Session: 3973 – Integrating SAS, Apache Hadoop, and an Enterprise Data Warehouse in a Single Solution

Bob Matsey – Teradata Senior Advanced Analytic Consultant

Agenda

- SAS & Teradata Partnership
- Benefits of In Database
 Coding Example
 - Coding Example
- Customer Improvement Examples
- VIYA Integration with Teradata
- Teradata's UDA
- Agile Analytics with Data Labs
- In-DB Decision management with Decision Manager
- IoT Example Wearables
- Questions?

The SAS & Teradata Partnership Overview

- Teradata is an Authorized Global Reseller of SAS Solutions
- Partnership began in 2007 to improving analytic performance

ERAD

- Focus on joint product collaboration and customer success
- More than 450 sales to over 240 customers already
- Teradata has dedicated R&D teams onsite at SAS
- Regular collaboration on Joint Product Roadmap
 to ensure seamless product integration

Example of In Database with Proc FREQ

In Database Coding Example

Testing In-database Functionality

Not Running In Database Example: (SQLGENERATION=NONE;) will tell the code to NOT run In database.

Example 1 – Shows running a simple Proc Freq in a SAS program against a larger dataset (at least 1-2 million rows) without in-database capabilities turned on & with SAS log turned on. Then review the SAS log for duration and database performance **Code Example**:

12 libname tdXXXX teradata server="XXXserver" database=XXXXP user=&user password=&password;

- 13
- 17 options sastrace=(,,,ds) sastraceloc=saslog nostsuffix;
- 20 OPTIONS SQLGENERATION=NONE;
- 21 PROC FREQ DATA=tdxxxx.xxxx;
- 22 TABLES XXXX_XXXX;
- 23 RUN;

Running In Database Example: (SQLGENRATION=DBMS;) Will tell the code to run In database

2nd Example is: Running the same Proc Freq code in a SAS program with the following options: options SQLGENERATION=DBMS. This option says to run the code In database whenever it can, so I highly recommend putting this on ALL your SAS code.

- 12 libname tdXXXX teradata server="XXXserver" database=XXXXP user=&user password=&password;
- 13
- 17 options sastrace=(,,,ds) sastraceloc=saslog nostsuffix;
- 20 OPTIONS SQLGENERATION=DBMS DBIDIRECTEXEC set=truncate_bigint 'yes' MSGLEVEL=1;
- 21 PROC FREQ DATA=tdxxxx.xxxx;
- 22 TABLES XXXX_XXXX;
- 23 RUN;

Running these two test will show, Example 1 – this will NOT run In database. Example 2 – will run IN database.

In-Database Functionality

#	Process Name	SAS + Oracle	SAS + 2 Node Teradata	X Faster
1	Horizontalization	18 hrs 7 mins	32 mins	34 X
2	Horizontalization	15 hrs 3 mins	33 mins	27 X
3	Variable Calculation	6 hrs 57 mins	4 mins	104 X
4	Scoring	10 hrs 56 mins	11 mins	60 X
5	Data Mart Generation	27 hrs 50 mins	1 hour 28 mins	19 X

SAS Programs Results

- Highlights
 - GE long running queries with sort
 - Execution in Teradata only took 3.75 minutes 1600X Old way 103 hours!
 - OSCAR running against Commercial Market Scan data
 - Execution in Teradata was 1 hour 50 minutes against 3 times larger data set Old way 231 hours

				SAS Only		SAS + Teradata					
#	Business	SAS Log Name	# of Steps	Davs	Hours	Minutes	Davs	Hours	Minutes	% of SAS Only	X Times Faster
	oscar	oscar mdcd v3.log	945	9.6	231.6	13,894.1	20.90	1.83	110.0	1%	126.3
2	GE	mk_text_observation_f_sort.log	3	4.3	103.0	6,178.0			3.8	0%	1,625.8
3	ingenix	dcf ~ i3_qc.log	3,401		15.1	908.2			45.8	5%	19.8
4	humana	humana_dups.log	28		5.6	333.3			18.8	6%	17.7
5	ingenix	analysis ~ 100_indentifying_initial_patients.log	12		1.7	99.4			1.5	2%	66.3
6	ingenix	analysis ~ 200_extracting_mx_claims.log	11		1.1	68.1			1.0	1%	68.1
7	ingenix	analysis ~ 210_extracting_rx_claims.log	12			28.5			0.4	1%	71.3
8	ingenix	dcf ~ mk_s2009_r12q2.log	20		1.6	98.2			3.8	4%	25.8
9	ingenix	dcf ~ mk_s2010_r12q2.log	20		1.5	87.8			3.6	4%	24.4
10	ingenix	dcf ~ mk_s2011_r12q2.log	20		1.0	61.8			3.4	6%	18.2
11	ingenix	dcf ~ mk_m2011_r12q2.log	20			56.8			2.3	4%	24.7
12	ingenix	dcf ~ mk_r2011_r12q2.log	20			41.9			3.3	8%	12.7
13	pharmetrics	130_af_all_claims.log	12		1.7	101.2			4.7	5%	21.5
14	pharmetrics	110_af_claims.log	6			52.0			2.7	5%	19.3
15	pharmetrics	183_table8d.log	43			30.8			3.4	11%	9.1
16	pharmetrics	183_table8b.log	39			30.4			1.5	5%	20.3
17	pharmetrics	162_table2b.log	30			20.6			2.8	13%	7.4
18	pharmetrics	182_table8d.log	43			23.8			1.8	8%	13.2

Agile Analytics – Integrating Data into a Single Solution

Dealing with All Types of Data

Enabling Self Service Data Loading & Analytics with a Teradata's Data Labs

Business Need for Agile Analytics

Flexibility vs. IT Process

- Analyze quickly
 - Test New Theories
 - New Data
- Does the new data provide additional insight?
- Does the new insight cause a change in thinking or direction?
- Test Fast
 - Was the theory right? (<u>Success or Failure</u>)
- Productionize what works; discard what doesn't!
 - Add the new application
 - Add the new data
 - Or delete and move on!

11

Don't Just Use Production Data – Evolve It

3rd Party Data

 Often rented, supplier data and/or format needs to change, value needs validation, only applies to some projects

Temporary & Research Data

 Exploratory metrics and aggregates, requirements not fully defined, short lived, early stage work

Pre-Production Data & Prototypes

- Excel Spreadsheets
- Oracle, SQL Server, SAS datasets, Access DB, others can be loaded
- Comma delimited, space delimited, other data types

2018© Teradata Confidential & Proprietary

12

Teradata Data Labs Architecture

Analytic Sandboxes with Governance

R, Python, SPSS, SAS, SQL

- Data Lab(s) inside the EDW or DW Appliance to easily join to production data via Views
- Load experimental, untested data from external sources
- Rapid prototyping, exploratory and experimentation analysis
- Beyond a Sandbox
 - An architecture that enables governance
 - Works within your current data warehouse environment
 - Data lab portlets for IT and Business analyst
 - ✓ Self-provisioning system that simplifies implementation, management and use

Teradata Data Lab Hierarchy Data Lab Objects

Data Lab hierarchy to manage user groups, space, and workload

Example: Lab Group Hierarchy

TERADATA.

SAS is Built into the Teradata Analytics Platform

Teradata's strategy is to allow the customer to choose the tools they want

* future capabilities

QUESTIONS ???

