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Abstract

Currently, tumor biopsies do not provide doctors with all the possible information that
could be used in determining a treatment plan for patients with cancer. The reason for this is that
biopsies only remove a very small part of the tumor. However, there are certain “rare” cells
(those that have a very large impact on determining key facts like how aggressive the cancer is
and how fast it will spread and grow) that exist scattered around the tumor, but because of its
size and lack of direction, the biopsy often does not pick these up. This project focused on three
types: cancer stem cells (give rise to all cell types in a particular cancer due to self-renewal, lead
to metastases, and not killed by common therapeutic treatments), transient amplifying cells (cells
in transition between stem cells and differentiated cells), and terminally differentiated cells
(“dead” cells, can no longer proliferate). Using a tumor growth model, a dataset consisting of
data points (each representing different cells within the tumor) was obtained. After removing
transient amplifying cells from the data set (because they are the most in number and therefore
ensured a presence in every cluster), a combination matrix was created that was the sum of a
scaled Euclidian distance matrix (0-1) and dissimilarity matrix (1 if similar, O if dissimilar).
Then, using the PROC CLUSTER and TREE procedures in SAS®, clusters of dissimilar cells
were found. This was then plotted 3-dimensionally to visualize the location and size of each
cluster, seeing which would be most accessible. This is where a surgeon would want to aim
during a biopsy in order to get the most accurate representation of the tumor and therefore create
the most accurate prognosis and treatment plan. This model can then be applied to tumors of
different cancers, sizes, and stages. It’s currently theorized that tumors of the same cancer and

stage have the same cell types existing in similar positions relative to tumor size; so, a



comprehensive database of the areas of greatest variability in all tumor types could be compiled

if such training data was available.



Background

Malignant tumors contain various types of cells. Knowing what types of cells exist in a
tumor and how many of each are there holds great prognostic value. Cancer stem cells (CSC), for
example, can therefore give rise to all cell types in a particular cancer due to self-renewal. These
CSCs are hypothesized to lead to persisting relapses and metastases. Other rare cells of varying
types also exist, and make up approximately 5% of a tumor.

CSCs exist in small amounts in tumors and are often not killed by common
chemotherapeutic treatments. With even a small amount of these CSCs remaining after
treatment, relapse is highly possible. Therefore, CSCs must be detected early on with a biopsy,
so that there is enough time for specific stem cell therapies to be used. Because of their minute
existence, these CSCs may not always be detected in biopsies. This is also the case for other rare
cells, such as circulating tumor cells, that have an effect on prognosis and treatment.

Transient amplifying cells (TAC) make up the bulk of a tumor and regulate the balance
of stem cell usage and tissue generation. They reactivate dormant stem cells to begin self-
renewal, which fuels the growth of TACs. TACs are in transition between stem cells and
differentiated cells; they arise from stem cells and divide a number of times until they become
differentiated.

Terminally differentiated cells (TDC) are cells that have lost the ability to proliferate.
They no longer divide, and therefore don’t need to be treated with therapy because they will die
off eventually.

A biopsy is an extraction of cells or tissue for examination to discover the presence or
extent of a disease. For tumors, a biopsy is most often taken to determine whether or not the

tumor is cancerous. Biopsies are usually taken with a needle, extracting a thin cylindrical shape.



Currently, biopsies don’t really have any specific means of where exactly to extract cells from
the tumor. There are no guidelines for how a tumor should be cut into, or what section and how
much of a tumor should be cut into for the greatest variation in cell type. Additionally, because
biopsies extract such a small portion of a tumor, it is likely that certain cells will not be extracted,
so doctors won’t be able to make the most educated decisions about treatment and prognosis.
Additionally, it is currently theorized that different types of cells exist in the same relative

positions in cancerous tumors.
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Experiment/Method

Using a tumor growth model called Tumopp (created by Iwasaki and Hinnan), I obtained a
dataset with with x, y, and z coordinates of each cell, along with the cell’s type (CSC, TAC,
TDC). The growth model assumes that:

1. acell occupies a single node in the lattice

™

normal (noncancer) cells are not simulated

[98)

extracellular matrix surrounding the tumor is ignored
4. the environment is not affected by changes in the configuration of the tumor
The original dataset included about 4.5% cancer stem cells (CSCs), 81.69% transient amplifying

cells (TACs), and 13.81% terminally differentiated cells (TDCs).

A sample of the data:
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1 cellnum x y z cell type
370 369 5 1 2 TAC
371 370 3 1 0 TAC
372 371 1 0 -1 TAC
373 372 2 -3 1 TAC
374 373 2 0 -4 TAC
375 374 1 1 -4 TAC
376 375 5 1 -2 TAC
377 376 2 -1 -4 TAC
378 377 2 -1 -1TDC
379 378 1 2 0 CsC
380 379 2 4 -4 TAC
381 380 1 -1 -2 TAC
382 381 -1 -1 -5 TAC
383 382 1 0 1TAC
384 383 2 2 -4 TAC
385 384 1 -3 -1 TAC
386 385 0 3 -3 TAC
387 386 2 1 0 TAC
388 387 6 4 0 TAC
389 388 1 2 -2 TAC
390 389 4 1 3 TAC
391 390 0 0 -2 TAC
392 391 4 0 -3 TAC
393 392 2 0 2 TAC
394 393 3 -4 0 TAC
395 394 -1 1 2 TAC -
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The data above was then converted into a distance matrix by taking the Euclidian distance

between each pair.

Distance = /(x; — x2)? + (1 — ¥2)% + (21 — 2,)?

A sample of the distance matrix:

Cell Num 376 377 378 379 380
376 0
377 3 0
378 5.830952 4.358899 0
379 6.403124 7.071068 4.582576 0
380 2.236068 1.414214 4.123106 6.164414 0

The distance was then scaled so that it would range from 0 and 1.

] distance
Scaled distance = —
distancey 4x
Cell Num 376 377 378 379 380

376 0
377 0.424264 0
378 0.824621 0.616441 0
379 0.905539 1 0.648074 0

380 0.316228 0.2 0.583095 0.87178 0



A dissimilarity matrix was then generated by assigning a “1” if the cells were similar and a “0” if
they were dissimilar.

TAC TDC CSC TAC TAC
Cell Num 376 377 378 379 380
376 1
377 0 1
378 0 0 1
379 1 0 0 1
380 1 0 0 1 1

Dissimilar cells that are close together are of interest. So, a combination matrix was generated by
adding the scaled distance matrix and the dissimilarity matrix.

The close dissimilar cells will have the lowest scores/values.

Cell Num 376 377 378 379 380
376 0
377 0.424264 0
378 0.824621 0.616441 0
379 1.905539 1 0.648074 0
380 1.316228 0.2 0.583095 1.87178 0

TACs were then filtered out from the data for the following reasons:
1. They make up bulk of the tumor, and are therefore essentially guaranteed to exist in
each cluster.
2. SAS university edition was being used, so there were limitations on data size.

The “proc cluster” function in SAS was then used to create the clusters.

proc cluster data=WORK.distnacematrix(type=distance) method=WARD ccc pseudo PRINT = 15 rmsstd outtree= WORK.Tree;
id cellnum;
run;

The WARD method was used for this function because it is biased towards producing clusters
with about same number of observations.



Proc cluster displays the table of eigenvalues of the covariance matrix, and these eigenvalues are
used in the computation of the cubic clustering criterion. The output of the proc-cluster function
gives insight on the number of clusters.

The CLUSTER Procedure
Ward's Mini i Cluster Analysi:

Root-Mean-Square Distance Between Observations | 0.87656

Cluster History
Number [
of | Clusters New Cluster | Semipartial Pseudo F Pseudo
Clusters Joined Freq | RMS Std Dev R-Square | R-Square | Statistic | t-Squared | Tie
15 | CL32 | CL48 [ 55 0.5606 0.0023 [ 164 | 122 26
14 | CL29 | CL20 | 153 0.5704 0.0026 [ 161 | 129 27
13| Cl40 | CL28 | 86 0.5688 0.0026 159 137 28
12| clie | cuza | 133 0.5808 00026 | 156 | 147 27
1| ce7 | s | 97 0.5854 0.0029 153 158 3.0
10 | CL17 | CL30 | 145 0.5791 0.0031 150 171 31
9| CL18 | C1 82 0.5695 0.0035 147 188 38
8| CL11 | CL16 [ 163 0.5920 0.0036 [ 143 [ 209 36
7| cLis | cuis | 208 05721 00039 | 130 | 236 41
6 CL13|cClo | 168 05751 0.0043 35 273 45
s/ c7 |a22| 274 05753 0.0060 129 325 62
4| CL8 | CL10 | 308 0.5937 0.0092 120 398 9.1
3|C5 | CL12| 407 0.5838 0.0103 109 54.0 105
2| CL3 |CL6 575 0.5972 0.0328 076 730 329
1|/cl4 |c2 [ 883 0.6198 0.0765 [ 000 [ . 730

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Criteria for the Number of Clusters
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The greatest change in Pseudo T-Squared corresponds to the optimum number of clusters; in this
case, that is 5 clusters.

The “tree” procedure was then used to produce a tree diagram of the clusters. Here, the number
of clusters inputted was 5.

proc tree data = WORK.tree
nclusters= 5
out=WORK.TREE2;

copy cellnum;

run;



The tree was exported into a csv file that looks like this:

A B C D E

1 | NAME_ _|ce||num CLUSTER CLUSNAME
2 69 69 1 CL5

3 963 963 1 CL5

4 | 757 757 2 CL6

5 1022 1022 2 CL6

6 1093 1093 1 CLS

7 2715 2715 1 CLS

8 2509 2509 3 CL16

9 2786 2786 3 CL16

10 1037 1037 1 CLS

11 2823 2823 1 CLS

12 2607 2607 3 CL16

13 2884 2884 3 CL16

14 2768 2768 1 CL5

15 2920 2920 1 CL5

16 1094 1094 1 CLS

477 aTate L] aTate L] a M~ r-

Using Plotly in Python, the (X, y, z) coordinates of every cell along with its cluster were plotted,
giving this output:




Analyzing the Clusters:

The TREE output of Proc Cluster was also used to analyze each cluster. As mentioned
previously, the WARD method is inclined towards producing balanced clusters. In this sample,

the ratio of CSCs to TDCs was roughly 1:4. Thus, cluster 8 is most representative of the tumor,
but cluster 6 contains the greatest variability.

Count of cellnum Column Labels -~

Row Labels v |CSC TDC (blank) Grand Total % of CSCs

CcL10 36 109 145 24.82759 I
CcL12 30 103 133 22.55639

CLS 71 203 274 25.91241

CL6 45 123 168 26.78571

CL8 35 128 163 21.47239

(blank)

Grand Total 217 666 883 Count of cellnum

cell type ~
mCSC

100 mTDC
I ® (blank)
0 I
. I 1 i
CLs CL6 CcL8

cL10 cL2

(blank)

CLUSNAME ~



Conclusion

The project showed that clustering by dissimilarity can be used to identify areas of
greatest variability. The WARD method of the “proc cluster” function in SAS was used
effectively to create and visualize the clusters. The clustering was done using combination of
Euclidian distance and variability. Simple addition of scaled distance and dissimilarity (O-
similar, 1-dissimilar) was used.

The project can be performed on different tumor models that are already being studied.
Different weights can also be given to distance and dissimilarity. This analysis was done on 3
types of cells and a Boolean (0 or 1 ) measure of dissimilarity. The approach can be expanded to
cells in different stages of their life cycle with different levels of similarity (e.g. — 0.03 is more
similar that 0.004).

Also different clustering algorithms can be experimented with to see the effectiveness
(distance between clusters and mean distance between dissimilar cells). As tumor models
become more and more popular, data from different stages of a type of tumor can be analyzed to
see if patterns can be produced and if machine learning can be used to predict cross sections of

greatest variability based on the type and stage of the tumor.
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