
1

Paper 4005-2019

Quick Tips and Tricks: Perl Regular Expressions in SAS®

Pratap S. Kunwar, Jinson Erinjeri, Emmes Corporation.

ABSTRACT

Programming with text strings or patterns in SAS® can be complicated without the

knowledge of Perl regular expressions. Just knowing the basics of regular expressions (PRX

functions) will sharpen anyone's programming skills. Having attended a few SAS

conferences lately, we have noticed that there are few presentations on this topic and many

programmers tend to avoid learning and applying the regular expressions. Also, many of

them are not aware of the capabilities of these functions in SAS. In this presentation, we

present quick tips on these expressions with various applications which will enable anyone

learn this topic with ease.

INTRODUCTION

SAS has numerous character (string) functions which are very useful in manipulating

character fields. Every SAS programmer is generally familiar with basic character functions

such as SUBSTR, SCAN, STRIP, INDEX, UPCASE, LOWCASE, CAT, ANY, NOT, COMPARE,

COMPBL, COMPRESS, FIND, TRANSLATE, TRANWRD etc. Though these common functions

are very handy for simple string manipulations, they are not built for complex pattern

matching and search-and-replace operations.

Regular expressions (RegEx) are both flexible and powerful and are widely used in popular

programming languages such as Perl, Python, JavaScript, PHP, .NET and many more for

pattern matching and translating character strings. Regular expressions skills can be easily

ported to other languages like SQL., However, unlike SQL, RegEx itself is not a

programming language, but simply defines a search pattern that describes text.

Learning regular expressions starts with understanding of character classes and

metacharacters. Becoming skillful on this topic is not hard but RegEx can be intimidating at

first as it is based on a system of symbols (metacharacters) to describe a text pattern to

read text, and this can be an obvious reason for anyone to put it off.

Regular Expression

(Matching Text)

/search-string/source-string/

prxmatch('/^[BDGKMNSTZ]{1}(OO)[0-9]{3}-\d{2}\s*$/', id);

B00003-39

a) Metacharacter^ = Start

b) One of BDGKMNSTZ chars

c) {1} = quantifier 1 char

d) Followed by char group (OO)

e) [0-9]{3} char class 3 times

f) Followed by –

g) Followed by \d{2} 2 digits

h) $ End with #7 above or space

\s 1 or more times *

Regular Expression

 (Find and Replace)

/ s/regular-

expression/replacement-string/

prxchange('s/\d//',-1, 0001000254698ABCD)

ABCD

a) s/ Substitution operator

b) | Alternation matching

c) \ escape character

d) -1 1 time -

2

CHARACTERS AND METACHARACTERS

Regular expressions are built up from metacharacters and their power comes from the use

of these metacharacters, which allow the matching of types of text and sequences through

systemic searches. There are different sets of characters and metacharacters used in Perl

regular expressions as listed below.

Literal characters

This works the same way as normal find and replace

without the use of symbols; more like SAS TRANWRD

function. This is simple but inflexible.

Character classes (sets and

ranges)

[abc] a, b, or c

[^abc] any but not a, b, or c

[a-zA-Z] character between a to z

[0-9] any digits

Predefined Character classes

(Shorthand Character Sets)

. any character

\w, \d, \s Word [0-9 a-z _), digit, whitespace

\W, \D, \S not word, digit, whitespace

Character sets (groups and look

around)

This allows for a series of characters within a range

defined by starting and ending characters.

() (abc) capture everything enclosed

(?:abc) non-capturing group

(?=abc) positive lookahead

(?!abc) negative lookahead

\1, \2 back reference to group #1, #2

Positional metacharacters

(anchors/boundaries)

^abc$ start / end of the string

\b\B word, not-word boundary

Quantifiers metacharacters

(Wildcards/Repetitions/Multipliers)

a* a+ a? 0 or more, 1 or more, 0 or 1

a{5} a{2,} exactly five, two or more

a{1,3} between one & three

a+? a{2,}? match as few as possible

ab|cd alternative matching ab or cd

 (July|Jul) July or Jul equivalent to July?

Escaping Metacharacters

(Metacharacters -> Literal

Meaning)

When a metacharacter(s) itself is in the text, then

the metacharacter needs to “escape” from its

metacharacter meanings. This is done by putting a

backslash in front of it for its literal meaning.

\. \? * \+ \[\] \| \(\) \{ \} \$ \^ \\

Note: The '^' has a different meaning in character class [^abc] vs (^abc). Similarly, - has

different meaning within [-a-z]. A character can have different meanings depending on

where it is being used. For example, escaped metacharacters are not metacharacters.

3

SAS PRX Functions

Find using PRXMATCH:

PRXMATCH function can match the

location of the search strings in the

source strings. It has two

parameters: the first is regular

expression id (search string) and

second parameter is character string

to be searched (source string).

Syntax:

PRXMATCH(/regular-expression/,

source)

Ex.
prxmatch('/world/', 'Hello world!');

The above example uses the

PRXMATCH function to find the

position (=7) of the search-string

(world) in the source-string (Hello

World)

Find and Replace using PRXCHANGE:

PRXCHANGE is not only used to find strings but

also to replace it using specified rules.

PRXCHANGE expressions allow the programmer to

choose part of text to replace and rest to keep.

SAS has a simple function named TRANWRD

which is very handy for a search-and-replace

string, but TRANWRD works only with literal

characters or words.

Syntax:

PRXCHANGE(s/regular-expression/replacement-

string/, source)

Ex.

prxchange('s/world/planet/', 1, 'Hello world!');

The above example uses the PRXCHANGE function

to replace ‘world’ in ‘Hello world’ with ‘planet,’

resulting in ‘Hello planet’

APPLICATION 1: SIMPLE SEARCH

%let ptlist1=%str(HIVE?|HEPATITIS|TREPONEMA PALLIDUM|HTLV|CYCLOSPORA);

data a1a;

 text="HIV Positive";

 grade='GR3'; output;

run;

data a1;

 set a1a;

 if prxmatch("/(&ptlist1)/", text) then flag1='X'; /*check ptlist against text*/

 if prxmatch("/(GR3|SEVERE)/", grade) then flag2='X';/*GR3 or SEVERE*/

run;

4

APPLICATION 2: MULTIPLE SEARCHES

data a2;

 set sashelp.class;

 if prxmatch ("/^A/", name) then flag1='X'; /*start with A*/

 if prxmatch ("/d$/", strip(name)) then flag2='X'; /*end with d*/

 if prxmatch ("/d\s*$/", name) then flag3='X'; /*end with d or space*/

 if prxmatch ("/^J\w+y\s*$/i", name) then flag4='X'; /*start with J and end with y*/

 if prxmatch("/\w{2}(e|s)\s*$/i", name) then flag5='X'; /*end with e or s*/

 if prxmatch("/^\w{2,4}(e|s)\s*$/i", name) then flag6='X'; /*flag5 but 2 to 4 char)

 if prxmatch ("/\Janet?/", name) then flag7='X'; /*ending t is optional*/

 if prxmatch(‘/(\S)\1/', name) then flag8=’X’; /*2 continious white space*/

 if prxmatch("/[^Janet]/i", strip(name)) then flag9='X';/*Except J|a|n|e|t*/

 if prxmatch("/^[Janet]/i", strip(name)) then flag10='X'; /*start with J|a|n|e|t*/

run;

5

APPLICATION 3: IN PROC SQL

/*search start with H|M|J and with y or space*/
proc sql;

 select *

 from sashelp.class

 where prxmatch('/^(h|m|j).*y\s*$/i', name);

quit;

APPLICATION 4: BOUNDARY

/*boundary before and after 4dr*/
data a4;

 set sashelp.cars (obs=4 keep=make model type);

 if prxmatch("/\b4dr\b/i", model) then flag3='X';

run;

APPLICATION 5: WITH ALTERNATION (|)

/*check of any of ids exist in text*/
%let idtext=%str(Z07IW001|Z07IW002|Z07IW003|Z07IW004|Z07IW005|Z07IW094);

%let text=%str(Continue from If Other, specify: was not obtained prior

tension notice and contacted ZZZZ. Potentially affected are: Z07IW098,

Z07IW094);

data a5;

 if prxmatch("/(&idtext)/", "&text") then flag=1;

run;

6

APPLICATION 6: ID PATTERN

data a6a;

 input id $1-50;

 datalines;

MOCK-EXTRACT

G00011-39R

S00081-34

S00081-IS

T-11642-39

S00171 -42

G001054A

ZOO1054A

ZO1054A

B00003-39

;

run;

data a6;

 set a6a;

 if prxmatch('/^(|KHANISILYE||MOCK-EXTRACT|MOCK23APR12|0|Z00722-6A-61)\s*$/', id) then flag1=1;

 else if prxmatch('/^[BDGKMNSTZ]{1}[0-9]{5}-(\d{2}[R]{1})\s*$/', id) then flag2=1; *G00011-39R -delete*;

 else if prxmatch('/^[TN]{1}[0]{2}[0-9]{3}-(\d{1}|C|M)(\d{1}|A)\s*$/', id) then flag3=1; *T00011-42*;

 else if prxmatch('/^[BDGKMNSTZ]{1}[0-9]{5}-(\d{1}|C|M)(\d{1}|A)\s*$/', id) then flag4=1; *S00081-34 *;

 else if prxmatch('/^[BDGKMNSTZ]{1}[0-9]{5}-((\d{2}[\.]{1})|VTM|IS)\s*$/', id) then flag5=1; *S00081-IS K00081-VT*;

 else if prxmatch('/^[BDGKMNSTZ]{1}(|-)[0-9]{5}-\d{2}\s*$/', id) then flag6=1; *T-11642-39*;

 else if prxmatch('/^[BDGKMNSTZ]{1}[0-9]{5} -\d{2}\s*$/', id) then flag7=1; *S00171 -42*;

 else if prxmatch('/^[BDGKMNSTZ]{1}[0-9]{5}(\d{1}|C)(\d{1}|A)\s*$/', id) then flag8=1; *G001054A G0000538**;

 else if prxmatch('/^[BDGKMNSTZ]{1}[0-9]{5}-\d{3}\s*$/', id) then flag9=1; *G001054A G0000538**;

 else if prxmatch('/^[BDGKMNSTZ]{1}(O)[0-9]{4}-\d{2}\s*$/', id) then flag10=1; *ZO*;

 else if prxmatch('/^[BDGKMNSTZ]{1}(OO)[0-9]{3}-\d{2}\s*$/', id) then flag11=1; *ZOO*;

 else if prxmatch('/(PLEA SE|H2O|NP\/OP IN|SWAB||NTULI|SAMPLE|ACADEMIC)/', id) then flag12=1;

run;

7

APPLICATION 7: SIMPLE REPLACE

data a7;

set sashelp.class (obs=3);

name2=prxchange("s/(Alfred)/Alex/i",-1,name); /*replace Akfred with Alex*/

run;

APPLICATION 8: REMOVE NUMBERS

data a8;

 text="0001000254698ABCD";

 alpha=prxchange('s/\d//',-1, text); /*remove digits*/

 num=prxchange('s/[a-z]//i',-1, text); /*remove alphabets*/

run;

APPLICATION 9: REMOVE DIGITS OR ALPHABETS

data a9;

 text="0001000254698ABCD";

 alpha=prxchange('s/\d//',-1, text); /*remove digits*/

 num=prxchange('s/[a-z]//i',-1, text); /*remove alphabets*/

run;

8

APPLICATION 10: REMOVE LEADING ZEROS

data a10a;

 x='000asd1234'; output;

 x='123AA'; output;

 x='0009876A0'; output;

run;

data a10;

 set a10a;

 L0 =prxchange('s/^0+//',-1,x);

run;

APPLICATION 11: REMOVE DUPLICATES

data a11;

 clist = "ALEX ALEX Aaa B C D E F E G H B I Aaa Bb D J K TIM TIM";

 do i=1 to countw(clist);

 Nondups=prxchange('s/(\b\w+?\b)(.*?)(?=\b\1{1,}\b)(.?)/$2$3/i',-

1,compbl(clist));

 end;

run;

9

CONCLUSION

In this paper, we stated that learning regular expressions requires understanding of various

types of metacharacters and presented some simple examples, ranging from finding simple

literals to finding complex string patterns and replacing them as well. The examples presented

in this paper show regular expressions are powerful and convenient, which makes it worth

learning.

Learning RegEx requires mastering the use of metacharacters, which requires a trial and

error approach. Further fine-tuning can be performed by practicing the use of a free text

editor like Atom in an interactive mode by placing source-string in the text buffer and

search-string in the find buffer respectively.

ACKNOWLEDGMENTS

The authors would like to thank their colleagues at the Emmes Corporation for their

feedback and encouragement. The author would also like to thank Ryan Bratt for reviewing

this paper.

RECOMMENDED READING

• https://www.lexjansen.com/

• https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Pratap S. Kunwar

The Emmes Corporation

401 N Washington St.

E-mail: pkunwar@emmes.com

Jinson Erinjeri

The Emmes Corporation

401 N Washington St.

E-mail: jerinjeri@emmes.com

https://www.lexjansen.com/
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf
mailto:pkunwar@emmes.com
mailto:jerinjeri@emmes.com

