed in the matchcode. The standard setting for sensitivity is 85, but

can be set higher to require closer matches, or set lower to permit “fuzzier” matches. Both

Canadian locales (ENCAN and FRCAN) will handle bilingual English and French data and

generate the same match code for similar data no matter the language. If we had some

USA data, we would probably want to use the “ENUSA” definition on those rows.

Display 8. Similar Data Values Get the Same Matchcode Using the dqMatch

Function

9

CLUSTERING

Next we need to load the Entity Resolution CAS action set, and use the entityres.match

CAS action to cluster together records based on the matching rules that we specify. In this

example, we are using the matchcodes to match on the following:

• Name & Street Address & PostalCode - OR -

• Name & City & Province - OR -

• Name & Phone (last 7 digits) - OR -

• Name & Email

Display 9. Clustering Rules Using Matchcodes, and the Resulting CLUSTERID

The result of the entityres.match CAS action is a new column, which is called CLUSTERID

here. All rows that fall into the same cluster, according to our matching rules, will get the

same CLUSTERID value. This column is a 24-byte character string. Minor differences in the

CLUSTERID values are a little difficult for most humans to detect. Therefore, you might

want to transform the CLUSTERID into a numeric value.

10

Here we use the simple.groupByInfo CAS action to turn the CLUSTERID 24-byte character

string into a numeric value called _GroupID_. Now all rows in the same cluster also have

the same numeric _GroupID_ value.

Display 10. Transforming the 24-byte CLUSTERID Into a Numeric _GroupID_

You might have noticed that the QKB was not involved in this clustering step. So you could,

if you wanted to, download the data from the server and do the clustering on your client,

using Python code instead of using the entityres.match CAS action on the server. The

advantages of doing it on the server are better performance and reduced network traffic.

This doesn’t really matter when dealing with just 20 records, but it certainly would matter if

we were dealing with 20 million records.

Now that we have all the records for our six people grouped together as we had hoped we

would, all that’s left to do is sum the amounts for each person, and choose the best

information that we have for each person on each of the other columns. This is called

Survivorship.

11

SURVIVORSHIP

Below is some example SAS DATA step code to create a surviving record for each person.

In this example, we are simply summing up the Amount for each cluster, and selecting the

Name, Address, City, Postal, Phone, and Email with the longest string lengths in the cluster.

Real world survivorship rules are usually more robust than this, so please don’t consider this

code to be a “best-practices” survivorship coding example.

Again, this step could be done with Python code on the client side. The advantages of doing

it on the server are better performance and reduced network traffic. After this step is done,

you only need to download one record per individual to your client. Or leave the data on

the server and leverage SAS Analytics in CAS from Python as well!

Display 11. Surviving Just One Record Per Individual

12

CONCLUSION

This paper has shown that the rules-based AI capabilities in the SAS QKB are a powerful

way for you, as a Python coder, to achieve better data quality more quickly and easily than

you could by trying to write your own code to achieve the same results.

What’s next? I recommend you try out these capabilities on a data quality problem of your

own, or take the example shown here and take it further. What if you wanted to

standardize the formatting of the Names and remove name prefixes, or add missing name

prefixes? (hint: there are Name Standardization and Name Parsing definitions in the QKB).

Finally, you might be starting to think about how to move beyond just an interactive data

science session in Jupyter and thinking about how to operationalize this data quality

process. Will you want to schedule this as a regular batch job? Or turn it into a web

service, callable in real-time by other applications? Or embed it in a process ingesting

streaming data? All these deployment options for data quality are available with SAS.

ACKNOWLEDGMENTS

Thanks go out to Kevin D. Smith for his guidance on coding style, and to colleagues Ron

Yee, André Lafreniere, and Guy Bourassa for content suggestions for this paper.

RECOMMENDED READING

• SAS® Blogs: “Using Python to work with SAS Viya and CAS”, by Chris Hemedinger

• SAS® Viya®: The Python Perspective, by Kevin D. Smith and Xiangxiang Meng

• SAS® Data Quality: Getting Started

• SAS® Quality Knowledge Base for Contact Information: Online Help

• SAS® Data Quality: Language Reference (the “Functions supported in CAS” section)

• SAS® Viya®: System Programming Guide (the Python syntax examples)

• SAS® Data Quality: CAS Action Programming Guide

• SAS® Cloud Analytics Services: CASL Programmer’s Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Arnold Toporowski

SAS Institute (Canada) Inc

+1 (613) 755-2313

Arnold.Toporowski@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.facebook.com/alafreniere3

