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ABSTRACT 

A closed knight's tour of a chessboard uses legal moves of the knight to visit every square 
exactly once and return to its starting position.  The closed knight’s tour is a recreational 
variation of the well-known Traveling Salesman Problem (TSP).   Gerlach uses 
Warnsdorff's heuristic technique and SAS® to produce closed knight's tours for the 
traditional 𝟖 × 𝟖  board.  Generalizing the same approach, Gerlach and Gerlach produce 
closed knight’s tours for the 𝒏 × 𝟖 × 𝟖 chessboard for 𝒏 = 𝟐, 𝟑, 𝟒, 𝟓, 𝟔 and theorize that the 
technique works for larger values of n as well. In 1991, Schwenk completely classified the 
𝒏 × 𝒎 rectangular chessboards that admit a closed knight's tour. In 2011, DeMaio and 
Mathew completely classified the 𝒊 × 𝒋 × 𝒌 rectangular prism chessboards that admit a closed 
knight's tour.  This paper demonstrates how to utilize PROC OPTGRAPH with the TSP option 
to construct closed knight's for rectangles, rectangular prisms, hexagons and other variant 
chessboards. 

INTRODUCTION 
The traveling salesman problem (TSP) wishes to construct a route that starts a salesperson 
at a home base, visits every client on a list exactly once, returns to the starting location and 
does so as cheaply as possible. When posed for a geographical region, travel between any 
two locals is possible with a cost specific to the pair. Many different routes for a region 
exist; the question is which route is the cheapest.  At other times, the TSP is a question of 
existence; does a route that visits each location exactly once even exist? Such is the case of 
the closed knight’s tour. The knight cannot legally move from just any given square to any 
other square.  Furthermore, there is no cost associated with a knight’s move. Can a knight 
use legal moves to visit every square on the chessboard and return to its starting position? 
Naturally, the question was initially solved for the standard 8 × 8 board. In 2015, Gerlach 
implements Warnsdorff's heuristic technique in SAS to produce closed knight's tours for the 
traditional 8 × 8 board [4].   When attempting to iteratively build a closed knight’s tour, 
Warnsdorff's heuristic selects the next move to be the square with the fewest neighbors left 
unvisited in the current tour construction [7].  

Typically, graphs or networks model the TSP problem. This comes as no surprise as Euler is 
considered the father of graph theory [2] whose 1759 paper [3] applies graphs as a model 
to tackle the problem of the closed knight’s tour.  Formally, a graph 𝐺 = (𝑉, 𝐸) is an ordered 
pair where the vertex set 𝑉 represents a set of squares on the board and the edge set 𝐸 
represents a legal move of the knight between a pair of squares.  A closed knight’s tour of a 
board is a cycle in the graph that visits every vertex exactly once and returns to its starting 
position.  We know a closed knight’s tour exists on the 8 × 8 board.  What about rectangular 
boards of different dimensions? 

CLOSED KNIGHT’S TOURS ON THE RECTANGULAR CHESSBOARD 
In 1991, Schwenk classified all rectangular boards that admit a closed knight's tour [6]. 



 

 

Schwenk's Theorem: An 𝑚 × 𝑛 chessboard with 𝑚 ≤ 𝑛 contains a closed knight's tour unless 
one or more of the following three conditions hold: 

(a) 𝑚 and 𝑛 are both odd; 

(b) 𝑚 ∈ {1, 2, 4}; 

(c) 𝑚 = 3 and 𝑛 ∈ {4, 6, 8}. 

It can be easily shown why there is no closed knight’s tour on an 𝑚 × 𝑛 chessboard, where 𝑚 
and 𝑛 are both odd.  On the black and white chessboard, a legal move of the knight is 
possible, only between squares of alternating colors. Clearly, we need to have an equal 
number of black and white squares for a closed knight’s tour.  If 𝑚 and 𝑛 are both odd, the 
number of vertices on the board is also odd.  Thus, there cannot be the same number of 
black and white squares and a closed knight’s tour is not possible. A similar, but more 
complex, argument shows that no tour exists of the 4 × 𝑛 chessboard. 

Let’s consider a different approach on the non-existence of a knight’s tour on a small board. 
Specifically, consider the 3 × 6 chessboard in Figure 1.  

 

Figure 1. The non-existence of a closed knight’s tour on the 𝟑 × 𝟔 chessboard 

First, examine the squares (2,1) and (2,5). The only two possible moves starting from or 
ending at (2,1) are to or from (1,3) and (3,3). Second, note that (2,5) is also forced to have 
moves to or from (1,3) and (3,3). No other moves exist at (2,1) and (2,5).  We must have a 
closed tour including these four vertices. There is no way to open up this tour to include the 
other squares.   So, a 3 × 6 chessboard cannot admit a closed knight’s tour.  Similar 
arguments preclude the existence of a closed knight’s tour for the remaining pairs of values 
in Schwenk’s Theorem. 

Proving the existence of a closed knight’s tour for all other pairs of values is a theoretical 
exercise using induction as a proof technique.  What if you only want to find a closed 
knight’s tour for a specific rectangular board that we know exists?  There is no need to go 
into the theoretical construction from Schwenk’s paper.  PROC OPTGRAPH offers many 
algorithms for graph analysis.  Key to easily constructing closed knight’s tour is the TSP 
option.         

USING PROC OPTGRAPH TO CONSTRUCT CLOSED KNIGHT’S 
TOURS ON THE RECTANGULAR CHESSBOARD   
Constructing a closed knight’s tour utilizing PROC OPTGRAPH requires two steps.  First, 
define the vertices and edges of the graph based on the type of chessboard and legal moves 
of the knight.  In 2019, DeMaio and Yockey provide the following code for the general 𝑚 × 𝑛 
chessboard [9]. First, define the specific values for 𝑚 and 𝑛 in the rows and columns 
variables. Second create the vertices and legal knight moves. In terms of total number of 
squares, the smallest boards that admit a closed knight’s tour are the 3 × 10 and 5 × 6 
chessboards.  The following code creates a tour for the 5 × 6 chessboard.  The code is easily 



 

 

changed for any chessboard by redefining the variables for rows and columns.  The graph 
is constructed by creating edges based on legal moves of the knight where squares on the 
board are represented in standard matrix format as ordered pairs. An edge need only be 
constructed once. The move connecting (3,1) and (1,2) is only created once by the 
following code as edges are created from left to right.   

data board; 
rows = 5; 
columns = 6; 
do i = 1 to rows; 
do j = 1 to columns; 
origin = (i || j); 
/* input legal moves of the knight */ 
/* up 2 right 1 */ 
if i>=3 and j<= columns-1 then do 
destination = (i-2 || j+1); 
output; 
end; 
/* up 1 right 2 */ 
if i>=2 and j<= columns-2 then do 
destination = (i-1 || j+2); 
output; 
end; 
/* down 1 right 2 */ 
if i<=rows-1 and j<= columns-2 then do 
destination = (i+1 || j+2); 
output; 
end; 
/* down 2 right 1 */ 
if i<=rows-2 and j<= columns-1 then do 
destination = (i+2 || j+1); 
output; 
end; 
end; 
end; 
run; 
 
Now that the chessboard is represented as a graph, we utilize the TSP option in PROC 
OPTGRPAH to construct a closed knight’s tour.  
 
proc optgraph 
data_links = board; 
*create graph from variables; 
data_links_var 
from = origin 



 

 

to = destination; 
* write cycle to file closed_knights_tour; 
tsp out = closed_knights_tour; 
run; 
proc print data=work.closed_knights_tour; 
* print to results file; 
run;  

Running PROC OPTGRAPH created the following closed knight’s tour on the 5 × 6 board in 
the Work directory as closed_knights_tour as shown in Table 1.   Figure 2 provides a 
visual representation of said tour.  

Performance Information 

Execution Mode Single-
Machine 

Number of Threads 4 
 

Problem Summary 

Input Type Graph 

Number of Nodes 30 

Number of Links 62 

Graph Direction Undirected 
 

 

Solution Summary 

Problem Type Traveling 
Salesman 

Problem 

Solution 
Status 

Optimal 

Objective 
Value 

30 

Relative Gap 0 

Absolute Gap 0 

Primal 
Infeasibility 

0 

Bound 
Infeasibility 

0 

Integer 
Infeasibility 

0 

Best Bound 30 

Nodes 0 

Iterations 0 

CPU Time 0.00 

Real Time 0.00 
 

Obs origin destination 

1 1           1 2           3 

2 4           2 2           3 

3 2           1 4           2 

4 2           1 1           3 

5 1           3 2           5 

6 2           5 4           6 

7 5           4 4           6 

8 3           3 5           4 

9 1           2 3           3 

10 3           1 1           2 

11 3           1 5           2 

12 5           2 4           4 

13 4           4 5           6 

14 3           5 5           6 

15 3           5 1           6 
 

Obs origin destination 

16 2           4 1           6 

17 2           4 4           5 

18 4           5 2           6 

19 1           4 2           6 

20 2           2 1           4 

21 4           1 2           2 

22 4           1 5           3 

23 5           3 3           4 

24 3           4 1           5 

25 1           5 3           6 

26 5           5 3           6 

27 4           3 5           5 

28 5           1 4           3 

29 5           1 3           2 

30 1           1 3           2 
 

 

Table 1. Results of PROC OPTGRAPH on the 𝟓 × 𝟔 chessboard 



 

 

 

Figure 2. A closed knight’s tour on the 𝟓 × 𝟔 chessboard  

When running the above code to find a closed knight’s tour when we know one exists, we 
merely need to look at the output file in the work directory to find a tour.  What if our rows 
and columns variables are for a board where no tour exists?  Two different cases are 
possible, and both require looking at the results output. 

The most common case occurs on a board where legal knight moves exist from every 
square on the board, but no overall tour exists.  This would be the case for the 5 × 7 board. 
Obviously, no tour is generated in the work directory.  Instead one needs to look at the 
Solution Summary of the TSP option.  The absence of a tour for the 5 × 7 board is indicated 
by the Solution Status set to Infeasible as seen in Table 2.  

 

Performance Information 

Execution Mode Single-
Machine 

Number of 
Threads 

4 

 

Problem Summary 

Input Type Graph 

Number of Nodes 35 

Number of Links 76 

Graph Direction Undirected 
 

Solution Summary 

Problem 
Type 

Traveling 
Salesman 

Problem 

Solution 
Status 

Infeasible 

CPU Time 0.00 

Real Time 0.02 
 

 

Table 2. Results of PROC OPTGRAPH on the 𝟓 ×7 chessboard 

  
The rare second case occurs on a board that contains a square which has no legal knight 
moves.  This takes place on the 3 × 3 board for the (2,2) square.  Since the board is created 
using legal moves of the knight, the (2,2) square is not represented by a vertex.  For the 
3 × 3 board, a closed tour of the eight other squares does exist and is constructed since the 
(2,2) square is not part of the graph.  This case is rare but easy to note as the number of 
squares on the board, 9, is not the same as the number of nodes in the graph which is 8 as 
shown in the Problem Summary in Table 3.  This case only occurs with small parameters of 
a board where a square has no room to make a legal knight move. 
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Performance Information 

Execution Mode Single-
Machine 

Number of Threads 4 
 

Problem Summary 

Input Type Graph 

Number of 
Nodes 

8 

Number of 
Links 

8 

Graph 
Direction 

Undirected 

  

 

Solution Summary 

Problem Type Traveling Salesman 
Problem 

Solution Status Optimal 

Objective Value 8 

Relative Gap 0 

Absolute Gap 0 

Primal Infeasibility 0 

Bound Infeasibility 0 

Integer Infeasibility 0 

Best Bound 8 

Nodes 0 

Iterations 0 

CPU Time 0.00 

Real Time 0.00 
 

Obs origin destination 

1 1           1 2           3 

2 3           1 2           3 

3 3           1 1           2 

4 1           2 3           3 

5 2           1 3           3 

6 2           1 1           3 

7 3           2 1           3 

8 1           1 3           2 
 

 

Table 3. Results of PROC OPTGRAPH on the 𝟑 × 𝟑  chessboard 

 

 

Figure 3. A partial closed knight’s tour on the 𝟑 × 𝟑 chessboard 
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USING PROC OPTGRAPH TO CONSTRUCT CLOSED KNIGHT’S 
TOURS ON THE RECTANGULAR PRISM CHESSBOARD   
Having studied the existence of closed knight’s tour for the rectangular chessboard, it 
makes sense to consider other variant chessboards.  In 2018, using the same heuristic 
technique in SAS, Gerlach and Gerlach produced closed knight's tours for the 𝒏 × 𝟖 × 𝟖 
chessboard for 𝒏 = 𝟐, 𝟑, 𝟒, 𝟓, 𝟔 and theorize that the technique works for larger values of n as 
well [5].  Naturally the question of existence of closed knight’s tours on such a chessboard 
arises.  In 2011, DeMaio and Mathew classified all rectangular prisms that admit a closed 
knight's tour [1]. 

An 𝑖 × 𝑗 × 𝑘 chessboard for integers 𝑖, 𝑗, 𝑘 ≥ 2 has a closed knight's tour unless one or more of 
the following three conditions hold: 

(a) i, j and k are all odd; 

(b) 𝑖 = 𝑗 = 𝑘 = 2; 

(c) 𝑖 = 2 and 𝑗 = 𝑘 = 3. 

Running PROC OPTGRAPH created the closed knight’s tour on the 2 × 4 × 3 board of Table 4.  
The code is available in Appendix A.   

Obs origin destination 

1 1 1 1 2 1 3 

2 1 3 3 2 1 3 

3 1 1 2 1 3 3 

4 1 1 2 2 3 2 

5 2 1 1 2 3 2 

6 1 3 1 2 1 1 

7 1 3 1 2 3 3 

8 1 1 3 2 3 3 

9 1 1 3 1 2 1 

10 1 2 1 2 4 1 

11 1 4 3 2 4 1 

12 1 4 3 2 2 3 

13 2 2 3 2 4 2 

14 1 2 2 2 4 2 

15 1 2 2 1 4 1 

16 1 4 1 2 2 1 

17 1 2 3 2 2 1 

18 1 2 3 1 4 2 

19 1 4 2 2 2 2 

20 2 2 2 2 4 3 

21 2 3 1 2 4 3 

22 2 1 2 2 3 1 

23 1 3 2 2 1 2 
24 1 1 1 1 3 2 

 

Table 4. Results of PROC OPTGRAPH on the 𝟐 × 𝟒 × 𝟑 chessboard 
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We omit the detailed discussion of output for rectangular prisms as it is identical to that for 
rectangular boards.  As before, there are boards that admit a closed knight’s tour, boards 
that don’t due to a different number of black and white squares, and boards that are too 
small to admit a tour or too small to allow a knight move from particular cells. 

USING PROC OPTGRAPH TO CONSTRUCT CLOSED KNIGHT’S 
TOURS ON THE RECTANGULAR PRISM CHESSBOARD   
 

The closed knight’s tour always accompanies the numerous variations of chessboards that 
exist.  One need only redefine the topology of the chessboard and the moves of the knight 
for PROC OPTGRAPH.  Many chessboard variants utilize a hexagonal cell rather than a 
square.  One of the more popular of these hexagonal variants is Glinski’s [8].

               

Figure 4. Glinski’s hexagonal board of side 6 and knight’s move 

As we begin an examination of the closed knight’s tour problem, we focus on a single 
parameter in much the same way one studies square chessboards before moving on to 
rectangular chessboards. One quickly notes a lack of right angles.  Glinski’s knight moves 
on an obtuse angle. 

Glinski’s hex boards of side 1, 2, or 3 are too small to permit a closed knight’s tour since 
there are no legal moves from the center square.  On the board of side 4, the knight may 
move from the center square and perhaps a closed tour does exist.  Running PROC 
OPTGRAPH created the tour on the board of Figure 5.  The code is available in Appendix B.   

 

Figure 5.  A closed knight’s tour on Glinski’s board of side 4 



 

9 

Repeating this process we established that a closed knight’s tour exists on Glinski’s 
hexagonal board of side n for 4 ≤ 𝑛 ≤ 50. PROC OPTGRAPH has been invaluable in 
demonstrating the existence of closed knight’s tours in Glinski’s hex board.  Thus, we 
propose the following. 

Conjecture: Glinkski’s hexagonal board of side n contains a closed knight’s tour for 𝑛 ≥ 4. 

To prove this conjecture one must venture into the theoretical process of mathematical 
induction.  Mathematical induction details the process of using knight’s tours from smaller 
boards to create knight’s tours for larger boards.  The general nature of the construction will 
show how to create a tour on and board of side n.  Doing so is the subject of a future paper.  

CONCLUSION 
PROC OPTGRAPH reduces the problem of constructing a TSP route down to the problem of 
coding the network. On the recreational and theoretical side of life, this paper uses PROC 
OPTGRAPH to construct closed knight’s tours on variant chessboards.  Elegantly coding the 
topology of the chessboard and moves of the knight serves as the challenge here.  On the 
applied side of life, data for the TSP will be messy and big but eventually will be cleaned and 
formatted as a spreadsheet.  After that importing the data and constructing the graph for 
use with PROC OPTGRAPH will be easy.       
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APPENDIX A-RECTANGULAR PRISM BOARD CODE 
The following code creates a tour for the 4 × 4 × 4 chessboard.  The code is easily changed 
for any chessboard by redefining the variables for rows and columns and layers.  The 
graph is constructed by creating edges based on legal moves of the knight where squares 
on the board are represented in standard matrix format as ordered triples. An edge need 
only be constructed once. The move connecting (1,3,1) and (1,1,2) is only created once by 
the following code as edges are created from left to right and up. 

data board; 
rows = 4; 
columns = 4; 
layers = 4; 
DO I = 1 TO rows; 
do j= 1 to columns; 
do k = 1 to layers; 
origin = (i||j||k); 
 
/*Legal moves*/ 
/*1: Up 2 Right 1 same layer*/ 
if i>=3 and j <= columns - 1 then do 
destination = (i-2||j+1||k); 
output; 
end; 
 
/*2: Up 1 Right 2 same layer*/ 
if i>=2 and j<=columns - 2 then do 
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destination = (i-1||j+2||k); 
output; 
end; 
 
/*3: Down 1 Right 2 same layer*/ 
if i<=rows-1 and j<=columns - 2 then do 
destination = (i+1||j+2||k); 
output; 
end; 
 
/*4: Down 2 Right 1 same layer*/ 
if i<=rows - 2 and j<=columns - 1 then do 
destination = (i+2||j+1||k); 
output; 
end; 

 
/*5: Up 2 down 1 layer*/ 
if i>=3 and k <= layers - 1 then do 
destination = (i-2||j||k+1); 
output; 
end; 
 
/*6: Up 1 down 2 layers*/ 
if i>=2 and k<=layers - 2 then do 
destination = (i-1||j||k+2); 
output; 
end; 
 
/*7: Down 1 down 2 layers*/ 
if i<=rows-1 and k<=layers - 2 then do 
destination = (i+1||j||k+2); 
output; 
end; 
 
/*8: Down 2 down 1 layer*/ 
if i<=rows - 2 and k<=layers - 1 then do 
destination = (i+2||j||k+1); 
output; 
end; 
 
/*9: Right 1 down 2 layers*/ 
if j<=columns-1 and k<=layers - 2 then do 
destination = (i||j+1||k+2); 
output; 
end; 
 
/*10: Right 2 down 1 layer*/ 
if j<=columns - 2 and k<=layers - 1 then do 
destination = (i||j+2||k+1); 
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output; 
end; 
 
/*11: Right 1 up 2 layers*/ 
if j<=columns-1 and k>=3 then do 
destination = (i||j+1||k-2); 
output; 
end; 
 
/*12: Right 2 up 1 layer*/ 
if j<=columns - 2 and k>=2 then do 
destination = (i||j+2||k-1); 
output; 
end; 

 
end; 
end; 
end; 
run; 

 
proc optgraph 
data_links = board; 
data_links_var 
from =origin 
to = destination; 
tsp out = latest_closed_knights_tour; 
run; 

 

APPENDIX B-GLINSKI’S HEXAGONAL BOARD CODE 
The following code creates a tour for Glinski’s hexagonal board of side 4.  The code is easily 
changed for any chessboard by redefining the variable for dim.  The graph is constructed by 
creating edges based on legal moves of the knight where squares on the board are 
represented in standard matrix format as ordered pairs.  Given the complex topology of the 
board and movement of the knight, all possible moves of the knight are created for each 
hex cell.  Thus, duplicate edges will be created. PROC OPTGRAPH ignores multiple edges in 
a graph although it does create a warning of each instance in the log.   

 
data board; 
dim = 4; 
n = (dim - 1); 
/* number of rows when dimension is 4 = 7 that is (4-1)*2 + 1 */ 
/* 0 to (4-1)*2 iterates 7 times: r= 0,1,2,3,4,5,6  */ 
do r = 0 to 2*n; 
 
 /*case when dimension = 4, n = 3, r = 0, n-r = 3, column starts at 3 ends at 6*/ 
 /*          r = 1, n-r = 2, column starts at 

2 ends at 6*/ 
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 /*          r = 3, n-r = 0, column starts at 
0 ends at 6*/ 

 if (n-r)>=0 then do 
  q_lower = n - r; 
  q_upper = 2*n; 
  end; 
  
  
 /*case when dimension = 4, n = 3, r = 5, n-r = -2, column starts at 0 ends at 3*3-5 = 4 */ 
 /*          r = 6, n-r = -3, column starts at 

0 ends at 3*3-6 = 3 */ 
 if (n-r)<0 then do 
  q_lower = 0; 
  q_upper = 3*n - r; 
  end; 
   
 do q = q_lower to q_upper; 
  origin = (r||q); 
 
  /*12 Legal moves: Defined on the original Hex Board*/ 
   
  /*1: Up-Left*/ 
  /* This means going up two squares and one step towards left diagonal */ 
  if r>=2 and q >=1 and r+q >= n+3 then do 
   destination = (r-2||q-1); 
   output; 
   end; 
   
   
  /*2: Up-right*/ 
  if r>=3 and q<= 2*n-1 and r+q >= n+2 then do 
   destination = (r-3||q+1); 
   output; 
   end; 
     
  /*3: right top diag and up*/ 
  /* This means going two steps right towards the top diagonal and then one step up */ 
  /*  */ 
  if r>=3 and q <= 2*n-2 and r+q>= n+1 then do 
   destination = (r-3||q+2); 
   output; 
   end; 
    
  /*4: right top diag and down*/ 
  if r>=2 and q <= 2*n-3 and r+q <= 3*n-1 then do 
   destination = (r-2||q+3); 
   output; 
   end; 
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  /*5: right bottom diagonal up*/ 
  if r>=1 and q <= 2*n-3 and r+q <= 3*n-2 then do 
   destination = (r-1||q+3); 
   output; 
   end; 
   
  /*6: right bottom diagonal bottom*/ 
  if r<=2*n - 1 and q <= 2*n-2 and r+q <= 3*n-3 then do 
   destination = (r+1||q+2); 
   output; 
   end; 
   
  /*7: down right*/ 
  if r<=2*n - 2 and q <= 2*n-1 and r+q <= 3*n-3 then do 
   destination = (r+2||q+1); 
   output; 
   end; 
    
  /*8: down left*/ 
  if r<=2*n - 3 and q >= 1 and r+q <= 3*n-2 then do 
   destination = (r+3||q-1); 
   output; 
   end; 
    
  /*9: left bottom diagonal down*/ 
  if r<=2*n - 3 and q >= 2 and r+q <= 3*n-1 then do 
   destination = (r+3||q-2); 
   output; 
   end; 
   
  /*10: left bottom diagonal up*/ 
  if r<=2*n - 2 and q >= 3 and r+q >= n+1 then do 
   destination = (r+2||q-3); 
   output; 
   end; 
    
  /*11: left top diagonal down*/ 
   
  if r<=2*n-1 and q >= 3 and r+q >= n+2 then do 
   destination = (r+1||q-3); 
   output; 
   end; 
   
  /*11: left top diagonal up*/ 
  if r>=1 and q >= 2 and r+q >= n+3 then do 
   destination = (r-1||q-2); 
   output; 
   end; 
end; 
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end; 
 
run; 

 
proc optgraph 
data_links = board; 
data_links_var 
from =origin 
to = destination; 
tsp out = closed_knights_tour4; 
run; 

 


