

1

Paper SAS4103-2020

An Insider’s Guide to SAS/ACCESS® Interface to Snowflake

Jeff Bailey, SAS Institute Inc.

ABSTRACT

Snowflake is an exciting, new data warehouse built for the cloud. SAS/ACCESS® Interface

to Snowflake allows SAS® to take advantage of this exciting technology. This

paper describes Snowflake and details how it differs from other databases that you might

have used in the past.

Using examples, we discuss the following topics:

• the differences between using SAS/ACCESS Interface to Snowflake and

SAS/ACCESS® Interface to ODBC

• how to configure your SAS environment for SAS/ACCESS Interface to Snowflake

• tricks that you can use to discover what the SAS/ACCESS product is doing

• how to effectively move data into Snowflake using SAS/ACCESS Interface to

Snowflake

• performance tuning your SAS and Snowflake environment

The paper uses an example-driven approach to explore these topics. Using the examples

provided, you can apply what you learn from this paper to your environment.

INTRODUCTION

SAS released SAS/ACCESS Interface to Snowflake with SAS 9.4M6 and SAS Viya® 3.4; this

new SAS/ACCESS product has proven very popular. This paper discusses what makes

Snowflake different from other relational database management systems (RDBMS). We will

look at these differences, explain why they matter, and show how you can use them with

SAS to make your life easier.

As we discuss this new product, I will show examples and point out “the why” behind some

of it.

Finally, I am going to do something I have never done before. This paper includes a section

titled “Just Tell Me What to Do!” This new section lists best practices that will help you get

great performance from the start. In short, it will make your first experience with

SAS/ACCESS Interface to Snowflake a success. Yes, I realize that this is the only section of

the paper that most people will read.

SAS/ACCESS Interface to Snowflake uses the Snowflake ODBC driver. Sometimes, this

leads to confusion. This paper explores the many differences between SAS/ACCESS

Interface to Snowflake and SAS/ACCESS Interface to ODBC and why you would choose one

over the other.

AN INTRODUCTION TO SNOWFLAKE

Years ago, I was involved in a consulting project. I was the database administrator (DBA)

on the team. My first task: get permission to purchase a UNIX machine, purchase said

machine, find a place for the machine to live, arrange for a network connection, configure

the operating system, install the database, and configure the database. Finally after all

that, start working on the actual project. Exhausting!

2

This process took approximately 12 weeks. I spent a lot of this time waiting for other people

to do “things.” Frustrating is one way to describe the experience.

In the past, many projects followed this pattern. Spend a lot of money up-front. Order

hardware. Wait. Install the software. Configure the software. Use the software. This pattern

makes it difficult to spin-up projects quickly. Fortunately, now there is a solution.

Fast forward to modern times and things have changed. With Snowflake, you can go from

no database to your first SQL query in a matter of minutes. All you need is a corporate

email address and a credit card. It is simple.

Snowflake is a data warehouse created for the cloud and is not based upon an existing

database, such as PostgreSQL.

Snowflake launched on Amazon Web Services (AWS). It is now also available for Microsoft

Azure (Azure) and Google Cloud Platform (GCP). You can switch your cloud provider, and

your database remains consistent – Outstanding! One of the many great things about

Snowflake is that from an end-user perspective, it is just like those other SQL databases

that you know and love.

There are a couple of things that make Snowflake different. Let’s discuss my personal

favorite.

COMPUTE AND STORAGE ARE SEPARATE

Traditional databases like Teradata and Oracle tie processing (compute) and managing data

on disk (storage) together. If the database needs more disk space, a DBA can add it, but

this is expensive and requires a great deal of planning or negotiating with other teams. In

short, it can be expensive, painful, and difficult. Plus, do it too often, and people begin to

question if you know what you are doing.

Compute is either the size of the machine running the database or, in the case of Teradata,

the number of compute nodes. Increasing the compute resources allotted to a traditional

database means either moving the database to a larger machine or buying new machines to

add to the database. Both options are time-consuming and expensive.

The cost of increasing the capacity of a database is one reason DBAs tend to over-estimate

the resources required for that new database system. The cost of being wrong is both

expensive and embarrassing, not to mention time-consuming.

Snowflake makes this entire set of problems disappear by separating compute from storage.

Let’s discuss storage first because it is easier to explain. Snowflake uses the object store

provided by the cloud it is running on. Cloud vendors say that their object stores (such as

AWS S3) provide infinite capacity. I am sure there is a limit, but there is little chance of

hitting it; this means that Snowflake DBAs will never face the issue of running out of space.

Approaching management, with your tail between your legs, to ask for money for more disk

space is a thing of the past.

Second, because compute and storage are separate, your DBA can automatically increase

the resources allocated to compute. In Snowflake, this is called a warehouse. When your

SAS® Visual Analytics queries begin to slow down, your DBA can increase the size of the

warehouse for the environment. Magically, the queries speed up.

Have a huge bulk load job that you need to run? Your DBA can create a new Snowflake

warehouse for it to use. Here is the cool part. The bulk load warehouse can load the SAS

Visual Analytics warehouse while it is in use. That’s right; multiple Snowflake warehouses

can work on a single copy of the storage.

I am a DBA at heart. Here is what I like about Snowflake. When I create a Snowflake

environment, I don’t need to know exactly how much computer and storage I need; I start

3

small and increase as needed. In short, I am not buying four times the hardware I need just

to be safe.

Pro Tip: You can increase Snowflake performance by increasing the size of the

Snowflake warehouse; this equates to adding machines, or switching to more

powerful virtual machines (VM), to increase performance. Likewise, you can save

money by reducing the capacity of a warehouse.

But that’s not all. When the Snowflake environment is not used for a specified amount of

time, it goes into an inactive state. This feature saves a lot of money because you are not

paying for Snowflake when people are not using it.

SNOWFLAKE IS AVAILABLE ON MULTIPLE CLOUDS

Snowflake runs on AWS, Azure, and GCP. SAS initially developed SAS/ACCESS Interface to

Snowflake on AWS. SAS supports general SQL functionality on all three clouds. Bulk loading

requires interaction with the specific cloud object stores. At the time I am writing this paper,

SAS supports bulk loading only on AWS. SAS intends to support bulk loading on Azure and

GCP, but it is currently a work-in-progress. Check the SAS documentation to verify that SAS

supports this bulk loading in your cloud environment.

SAS/ACCESS INTERFACE TO SNOWFLAKE VS. SAS/ACCESS

INTERFACE TO ODBC

It is very common for people to ask me some form of this question, “What are the

differences between SAS/ACCESS Interface to ODBC and SAS/ACCESS Interface to

Whatchamacallit?” For our discussion, Whatchamacallit is Snowflake.

It’s a great question, especially because SAS/ACCESS Interface to Snowflake uses the

Snowflake ODBC driver. Let’s take a look at the differences.

EXTENDED DATA TYPE INTEGRATION

SAS/ACCESS Interface to ODBC does not support all Snowflake-specific data types.

Complicating matters is that the Snowflake ODBC driver returns values that deviate from

the ODBC standard. This makes life more challenging for SAS/ACCESS Interface to ODBC

users who use Snowflake. Customers have been calling SAS Technical Support (angels who

have our backs) regarding the TIMESTAMP data types. The ODBC standard calls for a

maximum precision of 29. However,Snowflake supports a maximum precision of 35 by

default. Fortunately, SAS/ACCESS Interface to ODBC provides a means of handling this

situation.

If you are using SAS/ACCESS Interface to ODBC and encounter a problem with the

TIMESTAMP data type, you might find these commands and comments useful.

Snowflake recommends using the following Snowflake SQL command to adjust the data

types:

ALTER SESSION SET ODBC_USE_CUSTOM_SQL_DATA_TYPES = true;

The following Snowflake SQL commands might help with TIMESTAMP columns:

ALTER SESSION SET TIMESTAMP_TYPE_MAPPING = TIMESTAMP_NTZ;

ALTER SESSION SET CLIENT_TIMESTAMP_TYPE_MAPPING = TIMESTAMP_NTZ;

If you need to set these options via SAS/ACCESS Interface to ODBC, the DBLIBINIT=

LIBNAME option might help you.

4

If you are using SAS/ACCESS Interface to Snowflake, you don’t have to worry about any of

this; SAS takes care of these details for you.

EXTENDED SNOWFLAKE FUNCTION SUPPORT

The SAS/ACCESS Interface to Snowflake passes down more functions to the Snowflake

server. Passing function calls to Snowflake can greatly enhance performance, especially

when the function is included in the WHERE clause.

SAS passes the following functions to Snowflake for processing (See the SAS documentation

for details.):

• ABS

• ARCOS (ACOS)

• ARSIN (ASIN)

• ATAN

• ATAN2

• CAT (CONCAT)

• CEIL

• COALESCE

• COS

• COSH

• COT

• DAY (DAYOFMONTH)

• DTEXTDAY (DAYOFMONTH)

• DTEXTMONTH (MONTH)

• DTEXTWEEKDAY (DAYOFWEEK)

• DTEXTYEAR (YEAR)

• EXP

• FLOOR

• HOUR

• INDEX (CHARINDEX)

• LEFT (LTRIM)

• LENGTH

(OCTET_LENGTH(RTRIM()))

• LENGTHC (LENGTH)

• LOG (LN)

• LOG10 (LOG(10,n))

• LOG2 (LOG(2,n))

• LOWCASE (LOWER)

• MINUTE

• MOD

• MONTH

• QTR (QUARTER)

• REPEAT

• SECOND

• SIGN

• SIN

• SINH

• SQRT

• STD (STDDEV)

• STRIP (TRIM)

• SUBSTR

• TAN

• TANH

• TRANWRD (REGEXP_REPLACE)

• TRIMN (RTRIM)

• UPCASE (UPPER)

• VAR (VARIANCE)

• WEEKDAY (DAYOFWEEK)

• YEAR

5

SAS PROCEDURE PUSH-DOWN

SAS/ACCESS Interface to Snowflake pushes processing for the following Base SAS

procedures inside Snowflake:

• FREQ

• REPORT

• SORT

• SUMMARY

• MEANS

• TABULATE

SAS/ACCESS Interface to ODBC does not push down SAS in-database procedures.

INTERNATIONALIZATION

The Snowflake ODBC driver supports internationlization (I18N). Unfortunately, SAS/ACCESS

Interface to ODBC cannot make use of this capability. If your work requires I18N support,

you need SAS/ACCESS Interface to Snowflake.

BULK LOADING

SAS/ACCESS Interface to Snowflake includes bulk loading for AWS. SAS/ACCESS Interface

to ODBC does not support bulk loading. Bulk loading is by far the most common deciding

factor when choosing between SAS ODBC and Snowflake products.

SNOWFLAKE VS ODBC: WHICH IS BEST?

For many of our customers, this is a very difficult question to answer. If Snowflake is one of

many data sources you need to access and cost is an issue, SAS/ACCESS Interface to

ODBC (and its JDBC counterpart) provide a degree of flexibility that is hard to beat. One

product that empowers you to access data from hundreds of data sources has a lot going for

it.

On the other hand, if your primary concern is Snowflake and you will be loading data into

Snowflake your choice is clear – SAS/ACCESS Interface to Snowflake. The other benefits we

discussed are icing on the cake.

DSN-LESS DATABASE CONNECTIONS

SAS/ACCESS Interface to Snowflake enables you to connect using SERVER= semantics. You

do not have to configure or worry about having a Snowflake stanza in our SAS server’s

odbc.ini file. This makes life easier. Now is a great time to discuss connecting from SAS to

Snowflake.

CONNECTING TO SNOWFLAKE

One of the many advantages of using SAS/ACCESS Interface to Snowflake over

SAS/ACCESS Interface to ODBC is the simplified LIBNAME statement; the SAS Snowflake

product has connection options for Snowflake.

Covering database connections is best done using examples.

Here is a simple SAS LIBNAME statement to connect to Snowflake:

libname mysnow snow server=”mysnowflake.snowflakecomputing.com”

 db=mydb

 warehouse=mywh

6

 schema=myuser

 user=myuser

 pw=mypassword

 readbuff=32767

 insertbuff=32767

 dbcommit=0;

In this next example, the SAS CONOPTS= option enables you to pass along ODBC

parameters when a SAS/ACCESS option is not available. This LIBNAME statement connects

to Snowflake using a proxy server:

libname mysnow snow server=”mysnowflake.snowflakecomputing.com”

db=mydb

warehouse=mywh

schema=myuser

user=myuser

pw=mypassword

readbuff=32767

insertbuff=32767

dbcommit=0

conopts="Proxy=my.gateway.mycompany.com:80;

ProxyUID=myuser;

ProxyPWD=myPassword;";

The CONOPTS= option is very sensitive to spaces. It is OK to include newlines in your code,

but avoid spaces; this is why I formatted this code differently. CONOPTS= enables you to

override parameter settings in the odbc.ini file. Overriding ODBC options in SAS code is

especially useful in environments where you are not allowed to edit the odbc.ini file.

You are probably asking, “How can I find the list of the options that the ODBC driver

supports?” The Snowflake documentation covers ODBC configuration and connection

parameters. See the References section of this paper for details.

INSERTING DATA INTO SNOWFLAKE

Recommendation: Specify the READBUFF=, INSERTBUFF=, and DBCOMMIT= options for

every Snowflake library that you create.

libname mysnow snow server=”mysnowflake.snowflakecomputing.com”

 db=mydb

 warehouse=mywh

 schema=myuser

 user=myuser

 pw=mypassword

 readbuff=32767

 insertbuff=32767

 dbcommit=0;

This recommendation is important if you are using SAS/ACCESS Interface to Snowflake. It

is a requirement if you are using SAS/ACCESS Interface to ODBC. These options can be set

on the data sets too. The following code snippet shows how to set the INSERTBUFF= and

DBCOMMIT= values for an INSERT operation:

proc append base=snow.insert_test_02 (insertbuff=32000 dbcommit=0)

 data=work.insert_test;

run;

7

When you read from Snowflake into SAS, be sure to include the READBUFF= option on

either the LIBNAME statement or by using the READBUFF= data set option. The following

example shows this option on a PROC SQL invocation:

proc sql;

 connect using mysnow;

 create table work.cars as

 select * from mysnow.cars (readbuff=3200);

run;

You are probably asking yourself, “Are INSERT statements the fastest way to get data into

Snowflake?” The answer miraculously appears in the next section.

BULK LOADING DATA INTO SNOWFLAKE

Previously, I discussed the fact that Snowflake runs on multiple cloud platforms. However,

you might have jumped to this section because you need to know how to use SAS/ACCESS

Interface to Snowflake to bulk load data, and you don’t have time for the other portions of

this paper. With this in mind, I will repeat myself a little here. Snowflake uses its COPY

command to load data from files that are available in cloud storage. If the file is being

loaded from a machine that is not in the cloud, the file must be copied to a cloud storage

location, called a stage, before it can be loaded into the target database table.

Because my SAS environment is on-premises, I use the BL_COMRESS= option to minimize

the size of the load file.

Snowflake provides many options for setting the cloud storage location:

• User stages – Each Snowflake user has a stage allocated to them by default. User

stages cannot be altered or dropped. This stage is for the user; do not share this

with your friends. It is useful for doing non-production work. Don’t use User stages

for production work.

• Table stages – Each Snowflake table has a stage allocated to it by default. Table

stages cannot be altered or dropped. Table stages are created when the table is

created. These stages can be used for either ad hoc or production work, but are not

appropriate if you need to load the data into multiple tables.

• Internal Named stages – Unlike user and table stages, internal named stages are

created via the CREATE STAGE SQL command. If you are creating production data

loads that involve multiple users or tables, this is the stage for you.

As we previously discussed, we can load data via an AWS S3 stage; this method bypasses

Snowflake stages.

I found using Snowflake stages with SAS tricky. Fortunately, I have working examples and

will explain the tricky parts to you. Let’s take a look at it.

BULK LOADING INTO SNOWFLAKE USER STAGES

The following code successfully bulk loads a SAS data set into a new Snowflake table using

a user stage:

/* Load via a Snowflake table stage */

data snow.large_table_1GB_table_stage

 (bulkload=yes

 bl_internal_stage="user/someuser"

 BL_COMPRESS=yes);

 set large_table_1GB;

run;

8

It may look strange, but “user/someuser” is exactly what I used when I ran this.

BULK LOADING INTO SNOWFLAKE TABLE STAGES

The following code successfully bulk loads a SAS data set into a new Snowflake table using

a table stage:

/* Load via a Snowflake table stage */

data snow.large_table_1GB_table_stage

 (bulkload=yes

 bl_internal_stage="table/sometable"

 BL_COMPRESS=yes);

 set large_table_1GB;

run;

Yes, “table/sometable” is exactly what I used when I ran this.

BULK LOADING INTO SNOWFLAKE NAMED STAGES

The following code successfully bulk loads a SAS data set into a new Snowflake table using

a pre-existing named internal stage:

/* Load via a Snowflake table stage */

data snow.large_table_1GB_table_stage

 (bulkload=yes

 bl_stage="MY_SNOW_STAGE"

 BL_COMPRESS=yes);

 set large_table_1GB;

run;

BULK LOADING INTO SNOWFLAKE VIA AN AWS S3 BUCKET

Snowflake runs on multiple cloud platforms. Each of these cloud platforms has its own

variation of an object store. Think of an object store as a place to put a file in the cloud. It

doesn’t matter what kind of file. You can store a video, music, or a long-winded SAS Global

Forum paper on an object store. At the time I am writing this (February 2020), the

only object store supported for SAS/ACCESS Interface to Snowflake bulk loading is

AWS S3. SAS intends to support Azure Data Lake Storage and Google Cloud Storage in the

near future. Stay tuned.

Bulk loading via an external stage is more complicated than using one of the other

Snowflake stage options because of the setup required.

To run an external bulk load using SAS/ACCESS to Snowflake, you need to complete these

tasks:

• Create an S3 bucket with proper permissions. There are a variety of tutorials that

you can use to create this bucket.

• Obtain the appropriate security keys and tokens.

• Determine your AWS connection profile. (This task is optional.)

I use the an S3 bucket named “snowbulk-bogus” in the following examples. To run an

external bulk load using SAS/ACCESS to Snowflake, you will need to complete these tasks:

• Create an S3 bucket with proper permissions.

• Obtain the appropriate security keys and tokens.

9

• You may need to determine your AWS connection profile.

Let’s assume you are running on Linux, have created an S3 bucket named “snowbulk-

bogus,” and have configured your AWS security information using the AWS recommended

~/.aws method. You can use the following DATA step to create a table and load data into it:

/* Load via a Snowflake external stage (AWS S3 bucket) */

data snow.large_table_1GB_s3_stage

 (bulkload=yes

 bl_bucket="snowbulk-bogus"

 bl_compress=yes);

 set large_table_1GB;

run;

If you have trouble getting this code to work, adding options could help you determine the

source of your problem.

If you see the following error message, there is most likely a problem with your S3 bucket:

ERROR: Message from TKS3: HTTP/1.1 404 Not found

Perhaps you misspelled the bucket name; the bucket doesn’t have proper privileges, or my

personal favorite – you forgot to create it.

By default, AWS looks for the config and credentials files in the ~/.aws directory. Let’s

assume that your ~/.aws/credentials file contains a profile named “123456789012-bogus”.

Then here is your code:

data snow.large_table_1GB_s3_stage

 (bulkload=yes

 bl_bucket="snowbulk-bogus"

 bl_aws_profile_name="123456789012-bogus"

 bl_compress=yes);

 set large_table_1GB;

run;

There may be times when the config and credentials files are placed in a non-default

location. The following code shows how you can tell SAS to look in a specific location for

these files:

data snow.large_table_1GB_s3_stage

 (bulkload=yes

 bl_bucket="snowbulk-bogus"

 bl_aws_profile_name="617292774228-production"

 bl_aws_config_file="/prod/aws_secrets/config"

 bl_aws_credentials="/prod/aws_secrets/credentials"

 bl_compress=yes);

 set large_table_1GB;

run;

Specifying a non-default location for AWS security credentials is common for production ETL

jobs. This type of work typically relies on automated mechanisms for generating AWS

security tokens.

The previous approaches are fine when they work. But what should you do if you can’t

successfully run a SAS bulk load job? For instance, suppose you run your job and it fails

with the following error message:

10

ERROR: Message from TKS3: The provided token is malformed or otherwise

invalid.

This error message means that there is a problem with your credentials. The first thing you

should do is regenerate the tokens and then rerun. If that doesn’t work, there is a last

resort.

The following example includes security tokens and keys; it is useful for debugging only.

The primary benefit of this approach is that you can see what you are doing.

Do not do this in production code; it is best if you don’t do this at all, but sometimes it

makes debugging much easier. Never, ever, do this with permanent AWS keys; I am using

temporary security credentials that expire in an hour. I assure you, these keys are now

useless.

There is a cottage industry of crooks scouring GitHub looking for permanent keys. These

crooks will use your keys (think of this as your credit card) and run expensive AWS

resources at your expense. Even worse, these crooks can use your permanent keys to steal

data.

Be very careful and use this example for debugging purposes only:

/* Take the unsecure route to see it work. */

/* BL_TOKEN= is AWS_SESSION_TOKEN= from the ~/.aws/credentials file */

/* DO NOT USE PERMANENT KEYS FOR THIS!!! */

data snow.large_table_1GB_s3_stage

 (bulkload=yes

 bl_bucket="snowbulk-bogus"

 bl_key="ASIAY9OMEHNKICF4K74B"

 bl_secret="mpSaAx9yVbJHHUfCf3CooabfueCfxBkR5aRDliiy"

bl_token="IQoJb3JpZ2luX2VjEBYaCXVzLWVhc3QtMSJHMEUCIQCsRsH7cCmM5Xt9TtKy9RT0T

mwkXlH6C+NUBg

qCvziuHgIgI4KxzqCQGWCvQ0fsgqLg9o0Us7wMr24Hvx1lAwDyHE8qpAIIrv//////////ARABG

gw2MTcyOTI3NzQyMjgiDLe0elcf

ccsh1bO09Cr4Ae5n2l8YQt96EQEGd/X8KkDMQQCr5KMeVjAxncthWF4kwnpRQgV+PbE0AIo1XBY

GfaNwqerTRIogalFQ43/+tyr6IZ

1ov8DTh+15/wCNULvtQHUWVx4VQtuu/JW219tBnr1gJXAu+Ixk6WQaGrfY22ibp02eGuZPrP2Zx

Rs5sqyD1ezPjfDpNe/oSZ8c28IW

sN6xf8afT6+UPHFkzVUgcWFTfqLP/fyREg3zkqfpyL42KeHIwJ+wShVvmIoZ00eqsUPKtPMp5+7

4Wh5CPMIysIalXGlASCP7Gk7ppq

Nya0k2J1iKYkIwPW30JgeRlP90yi/pce8fvVSkMKChvfEFOukB5/4VdoCOhbTTqSsCnd8kUlpbl

H6tnIxspFqLbKkuwkSBJqbwG9bh

+qDjLzbokZJGFXrlNG5ORGyf2jnFveOdy4mDgSrds6hh00BwaQqtvTd6257/eNqCvrPYyYyqZTo

bITiFNhYz4BRuW1OdWSHRYCEzto

QcRzfYyEry7St1jlQaMv2mXf1F1ARI/WcX25ZQslE3k0Gm8zaSCgKdh58CwOisNkQ0zFk1gdpIm

dWl2KFwaTA8gVkKjooGjIbemXfV

FHlbad0as8AI5ViP3jKu31bm5iUPx4pGswekULRsUMAfS2TvKDf7nuE="

 bl_compress=yes);

 set large_table_1GB;

run;

If you run similar code and it works, it means that there is a problem with your

credentials or config file. Work backward to one of the secure means of running your

code.

11

SAS BULK LOAD OPTIONS

The previous section showed some of these options in action. It is easy to get started by

using very few options. But, and this is a huge “but,” your success may lie with using a

specific bulk-load option. It is a good idea to read the doc so that you have a passing

familiarity with these options.

The following SAS bulk load LIBNAME statement options and data set options are available

for Snowflake:

• BL_AWS_CONFIG_FILE=

• BL_AWS_PROFILE_NAME=

• BL_AWS_CREDENTIALS_FILE=

• BL_BUCKET=

• BL_COMPRESS=

• BL_CONFIG=

• BL_DEFAULT_DIR=

• BL_DELETE_DATAFILE=

• BL_DELIMITER=

• BL_ENCKEY=

• BL_INTERNAL_STAGE=

• BL_KEY=

• BL_NUM_DATAFILES=

• BL_NUM_READ_THREADS=

• BL_OPTIONS=

• BL_REGION=

• BL_SECRET=

• BL_TOKEN=

• BL_USE_ESCAPE=

• BL_USE_SSL=

• BULKLOAD=

See the latest SAS documentation for details because new options may be available.

I know what you are thinking, “How do I determine whether to use inserts or bulkload?”

Let’s take a look at this question.

JUST TELL ME WHAT TO DO!

Reading From Snowflake

When reading data from Snowflake using SAS, you should always start by setting the

READBUFF= option to a number close to the maximum value (32767). I typically set

READBUFF=32000 because it is close to the max and easy to remember. I have not seen a

large performance difference between 32000 and 32767. Please understand, you might see

a difference – so experiment.

Pro Tip: Always set READBUFF= to a high number when you are starting. If you

want to optimize read performance, experiment to find the best value for your

situation. I set the READBUFF= option in the LIBNAME statement and use the data

set option to override.

INSERT VS. BULK LOAD

With small data sets, there is not a huge benefit to using bulk loading. In fact, with small

data sets, bulk loading might be slightly slower. I tend to argue that the difference is so

small you might as well use bulk loading because the data set could grow large enough to

cause problems with future INSERT statements.

I have experimented with INSERT statements vs bulk load using an on-premises version of

SAS Viya 3.5 running on a Linux machine. If you are running SAS in AWS, you can expect

different numbers, but the exercise is valid.Use this exercise to determine the point at which

bulk loading performs best.

12

There is no need to develop a complicated process to determine the performance

characteristics of your environment; a simple approach works well. I used the following

approach for this paper:

1. Find or generate a SAS data set for testing.

2. Run two INSERT jobs and check the performance. In both jobs, set DBCOMMIT=0 so

that the new rows are committed at the end of the insert operation.

a. In the first job, use the default value of INSERTBUFF=

b. In the second job, set INSERTBUFF=32000 or some other large value

3. Run a bulk load and check the performance.

a. Use an AWS S3 stage.

b. Use a Snowflake internal stage. (A user stage or table stage is easiest.)

4. Determine where the cost versus benefit breakpoint is.

I graphed my test results and using the INSERTBUFF= option begins to beat simple INSERT

statements somewhere between 1,000 and 10,000 observations. Bulk loading begins to

shine somewhere between 25,000 and 50,000 observations.

Figure 1 shows the relative performance of various writing techniques.

Figure 1. Comparison Graph of INSERT statements versus Bulk Load

Pro Tip: Include the READBUFF=32000, INSERTBUFF=3200, and DBCOMMIT=0

options on every Snowflake LIBNAME statement you create. Feel free to experiment

with the READBUFF= and INSERTBUFF= values, but always set DBCOMMIT=0.

13

Pro Tip: Use bulk loading by default.

By all means, experiment to find great values, but don’t let the search for perfect stand in

the way of good values.

HOW DO I MAKE MY QUERIES RUN FASTER?

This paper does not cover query tuning. Other papers (see “The SQL Tuning Checklist:

Making Slow Queries a Thing of the Past” in the References section) cover this topic. One of

the first steps in tuning a query is to find out what SAS is asking the database to do.

The following example shows how to use the OPTIONS statement in your SAS code:

libname mysnow snow server=”mysnowflake.snowflakecomputing.com”

 db=mydb

 warehouse=mywh

 schema=myuser

 user=myuser

 pw=mypassword

 preserve_tab_names=no

 readbuff=32767

 insertbuff=32767

 dbcommit=0;

data mysnow.cars;

 set sashelp.cars;

run;

options sastrace=',,,d' sastraceloc=saslog nostsuffix;

proc sql noexec;

 connect using mysnow;

 select count(*)

 from mysnow.cars

 where make in ('Toyota', 'Jeep');

quit;

Output 1 shows the results of running this code. The SQL that SAS submitted to Snowflake

appears in bold. Once you have the SQL that SAS is sending to Snowflake, you can tune it.

This example looks good because the count(*) function and the WHERE clause are both

passed to Snowflake.

14

81 proc sql noexec;

82 connect using mysnow;

83 select count(*)

84 from mysnow.cars

85 where make in ('Toyota','Jeep');

SNOWFLAKE_1: Prepared: on connection 0

SELECT * FROM MYSNOW.CARS

SNOWFLAKE_2: Prepared: on connection 0

 select COUNT(*) from MYSNOW.CARS TXT_1 where (TXT_1."Make" in ('Jeep',

'Toyota'))

NOTE: Statement not executed due to NOEXEC option.

86 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 2.22 seconds

 cpu time 0.29 seconds

87

Output 1. Output from the SASTRACE= and SASTRACELOC= Options

CONCLUSION

SAS/ACCESS Interface to Snowflake is a very powerful product that makes using SAS with

Snowflake easy. This paper has shown examples of how to connect to Snowflake using SAS

LIBNAME statements and the CONNECT USING statement in the SQL procedure. We learned

how to find the SQL that SAS is sending to Snowflake. Perhaps the most important lesson is

when to use an INSERT statement and bulk loading.

We have only scratched the surface of what you can do with SAS/ACCESS Interface to

Snowflake. Make sure that you read the SAS/ACCESS documentation so that you can get

the most out of this product.

REFERENCES

Bailey, Jeff. 2017. “An Insider’s Guide to Fine-Tuning Your CREATE TABLE statements using

SAS® Options.” Proceedings of the SAS Global Forum 2017 Conference. Cary, NC: SAS

Institute Inc. Available https://support.sas.com/resources/papers/proceedings17/SAS0409-

2017.pdf.

Bailey, Jeff. 2014. “An Insider’s Guide to SAS/ACCESS® Interface to ODBC.” Proceedings of

the SAS Global Forum 2014 Conference. Cary, NC: SAS Institute Inc. Available

https://support.sas.com/resources/papers/proceedings14/SAS039-2014.pdf.

Bailey, Jeff, and T. Petrova. 2013. “The SQL Tuning Checklist: Making Slow Database

Queries a Thing of the Past.” Proceedings of the SAS Global Forum 2013 Conference. Cary,

NC: SAS Institute Inc. Available

https://support.sas.com/resources/papers/proceedings13/080-2013.pdf.

Snowflake Inc. “ODBC Configuration and Connection Parameters.” San Mateo, CA:

Snowflake Inc. Available https://docs.snowflake.net/manuals/user-guide/odbc-

parameters.html

https://support.sas.com/resources/papers/proceedings17/SAS0409-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0409-2017.pdf
https://support.sas.com/resources/papers/proceedings14/SAS039-2014.pdf
https://support.sas.com/resources/papers/proceedings13/080-2013.pdf
https://docs.snowflake.net/manuals/user-guide/odbc-parameters.html
https://docs.snowflake.net/manuals/user-guide/odbc-parameters.html

15

ACKNOWLEDGMENTS

A handful of my favorite people were subjected to a litany of questions and asked to review

the ideas presented in the paper. Thank you:

Carlos Bouloy, Snowflake

Chris DeHart, SAS Institute Inc.

Marie Dexter, SAS Institute Inc.

Keith Handlon, SAS Institute Inc.

Salman Maher, SAS Institute Inc.

RECOMMENDED READING

• SAS® 9.4 and SAS Viya® 3.5 Programming Documentation

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jeff Bailey

100 SAS Campus Drive

Cary, NC 27513

SAS Institute Inc.

Jeff.Bailey@sas.com

www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX

I used the following code to help me write this paper:

/***********************/

/* PERFORMANCE TESTING */

/***********************/

/* Selectively invoke tracing when needed. */

options sastrace=',,,d' sastraceloc=saslog nostsuffix;

/* Test the various Snowflake load techniques with largish data – 1GB */

/* Generate non-trivial data from performance experiments */

/* Change the DO loop to alter the data size */

/* 4.5M obs = 1 GB load file */

data work.large_table_1GB;

 format dt date.;

 do i = 1 to 4500000;

 dt = i + 1;

 mynum1 = i;

 text1 = "abcdefghijklmnopqrstuvwxyz0123456789";

 mynum2 = i * 10;

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=pgmsashome&docsetTarget=home.htm&locale=en
mailto:Jeff.Bailey@sas.com

16

 text2 = "abcdefghijklmnopqrstuvwxyz0123456789";

 mynum3 = i * 10;

 text3 = "abcdefghijklmnopqrstuvwxyz0123456789";

 mynum4 = i * 10;

 text4 = "abcdefghijklmnopqrstuvwxyz0123456789";

 mynum5 = i * 10;

 text5 = "abcdefghijklmnopqrstuvwxyz0123456789";

 mynum6 = i * 10;

 output;

 end;

run;

libname snow SNOW server="saspartner.snowflakecomputing.com"

db=mydb

warehouse=mywh

schema=myuser

user=myuser

pw=mypassword

preserve_tab_names=no;

/* Get a baseline for INSERT performance */

data snow.large_table_1GB;

 set large_table_1GB;

run;

/* Load via a Snowflake internal named stage */

/* Based on the SAS doc, I am not sure how this one worked. */

/* Must create an internal stage in Snowflake (via SQL) for this to work.

*/

data snow.large_table_1GB_named_stage (bulkload=yes

 bl_stage="JEFFS_STAGE"

 BL_COMPRESS=yes);

 set large_table_1GB;

run;

/* Load via a Snowflake table stage */

data snow.large_table_1GB_table_stage (bulkload=yes

bl_internal_stage="table/sometable" BL_COMPRESS=yes);

 set large_table_1GB;

run;

/* Load via a Snowflake user stage */

data snow.large_table_1GB_user_stage (bulkload=yes

 bl_internal_stage="user/someuser"

 BL_COMPRESS=yes);

 set large_table_1GB;

run;

/* Load via an S3 bucket */

/* Must create an S3 bucket for this to work */

/* Must ssh into the Linux machine where SAS is running */

/* and obtain new credentials - kinit, getaswkey */

/* This, quite frankly, is a perfect world. It exists */

/* to frustrate normal users and me. */

/* If [default] in your ~/.aws/credentials file is up to date, */

/* it should work */

data snow.large_table_1GB_s3_stage (bulkload=yes

 bl_bucket="snowbulk-mybucket"

17

 bl_compress=yes);

 set large_table_1GB;

run;

/* Take the unsecure route to see it work. */

/* Only do this with temporary keys */

/* Do not use your permanent keys for this */

/* Do not do this in a production environment. */

/* BL_TOKEN= is AWS_SECURITY_TOKEN= from the ~/.aws/credentials file */

data snow.large_table_1GB_s3_stage (bulkload=yes

 bl_bucket="snowbulk-mybucket"

 bl_key="ASIAY7OMEXYKICF4K74B"

bl_secret="mpSaAx9yVbJHHUfCf3COiobfueCfxBkR5aRDliiy"

bl_token="IQoJb3JpZ2luX2VjEBYaCXVzLWVhc3QtMSJHMEUCIQCsRsH7cCmM5Xt9TtKy9RT0T

mwkXlH6C+NUBg

qCvziuHgIgI4KxzqCQGWCvQ0fsgqLg9o0Us7wMr24Hvx1lAwDyHE8qpAIIrv//////////ARABG

gw2MTcyOTI3NzQyMjgiDLe0elcf

ccsh1bO09Cr4Ae5n2l8YQt96EQEGd/X8KkDMQQCr5KMeVjAxncthWF4kwnpRQgV+PbE0AIo1XBY

GfaNwqerTRIogalFQ43/+tyr6IZ

1ov8DTh+15/wCNULvtQHUWVx4VQtuu/Jz21OtBnr1gJXAu+Ixk6WQaGrfY22ibp02eGuZPrP2Zx

Rs5sqyD1ezPjfDpNe/oSZ8c28IW

sN6xf8afT6+UPHFkzVUgcWFTfqLP/fyREg3zkqfpyL42KeHIwJ+wShVvmIoZ00eqsUPKtPMp5+7

4Wh5CPMIysIalXGlASCP7Gk7ppq

Nya0k2J1iKYkIwPW30JgeRlP90yi/pce8fvVSkMKChvfEFOukB5/4VdoCOhbTTqSsCnd8kUlpbl

H6tnIxspFqLbKkuwkSBJqbwG9bh

+qDjLzbokZJGFXrlNG5ORGyf2jnFveOdy4mDgSrds6hh00BwaQqtvTd6257/eNqCvrPYyYyqZTo

bITiFNhYz4BRuW1OdWSHRYCEzto

QcRzfYyEry7St1jlQaMv2mXf1F1ARI/WcX25ZQslE3k0Gm8zaSCgKdh58CwOisNkQ0zFk1gdpIm

dWl2KFwaTA8gVkKjooGjIbemXfV

FHlbad0as8AI5ViP3jKu31bm5iUPx4pGswekULRsUMAfS2TvKDf7nuE="

 bl_compress=yes);

 set large_table_1GB;

run;

/* I don't need the config and credential entries here, but I am showing

them as an example */

/* BL_AWS_PROFILE_NAME= is the important option here */

data snow.large_table_1GB_s3_stage (bulkload=yes

 bl_bucket="snowbulk-mybucket"

 bl_aws_profile_name="617292774228-

sandbox"

 bl_aws_config_file="~/.aws/config"

 bl_aws_credentials="~/.aws/credentials"

 bl_compress=yes);

 set large_table_1GB;

run;

/* Here is the minimum that you will likely need */

data snow.large_table_1GB_s3_stage (bulkload=yes

 bl_bucket="snowbulk-mybucket"

 bl_aws_profile_name="617292774228-

sandbox"

 bl_compress=yes);

 set large_table_1GB;

run;

