
1

Paper 3978-2019

Standardizing Text in your Data
Guihong Chen, TCF Bank

ABSTRACT
SAS® offers a variety of useful tools to manipulate character data. These are very handy
when data received may not be particularly clean. For example, a character string may
contain inconsistent or unwanted special character or formats that cause reconciliation or
merging job to fail. This paper provides an example using customer data to discuss several
functions to efficiently standardize text variables. Undesirable information can be removed
by leveraging the three arguments of the COMPRESS function. Undesirable blanks can be
removed by the TRIM, TRIMN or STRIP functions. Inconsistent formats or special characters
can be standardized with a consistent character using the TRANWRD, UPCASE, LOWCASE,
and PROPCASE functions. However, there may a need to add or reorder a substring. The
concatenation operator (||) or functions CAT, CATT, CATS, CATX, SUBSTR, or SCAN can also
be used to clean and modify a dataset. The intended audience for this presentation is
beginner to intermediate SAS users with good knowledge of Base SAS.

INTRODUCTION
Text variables in a SAS data set may not be as clean as desired. These variables may
contain inconsistent formats or unwanted special characters, which makes it difficult to
identify duplicate observations or join with other data sets by these text variables. SAS
offers a variety of useful tools to manipulate character data. This paper discusses several
functions used to standardize text variables.

Table 1 shows a small data set with customers’ basic information: name, phone number,
and address with inconsistent formats for every field. To make this information useful,
standardizing the data is required for further analysis or reconciliation with another file.

Table 1: Raw Data Set

ID Name Phone Zip City Address
1 Davis, Alan 727-528-0507 ZIP#33781 PINELLAS PARK 198 Highland Rd.
2 Ryan Barnette 9313635630 38478-9273 PULASKI 1305 S MAIN ST
3 Alan Davis (727)528-0507 33781 Pinellas Park 198 Highland Road

The table above can be generated by using the code below:
 data Example;
infile datalines delimiter='||';
length ID 8. Name $ 30 Phone $20 Zip $10 City $30 Address $100 ;
input ID NAME $ phone $ Zip $ City $ Address ;
datalines;
1|| Davis, Alan || 727-528-0507 || ZIP#?33781 || PINELLAS PARK || 198
Highland Rd.
2|| Ryan Barnette ||9313635630 || 38478-9273 ||PULASKI || 1305 S MAIN ST
3|| Alan Davis || (727)528-0507 || 33781 || Pinellas Park || 198 Highland
Road
run;

2

1. NAME-- REORDER A SUBSTRING
There are two different formats of names in the data set. One format, as seen on line one
shows last name before first name, using a comma and a blank as the separators. The other
format, as seen on line two and line three has first name before the last name using a blank
as the separator. This section shows how to standardize the names into the format as seen
in the second and third customers.

First, define the first name and last name of any given label by using SCAN function. SCAN
function returns the nth word from a character string. The full version of SCAN function has
four arguments as SCAN (string, count, delimiter, modifiers). The first two arguments
(string and count) are required while the last two arguments (delimiter and modifiers) are
optional and may be used as needed.

Since the positions of the first names and last names vary with two different formats,
different count parameters must be used in the SCAN function to find the first names and
last names in these two formats. The INDEX function can be used to distinguish these two
formats. The INDEX function searches a character expression for a string of characters and
returns the position of the string's first character for the first occurrence of the string. If no
such string is found, the index function returns 0. Searching for a comma (“,”), the INDEX
function will return a positive integer for the first customer and zero for the second and
third customer. Then one can define first names and last names by using the code below:

 data Name0;SET Example;
if INDEX(Name,",")>0 then do;

Last_Name=SCAN(Name,1);
First_Name=SCAN(Name,2);
End;

else do;
Last_Name=SCAN(Name,2);
First_Name=SCAN(Name,1);
End;

RUN;

In this example, the basic version of the SCAN (string, count, delimiter, modifiers)
function is used with the two required arguments:

 The first argument (string) can be a character constant, variable, or expression;

 The second argument (count) is a nonzero integer value that specifies the number
of the word in the character string that you want SCAN to select.

Since the delimiter is a blank or comma in this example, one does not need to define the
third and fourth arguments as blank and comma are the default delimiters.

Next, concatenate First_Name and Last_Name in the desired order. Concatenation operator
(||) or concatenation functions can be used as shown in the code below:

3

 data Name;set Name0;
Name2=First_Name||" "||Last_Name;
Name3=TRIM(First_Name)||" "||TRIM(Last_Name);
Name4=TRIMN(First_Name)||" "||TRIMN(Last_Name);
Name5=STRIP(First_Name)||" "||STRIP(Last_Name);
Name6=COMPRESS(First_Name)||" "||COMPRESS(Last_Name);
Name7=TRIM(First_Name)||" "||COMPRESS(Last_Name);
Name_CATX=CATX(" ",First_Name,Last_Name);
Name_CAT=CAT(First_Name," ", Last_Name);
Name_CATT=CATT(First_Name," ", Last_Name);
Name_CATS=CATS(First_Name," ", Last_Name);

KEEP name: First_Name Last_Name;
run;

The results are summarized below in Table 2. Some ways are not generating the desirable
results. The desirable results are marked in green.

Table 2: Standardizing Names
ID 1 2 3
Name Davis, Alan Ryan Barnette Alan Davis
Last_Name Davis Barnette Davis
First_Name Alan Ryan Alan
Name2 Alan Davis Ryan Alan Davis
Name3 Alan Davis Ryan Barnette Alan Davis
Name4 Alan Davis Ryan Barnette Alan Davis
Name5 Alan Davis Ryan Barnette Alan Davis
Name6 Alan Davis Ryan Barnette Alan Davis
Name7 Alan Davis Ryan Barnette Alan Davis
Name_CATX Alan Davis Ryan Barnette Alan Davis
Name_CAT Alan Davis Ryan Alan Davis
Name_CATT AlanDavis RyanBarnette AlanDavis
Name_CATS AlanDavis RyanBarnette AlanDavis

The code above generates the following 10 different variables for full names:

 Name2 uses the concatenation operator (||) alone but does not generate the desired
name string. The reason is that First_Name and Last_Name have the same length as
Name variable which is 30 bytes. Each value of First_Name and Last_Name ends with
several trailing blanks to occupy the 30 bytes space.

 Name3 to Name7 use four different functions to remove trailing blanks: TRIM, TRIMN,
STRIP, COMPRESS. Each of these functions can be applied to First_Name or Last_Name
before concatenation to create the desired name string. The differences in these four
functions rely on the different treatment of leading blanks and inside blanks. TRIM
function removes trailing blanks only while TRIMN is the same as TRIM function except
that it returns no character if a string is blank. STRIP has an additional power over
TRIMN by removing the leading blanks. COMPRESS is even more powerful than STRIP in
that it can remove the blanks between first and last name. Note that in the desired
name string, only one separator: a blank between First_Name and Last_Name is used.

 Name_CATX generates the identical desired name by concatenating First_Name and

4

Last_Name while removing leading and trailing blanks and inserting the desired blank as
a separator.

 Name_CAT is the same as Name2 as CAT function is equivalent to concatenation the
operator (||), which did not generate a desirable name.

 Name_CATT is not generating the exact same desired name because the blank is
removed from between the first and last names. The CATT function removes the trailing
blanks of each component but also returns no character for a blank string component so
the blank separating the first and last names is removed.

 Name_CATS is not generating the exact same desired name either as the blank is
removed from the separator. The CATS function removes the leading and trailing blanks
of each component but also removes the blank separator as CATS returns no character
for a blank string component.

2. PHONE--ADD SEPARATORS INSIDE A STRING
Phone numbers are not consistent in the example above as some customers’ numbers use
hyphens (“-”) or parentheses “()” as separators while one customer’s number does not have
any separators. It is possible to standardize all the phone numbers to that of the first
customer. Again, the INDEX function is used to distinguish the different phone formats as
shown below:

 data Phone;SET Example;
if INDEX(phone,"-")=0 then Phone2=SUBSTR(Phone,1,3)||"-
"||SUBSTR(Phone,4,3)||"-"||SUBSTR(phone,7);
else if INDEX(phone,"(")>0 then Phone2=SUBSTR(Phone,2,3)||"-
"||SUBSTR(Phone,6,3)||"-"||SUBSTR(phone,10);
else phone2=phone;
run;

Since the phone numbers have the same number of digits and the separators are inserted in
the fixed position of the number, the SUBSTR function can be used to find the positions to
add the separators. The SUBSTR (string, position, length) function has three arguments:

 The first argument (string) is the text to extract from.

 The second argument (position) is the starting position from which to extract the
string.

 The third argument (length) is optional and stands for the length of the substring to
extract from the first argument. If the third argument is not supplied, the default third
argument is the length of the string from the position provided by the second argument
to the end of the string.

The output of the standardized phone number is illustrated below in the last row of Table 3.
The first line of phone numbers shows the original formats for reference.

Table 3: Standardizing Phone Numbers
ID 1 2 3
Name Davis, Alan Ryan Barnette Alan Davis
Phone 727-528-0507 9313635630 (727)528-0507
Phone2 727-528-0507 931-363-5630 727-528-0507

5

3. ZIP--REMOVE SPECIAL TEXTS FROM A STRING
The zip codes are not consistent in that the first customer’s zip code has some unwanted
letters and a special character (#) and the third customer’s zip code has more than 5 digits.
The zip codes are standardized by using the COMPRESS function to remove special
characters from the original string in the code below:

 data Zip;SET Example;
Zip2=SUBSTR(COMPRESS(zip,,"pa"),1,5);
run;

The output of the standardized zip codes is illustrated below in the last row of Table 4. The
first line of zip codes shows the original formats for reference.

Table 4: Standardizing Zip Codes to 5 Digits
ID 1 2 3
Name Davis, Alan Ryan Barnette Alan Davis
Zip ZIP#33781 38478-9273 33781
Zip2 33781 38478 33781

The COMPRESS function with one argument can be used to remove the trailing blanks and
standardize the name in the first section. The COMPRESS function can have three
arguments as COMPRESS (source, chars, modifiers):

 The first argument (source) specifies the source string to be compressed.

 The second argument (chars) specifies a string or list of characters to be removed.

 The third argument (modifiers) is optional and used to modify the list of the second
argument.

The zip code of the first customer has unwanted letters and pound sign (#). To remove the
unwanted letters, add “a” to the third argument. To remove pound sign or other
punctuation marks such as &*@^:,=!-.|+?, add “p” to the third argument. The SUBSTR function
is used outside the COMPRESS function to make sure only the first 5 digits are used for the
zip codes.

4. CITY—CHANGE THE CASE FOR A STRING
In the example, city names are not consistent in that the first and second customers’ city
names are upper cases while the third customer’s city name is lower case with the first
letter capitalized. SAS provides three ways to change the case of the letters in a string:

 UPCASE (argument): Converts all the letters in the argument to uppercase

 LOWCASE (argument): Converts all the letters in the argument to lowercase

 PROPCASE (argument, delimiter): Converts all the letters in the argument to proper
case. The default delimiters for the second argument are blank, forward slash, hyphen,
open parenthesis, period, and tab.

6

The PROPCASE function provides a more readable way to capitalize a city name, as shown
below:
 data City;SET Example;

City2=PROPCASE(City);
run;

The output of the standardized city names is illustrated in the last row of Table 5. The first
line of city names shows the original formats for reference.

Table 5: Standardizing Cities

ID 1 2 3

Name Davis, Alan Ryan Barnette Alan Davis
City PINELLAS PARK PULASKI Pinellas Park
City2 Pinellas Park Pulaski Pinellas Park

5. ADDRESS—REPLACE A SUBSTRING WITH ANOTHER SUBSTRING
When it comes to writing an address, it is acceptable to abbreviate words such as Street,
Avenue, Place, Road, Square, Boulevard, Terrace, Drive, Court, Crescent, Station and
Building. However, addresses appear inconsistent when some addresses abbreviate words
while others do not. In the example, the first and second customers abbreviate Road and
Street while the third customer does not. It is best to standardize the address using the
same abbreviation rules. TRANWRD function can be used to replace a substring with
another user-defined substring as in the code below:

 data Address;SET Example;
Address2=PROPCASE(TRANWRD(UPCASE(Address),"ROAD","Rd."));
Address3=PROPCASE(TRANWRD(UPCASE(Address2),"ST","St."));
run;

TRANWRD (source, target, replacement) function has three required arguments:

 The first argument (source) specifies a character constant, variable, or expression that
you want to translate.

 The second argument (target) specifies a character constant, variable, or expression
that is searched for in source. The length for target must be greater than zero.

 The third argument (replacement) specifies a character constant, variable, or
expression that replaces the target. When the replacement string has a length of zero,
TRANWRD uses a single blank instead.

The output of the standardized addresses is illustrated below in the last row of Table 6. The
first line of addresses shows the original formats for reference.

7

Table 6: Standardizing Addresses

ID 1 2 3

Name Davis, Alan Ryan Barnette Alan Davis
Address 198 Highland Rd. 1305 S MAIN ST 198 Highland Road
Address2 198 Highland Rd. 1305 S Main St 198 Highland Rd.
Address3 198 Highland Rd. 1305 S Main St. 198 Highland Rd.

6. COMBINE ALL STANDARDIZING STEPS IN ONE DATA SET
The data comparison before and after all the standardization steps is shown below. By
standardizing all the character variables in the data set, it is easy to find that the first and
the third customer have the same information. Lastly, remove the duplicate customer
information in the data. The comparison results are summarized in Table 7 and clean data
after removing duplicate customer information is illustrated in Table 8.

Table 7: Comparison before and after the standardization

ID Name Phone Zip City Address

1 Before Davis, Alan 727-528-0507 ZIP#33781 PINELLAS 198 Highland Rd.
After Alan Davis 727-528-0507 33781 Pinellas Park 198 Highland Rd.

2 Before Ryan Barnette 9313635630 38478-9273 PULASKI 1305 S MAIN ST
After Ryan Barnette 931-363-5630 38478 Pulaski 1305 S Main St.

3 Before Alan Davis (727)528-0507 33781 Pinellas Park 198 Highland Road
After Alan Davis 727-528-0507 33781 Pinellas Park 198 Highland Rd.

Table 8: Clean Data after standardization and de-dupe process

Name2 Phone2 Zip2 City2 Address3

Alan Davis 727-528-0507 33781 Pinellas Park 198 Highland Rd.
Ryan Barnette 931-363-5630 38478 Pulaski 1305 S Main St.

The code below can be used to generate the results and remove the duplicate customer
information:
data Example2;set Example;
if INDEX(Name,",")>0 then Last_Name=scan(Name,1);else Last_Name=scan(Name,2);
if INDEX(Name,",")>0 then First_Name=scan(Name,2);else
First_Name=scan(Name,1);
Name2=CATX(" ",First_Name,Last_Name);

if INDEX(phone,"-")=0 then Phone2=SUBSTR(Phone,1,3)||"-
"||SUBSTR(Phone,4,3)||"-"||SUBSTR(phone,7);
else if INDEX(phone,"(")>0 then Phone2=SUBSTR(Phone,2,3)||"-
"||SUBSTR(Phone,6,3)||"-"||SUBSTR(phone,10);
else phone2=phone;
Zip2=SUBSTR(COMPRESS(zip,,"pa"),1,5);
City2=PROPCASE(City);
Address2=PROPCASE(TRANWRD(UPCASE(Address),"ROAD","Rd."));
Address3=PROPCASE(TRANWRD(UPCASE(Address2),"ST","St."));
run;

8

 proc sql;

select distinct name2, phone2, Zip2, City2, Address3 from Example2;quit;

CONCLUSION
Character variables must be handled with care, as they may come from different data
sources and with different formats and lengths, making the data difficult to analyze.
Furthermore, duplicate information may not be easily identified and data joining could be
difficult. Being familiar with the character functions mentioned in this paper can help use
data more efficiently.

REFERENCES
 SAS Online Documentation,

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000212246.htm

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000215027.htm

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000214639.htm

http://support.sas.com/documentation/cdl/en/imlug/66845/HTML/default/viewer.htm#imlug_langref_sect455.htm

 Virginia Chen, “Dealing with Blanks: Leading, Trailing, In-Between” SUG2009,
https://www.lexjansen.com/nesug/nesug09/cc/CC25.pdf

ACKNOWLEDGMENTS
I am grateful to Duke Owen for his encouragement, guidance and always interesting
correspondence. My colleagues in TCF bank Brad Olson and Chris Docken also helped to
produce what you find here.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Guihong Chen
TCF Bank
612-202-0550
guihongc@gmail.com

