

1

Paper 3963-2019

Dynamically Assigning Length to Transposed Variables

Ethan Ritchie, Sarah Cannon

ABSTRACT

When using PROC TRANSPOSE to transform "narrow" data (a single subject variable stored in
many rows) into "wide" data (one row with subject values stored as distinct variables), the length of the
original subject variable is used as the length for each new variable. As a result, variable lengths may be
much larger than necessary. This paper will demonstrate a method to automatically assign the smallest
length necessary to each variable once the "narrow" data is transposed into "wide" data. The method is
currently used on large sample survey data that is updated daily and accounts for the possibility that the
optimal length of a variable may change from day to day.

INTRODUCTION

There are many applications where data are collected and stored in a “narrow” format and must
be transposed before being used for analysis. The variety of values may change over time and the
number of variables may also change over time. Survey data collections are a prime example of this
since not all items are necessarily administered to each respondent and the variety of responses is
always increasing. In this paper you will learn how to assign lengths to transposed character variables
without being hindered by the number of variables transposed or changes in the maximum length of
variables over time.

EXAMINING THE PROCESS

A simple “narrow” dataset will include an identification field, a variable name field, and a variable
value field. In the context of survey data collection, these fields correspond to the survey respondent, the
survey question, and the respondent’s answer to that question, respectively. PROC PRINT output for
example data are displayed below in Output 1 and PROC CONTENTS output for the data is shown in
Output 2 below.

Output 1 – PROC PRINT output for raw data

2

Output 2 – PROC CONTENTS output for raw data

TRANSPOSING THE DATA

While storing data in a “narrow” format is the most flexible way to store data during collection, it is
not typically the desired format for analytical purposes. These data need to be transposed into a “wide”
dataset. The name of the dataset shown in Output 1 is “step1”, so the SAS® code to transpose the data
would be:

 proc transpose data=step1 out=step2 (drop=_NAME_);

 id Variable; by ID; var value;

 run;

The transposed data are shown below in Output 3. The PROC CONTENTS output shown in Output 4
below indicates that each transposed variable has a length of 200. In large scale data collections, this is
problematic since this results in larger files than necessary. An efficient and dynamic method is needed to
reduce the lengths of these variables.

Output 3 – PROC PRINT output for transposed data

Output 4 – PROC CONTENTS output for transposed data

3

GENERATING A LIST OF VARIABLE NAMES

The first step required after transposing the data is to generate a macro variable containing the
list of variable names (not including the ID variable) and a corresponding macro variable that contains the
number of variables included in the list. The following SAS code will assign the list of variables to a macro
variable named “varNames” and the number of listed variables to another macro variable called
“numVars”.

 proc contents data=step2 out=varNames noprint order=varnum; run;

 %let varNames = ; %let numVars = ;

 data _NULL_;

 length names $20000;

 set varNames end=finally;

 retain names '' counter 0;

 if Type = 2 then do;

 names = catx(' ',names,NAME);

 counter + 1;

 end;

 if finally then do;

 call symput('varNames',names);

 call symput('numVars',counter);

 end;

 run;

The SAS code first uses PROC CONTENTS to create a dataset containing a list of variable names
contained in the transposed data. The following data step iterates through the list and adds each name to
a single string variable that is retained until the last observation. A count of the number of variable names
added to the string variable is also maintained. Variables added to the list are limited to character
variables (TYPE = 2) since those are the only variables that need reduced length. On the last
observation, CALL SYMPUT is used to assign the value of the retained string variable to &varNames and
the corresponding variable count to &numVars. The values assigned by the SAS code to the two macro
variables in this example are as follows:

 &varNames = First Last Sex City State

 &numVars = 5

These two macro variables will be used in the next step of the process which determines the maximum
length for each variable.

4

GENERATING FORMATTING CODE TO ASSIGN LENGTH

The second step required is determining the maximum length of each character variable. The
following code determines the maximum length for each variable and creates an additional macro
variable that contains a formatting statement to be used in a subsequent step:

 %let formatCode = ;

 data _NULL_;

 length formatCode $20000;

 set step2 end=finally;

 array names(&numVars) &varNames;

 array maxLen(&numVars) _TEMPORARY_;

 do i=1 to &numVars;

 if _N_ = 1 then maxLen(i) = 2;

 if length(names(i)) > maxLen(i) then maxLen(i) = length(names(i));

 end;

 if finally then do;

 do j=1 to &numVars;

 convert = input(strip(maxLen(j)),$5.);

 formatCode = catx(' ',formatCode,vname(names(j)),cats('$',convert,'.'));

 end;

 call symput('formatCode',formatCode);

 end;

 run;

The macro variable &varNames created earlier is used to define the elements of an array called “names”.
The macro variable &numVars is used to define the number of elements in the “names” array as well as in
a temporary array called “maxLen”. The temporary array is used to retain the maximum length of each
variable through each iteration. A minimum length of 2 is set for each variable. On the last observation, a
string variable is created that contains each variable and its new format. CALL SYMPUT is then used to
assign the value of the string variable to a new macro variable called “formatCode”. The values assigned
by the SAS code to the new macro variable in this example is as follows:

 &formatCode = First $7. Last $9. Sex $2. City $16. State $2.

This code will be used in the next step to redefine the length of each character variable.

ASSIGNING REDUCED LENGTH

The final step is to use the previously created code to assign a reduced length to each character
variable:

 data finalStep;

 format ID 8. &formatCode;

 set step2;

 run;

The SAS code uses the format statement that is stored in &formatCode to assign length to the character
variables before setting the new dataset to the transposed data. PROC CONTENTS output (see Output 5
below) shows that the new lengths of the variables match the longest value from the raw data.

Output 5 – PROC CONTENTS output for final data

5

CONCLUSION

The method for assigning length to transposed character variables presented in this paper truly is
dynamic because it works independent of the number of variable and values transposed. The SAS code
can be used on any dataset, but its value is in reducing the length of variables in datasets that have been
transposed from “narrow” to “wide” datasets. A related method to convert variables solely containing
numeric values to numeric formats is typically used in conjunction with the process presented in this
paper, but that is outside the scope of this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ethan Ritchie
Sarah Cannon
Ethan.Ritchie@SarahCannon.com

