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Abstract 

 Currently, tumor biopsies do not provide doctors with all the possible information that 

could be used in determining a treatment plan for patients with cancer. The reason for this is that 

biopsies only remove a very small part of the tumor. However, there are certain “rare” cells 

(those that have a very large impact on determining key facts like how aggressive the cancer is 

and how fast it will spread and grow) that exist scattered around the tumor, but because of its 

size and lack of direction, the biopsy often does not pick these up. This project focused on three 

types: cancer stem cells (give rise to all cell types in a particular cancer due to self-renewal, lead 

to metastases, and not killed by common therapeutic treatments), transient amplifying cells (cells 

in transition between stem cells and differentiated cells), and terminally differentiated cells 

(“dead” cells, can no longer proliferate). Using a tumor growth model, a dataset consisting of 

data points (each representing different cells within the tumor) was obtained. After removing 

transient amplifying cells from the data set (because they are the most in number and therefore 

ensured a presence in every cluster), a combination matrix was created that was the sum of a 

scaled Euclidian distance matrix (0-1) and dissimilarity matrix (1 if similar, 0 if dissimilar). 

Then, using the PROC CLUSTER and TREE procedures in SASÒ, clusters of dissimilar cells 

were found. This was then plotted 3-dimensionally to visualize the location and size of each 

cluster, seeing which would be most accessible. This is where a surgeon would want to aim 

during a biopsy in order to get the most accurate representation of the tumor and therefore create 

the most accurate prognosis and treatment plan. This model can then be applied to tumors of 

different cancers, sizes, and stages. It’s currently theorized that tumors of the same cancer and 

stage have the same cell types existing in similar positions relative to tumor size; so, a 



comprehensive database of the areas of greatest variability in all tumor types could be compiled 

if such training data was available.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Background 

Malignant tumors contain various types of cells. Knowing what types of cells exist in a 

tumor and how many of each are there holds great prognostic value. Cancer stem cells (CSC), for 

example, can therefore give rise to all cell types in a particular cancer due to self-renewal. These 

CSCs are hypothesized to lead to persisting relapses and metastases. Other rare cells of varying 

types also exist, and make up approximately 5% of a tumor.  

 CSCs exist in small amounts in tumors and are often not killed by common 

chemotherapeutic treatments. With even a small amount of these CSCs remaining after 

treatment, relapse is highly possible. Therefore, CSCs must be detected early on with a biopsy, 

so that there is enough time for specific stem cell therapies to be used. Because of their minute 

existence, these CSCs may not always be detected in biopsies. This is also the case for other rare 

cells, such as circulating tumor cells, that have an effect on prognosis and treatment. 

Transient amplifying cells (TAC) make up the bulk of a tumor and regulate the balance 

of stem cell usage and tissue generation. They reactivate dormant stem cells to begin self-

renewal, which fuels the growth of TACs. TACs are in transition between stem cells and 

differentiated cells; they arise from stem cells and divide a number of times until they become 

differentiated. 

Terminally differentiated cells (TDC) are cells that have lost the ability to proliferate. 

They no longer divide, and therefore don’t need to be treated with therapy because they will die 

off eventually.  

A biopsy is an extraction of cells or tissue for examination to discover the presence or 

extent of a disease. For tumors, a biopsy is most often taken to determine whether or not the 

tumor is cancerous. Biopsies are usually taken with a needle, extracting a thin cylindrical shape. 



Currently, biopsies don’t really have any specific means of where exactly to extract cells from 

the tumor. There are no guidelines for how a tumor should be cut into, or what section and how 

much of a tumor should be cut into for the greatest variation in cell type. Additionally, because 

biopsies extract such a small portion of a tumor, it is likely that certain cells will not be extracted, 

so doctors won’t be able to make the most educated decisions about treatment and prognosis. 

Additionally, it is currently theorized that different types of cells exist in the same relative 

positions in cancerous tumors. 

 

  

 

 

 

 

 

Differences in growth and treatment of CSCs and non-CSC 

 

 

 

 

 

 

 

 

 



Experiment/Method 

Using a tumor growth model called Tumopp (created by Iwasaki and Hinnan), I obtained a 

dataset with with x, y, and z coordinates of each cell, along with the cell’s type (CSC, TAC, 

TDC). The growth model assumes that:  

1. a cell occupies a single node in the lattice 

2. normal (noncancer) cells are not simulated 

3. extracellular matrix surrounding the tumor is ignored 

4. the environment is not affected by changes in the configuration of the tumor 

The original dataset included about 4.5% cancer stem cells (CSCs), 81.69% transient amplifying 

cells (TACs), and 13.81% terminally differentiated cells (TDCs).  

A sample of the data:  

 



The data above was then converted into a distance matrix by taking the Euclidian distance 

between each pair.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = *(𝑥- − 𝑥/)/ + (𝑦- − 𝑦/)/ + (𝑧- − 𝑧/)/ 

A sample of the distance matrix:  

 

The distance was then scaled so that it would range from 0 and 1.  

𝑆𝑐𝑎𝑙𝑒𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒89:	
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



A dissimilarity matrix was then generated by assigning a “1” if the cells were similar and a “0” if 
they were dissimilar.  
 
 
 

 
 
Dissimilar cells that are close together are of interest. So, a combination matrix was generated by 
adding the scaled distance matrix and the dissimilarity matrix.  
 
The close dissimilar cells will have the lowest scores/values.  
 

 
 
TACs were then filtered out from the data for the following reasons:  

1. They make up bulk of the tumor, and are therefore essentially guaranteed to exist in 
each cluster.  

2. SAS university edition was being used, so there were limitations on data size. 
 
The “proc cluster” function in SAS was then used to create the clusters.  
 

 
 
 
The WARD method was used for this function because it is biased towards producing clusters 
with about same number of observations.  



Proc cluster displays the table of eigenvalues of the covariance matrix, and these eigenvalues are 
used in the computation of the cubic clustering criterion. The output of the proc-cluster function 
gives insight on the number of clusters. 
 

 

 
The greatest change in Pseudo T-Squared corresponds to the optimum number of clusters; in this 
case, that is 5 clusters. 
 
 
The “tree” procedure was then used to produce a tree diagram of the clusters. Here, the number 
of clusters inputted was 5.   
 

 
 



 
The tree was exported into a csv file that looks like this: 
 

 
 
Using Plotly in Python, the (x, y, z) coordinates of every cell along with its cluster were plotted, 
giving this output:  

 



Analyzing the Clusters: 
 
The TREE output of Proc Cluster was also used to analyze each cluster. As mentioned 
previously, the WARD method is inclined towards producing balanced clusters. In this sample, 
the ratio of CSCs to TDCs was roughly 1:4. Thus, cluster 8 is most representative of the tumor, 
but cluster 6 contains the greatest variability. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion 

 The project showed that clustering by dissimilarity can be used to identify areas of 

greatest variability. The WARD method of the “proc cluster” function in SAS was used 

effectively to create and visualize the clusters. The clustering was done using combination of 

Euclidian distance and variability. Simple addition of scaled distance and dissimilarity (0- 

similar, 1-dissimilar) was used.  

 The project can be performed on different tumor models that are already being studied. 

Different weights can also be given to distance and dissimilarity. This analysis was done on 3 

types of cells and a Boolean (0 or 1 ) measure of dissimilarity. The approach can be expanded to 

cells in different stages of their life cycle with different levels of similarity (e.g. – 0.03 is more 

similar that 0.004). 

 Also different clustering algorithms can be experimented with to see the effectiveness 

(distance between clusters and mean distance between dissimilar cells). As tumor models 

become more and more popular, data from different stages of a type of tumor can be analyzed to 

see if patterns can be produced and if machine learning can be used to predict cross sections of 

greatest variability based on the type and stage of the tumor. 
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