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ABSTRACT 

The SAS® PHREG procedure includes a BASELINE statement that allows users to easily 

obtain the survival predictions, standard error, and confidence interval from a survival 

model. In the setting of complex survey design, such as stratification and multistage 

sampling from clusters, SAS SURVEYPHREG procedure is needed to appropriately 

incorporate survey weights.  However, SURVEYPHREG currently does not support the 

BASELINE statement. Hence, it is difficult to obtain survival predictions, standard errors, 

and confidence intervals from survival models derived from complex survey data. In this 

paper, we explore the threshold behind survival prediction using survey data and 

provide possible solutions to bypass this obstacle.   

 

INTRODUCTION 

Survival predictions and its inference helps clinicians assess risk factors for patients. It is 

especially helpful to quantify the risk uncertainty when making medical decisions. For example, 

our team studied the one-year mortality for geriatric patients who have had major surgery 

including Abdominal Aortic Aneurysm Repair, Coronary Artery Bypass Grafting, and 

Colectomy. The survival predictions of patients who had functional declines or cognitive 

impairment could inform future patients considering surgery, providing them with estimates of 

how likely they would experience functional decline or cognitive impairment if they proceeded 

with surgery.  In the field of population health, cohort and covariates are often collected through 

complex survey data. Complex survey design creates non-independence and disproportional 

probability of selection in the sample units. Not counting for the complex survey design in 

statistical analysis would lead to errors when estimating the variances of parameters. SAS has 

many useful procedures to analyze survey data, including SURVEYPHREG for survival 

analysis. However, this procedure does not provide the option for survival prediction in 

Cox model. 

The semi-parametric Cox proportional hazard model is widely used in survival analysis. 

One fascinating fact about the Cox model is that it includes a random baseline hazard 

function which is eliminated when we estimate the parameters via the partially likelihood 

function. Unlike other regression methods, the baseline hazard function becomes a myth 

for prediction. That is, we could not directly plug in patients’ information to draw 



survival prediction. Fortunately, Breslow (1973) and Kalbfleisch and Prentice (1980) 

provided two different methods to evaluate the baseline hazard functions. Breslow 

estimator analogizes the Nelson-Aalen estimator by utilizing exponential function as 

baseline cumulative hazard function, while Kalbfleisch-Prentice extends Kaplan-Meier 

estimator with covariates utilizing discrete hazard model. When specifying the 

BASELINE statement in SAS PHREG procedure, we can easily obtain survival 

predictions through either method. Another useful feature of the BASELINE statement is 

that it prevents the interval approximation from over-shooting [0, 1] bound. SAS applies 

the asymptotic normality to transform survival estimates to bound the confidence interval 

bounded under [0, 1], which provides sensical estimates for risk assessment. However, the 

SURVEYPHREG procedure does not support the BASELINE statement, which increases 

the difficulty for survival prediction with survey data. 

In the following sections, we will explore the reasons why survey design prevents the 

accurate estimations for survival prediction, standard error, and confidence interval. 

Even though a theoretical solution was proposed by Boudreau and Lawless (2006), no 

statistical package has implemented a solution for this. Therefore, we propose two methods to 

address this issue by using some of the options already available in PHREG and its BASELINE 

statement to obtain accurate survival prediction estimations with approximate standard errors. 

THE THRESHOLD OF THE SURVEY DATA 

Although SAS SURVEYPHREG currently does not support the BASELINE statement, we can 

still calculate the survival estimates prediction after fitting the Cox model. It is the standard error 

of the predictions that we cannot accurately estimate due to the complex survey design. To 

explore this issue, let us start with the survey design. The most common survey design is to select 

samples with stratification, clustering, and unequal probability weights. To not complicate 

notations, we will use the same notation as SAS does. To build a Cox model with survey data, a 

subject is denoted with a set of matrices (𝑤, 𝑡, Δ, 𝑍), where  

• 𝑤=sampling weights 

• 𝑡 =event time 

• Δ=event indicator 

• Z= covariate matrix 

For the survey design, denote h as stratum, 1 ≤ ℎ ≤ 𝐻; 𝑖 as cluster, 1 ≤ 𝑖 ≤ 𝑛ℎ; j as the subject 

index within cluster 𝑖 of stratum h, 1 ≤ 𝑗 ≤ 𝑚ℎ𝑖. Denote 𝑡 as the survival time, following by 

• 𝑛=total number of observations in the sample; 𝑛 = ∑ ∑ 𝑚ℎ𝑖
𝑛ℎ
𝑖=1

𝐻
ℎ=1 . 

• 𝑌ℎ𝑖𝑗(𝑡) = 𝐼(𝑡ℎ𝑖𝑗 ≥ 𝑡), the indicator for whether subject is at risk at time 𝑡ℎ𝑖𝑗 

• 𝑛ℎ𝑖𝑗(𝑡) = 𝐼(𝑡ℎ𝑖𝑗 ≤ 𝑡), the indicator for the number of events before time 𝑡ℎ𝑖𝑗 

 

When we run the Cox model in SURVEYPHREG, the parameters (𝛽̂𝑠) are estimated through 

weighted Breslow partial likelihood function:  



𝐿(𝛽) = ∏ ∏ {
𝑌𝑖(𝑡) exp(𝛽𝑖

′𝑍𝑖(𝑡))

∑ 𝑤𝑗𝑌𝑗(𝑡) exp(𝛽′𝑍𝑗(𝑡))𝑛
𝑗=1

}

𝑤𝑖Δ𝑁𝑖(𝑡)

𝑡≥0
𝑛
𝑖=1                    (1) 

Therefore, we can incorporate the weight variable into the Breslow’s baseline accumulative 

hazard function, which is required for the survival prediction: 

Λ̂0(𝑡) = ∑{
Δ𝑁(𝑡)

∑ 𝑤𝑏𝑖𝑗𝑌𝑏𝑖𝑗(𝑡) exp (𝛽′𝑧𝑏𝑖𝑗(𝑡))𝑏𝑖𝑗

} 

The OUTPUT statement can deliver all the required variables to calculate manually survival 

prediction. Fortunately, the SASPHREG procedure can also incorporate sampling weights into 

parameter estimation. Since we can obtain the predictions from the BASELINE statement, it is 

much easier to use PHREG procedure than manual calculation.  

On the other hand, estimating the standard error of the prediction and drawing inferences is 

much more complicated. The crux is to order the event times of each subject within each stratum 

of clusters. For example, when the event time is at 3rd month, 5th month, 7th month in stratum A, 

and 2nd month, 4th month, 6th month, and 8th month in stratum B, both stratum A and stratum B 

belong to cluster 1 or primary sample unit (PSU) 1. When we count the events at 3rd month from 

stratum A, we must consider estimating the survival from both stratum A and B because 3rd 

month could occur beyond stratum A of cluster 1 in the population. When we draw standard 

error estimation for 3rd month survival prediction, we must consider the structure of all the strata 

and the clusters. Ignoring this structure would lead to a biased standard error estimation. 

Nevertheless, it is a byzantine process to count clusters, strata and sampling weight for standard 

error estimation and no universal solution has been applied to resolve this matrix. Boudreau and 

Lawless (2006) proposed a theoretical solution to this matter, that is, center the covariates of the 

data at 𝑍∗, and then estimate the parameters and baseline hazard with the centered covariates. 

We show below the proposed solution described by Gardiner (2015) based upon Broudreau and 

Lawless’s solution for the standard error of the survival prediction with survey design:   

𝑣𝑎𝑟(𝜇̂(𝑡)) = ∑ {∑
𝑁𝑖𝑗

∑ 𝑤𝑗𝑌𝑗(𝑡) exp(𝛽′𝑍𝑗(𝑡))𝑛
𝑗=1

𝑛𝑖
𝑗=1

𝑛
𝑖=1 − ∑ ∑

𝑌𝑖(𝑇𝑘𝑗≤𝑡)

∑ 𝑤𝑗𝑌𝑗(𝑡) exp(𝛽′𝑍𝑗(𝑡))
𝑛𝑘
𝑘𝑗=1

2
𝑛𝑘 
𝑗=1

𝑛𝑘
𝑘=1 −

[∑ ∑
𝑌𝑖(𝑇𝑘𝑗≤𝑡)𝑤𝑖𝑧𝑖 exp(𝛽𝑖

′𝑍𝑖(𝑡))

∑ 𝑤𝑗𝑌𝑗(𝑡) exp(𝛽′𝑍𝑗(𝑡))
𝑛𝑖
𝑗=1

2
𝑛𝑖
𝑗=1

𝑛
𝑖=1 ] 𝐻̂−1[∫ 𝑈𝑖(𝜇)𝑑𝑀𝑖(𝜇)

𝛾

0
]}2 ,  

where  

• 𝜇=mean cumulative survival function. 

• 𝛾=time period which is independent of the event times. 

• 𝑑𝑀𝑖(𝜇)=martigale residuals 

• 𝐻̂−1= Hassian matrix with weights incorporated. 

𝑈𝑖(𝜇)=Schoenfeld residuals. 

This is a sophisticated theoretical solution, and no statistical package has adopted this method 

currently.  



METHODS TO BYPASS THE THRESTHOLD  

We present here a preliminary attempt to estimate the standard errors of survival prediction, 

which requires further work before widespread adoption. Despite the lack of the BASELINE 

statement in SURVEYPHREG, this procedure provides us a golden standard for the 

parameter estimation (𝛽̂𝑠 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝛽̂𝑠). If we can incorporate a pseudo survey 

structure that mimics the complex survey design into PHREG procedure while obtaining a close 

estimation for parameters and variance (compared to SURVEYPHREG), we can then use the 

BASELINE statement to obtain approximate survival prediction and inferences.   

When estimating parameters with survey data, SURVEYPHREG uses weighted partially 

likelihood function  (1) to calculate the maximum likelihood estimate, which is essentially the 

same as when we specify the WEIGHT statement in PHREG to estimate 𝛽𝑠. However, the 

covariance matrix is estimated completely different. PHREG calculates the model-based 

covariance matrix of 𝛽𝑠 as [−
𝜕2𝑙(𝛽̂)

𝜕𝛽2 ]
−1

, which is also referred as Hessian matrix,  𝑯̂−1(𝛽)̂. Note 

that the covariance matrix remains the same when WEIGHT statement is specified. 

SURVEYPHREG uses Taylor Series Linearization for covariance matrix estimation, denote as  

𝑽̂(𝛽)̂ = 𝑯̂−1(𝛽)̂ 𝑮𝑯̂−1(𝛽)̂                                                                                                            (2)  

G is residual matrix, denoted as 

 𝐺 =
𝑛−1

𝑛−𝑝
∑ (1 − 𝑓ℎ)

𝑛𝑏

𝑛𝑏−1
 (𝑒ℎ𝑖 − 𝑒̅ℎ)( 𝑒ℎ𝑖 − 𝑒̅ℎ)′ 𝐻

𝑏=1             (3)  

 where  

• 𝑒ℎ𝑖𝑗 = 𝑤ℎ𝑖𝑗𝑟ℎ𝑖𝑗𝑍ℎ𝑖𝑗 

• 𝑟ℎ𝑖𝑗 = 𝑌ℎ𝑖𝑗 − 𝑍ℎ𝑖𝑗
′  𝛽̂ 

• 𝑒ℎ𝑖 = ∑ 𝑒ℎ𝑖𝑗
𝑚ℎ𝑖
𝑗=1  

• 𝑒̅ℎ =
1

𝑛ℎ
∑ 𝑒ℎ𝑖

𝑛𝑏
𝑖=1   

• 𝑓ℎ =
𝑛𝑏

𝑁𝑏
  

𝑛−1

𝑛−𝑝
 is a factor, which is always included in the survey procedure, to reduce bias when sample 

size is small.   

Specifying the WEIGHT statement in PHREG accounts properly for the individual sample 

weights, which prevents certain groups from oversampling. However, it could potentially 

underestimate the standard errors. When the weight is much larger (the sample is less 

representative of the population), the effective sample size could be overestimated, resulting in 

small standard error and insignificant hypothesis testing results. To avoid this issue, we can apply 

normalized weight, which takes the selection probability into account. Denote 𝑤𝑛𝑤 as normalized 

weight, 

𝑤𝑛𝑤 =
𝑤𝑖

𝑤̅
 



Where 𝑤̅ =
∑𝑤𝑖

𝑛
, the mean of sampling weights. By using normalized weight, we will obtain more 

accurate standard error estimation.   

Another good option in PHREG procedure to estimate the covariance matrix is to use the Robust 

Sandwich Variance Estimation (RSVE), which is specified by SAS COVS(AGGREGATE) option.  

This method sums the score residuals from each distinct ID value, representing distinct clusters. 

When invoking RSVE method, the ID statement must be specified. We can use a linear 

combination of clusters and stratum to create a distinct ID value for the sample. RSVE is 

calculated as 

𝑉̂𝑅𝑆𝑉 = 𝐻−1(𝛽̂) [∑ (𝑤𝑗𝐿𝑗(𝛽̂))𝑛
𝑗=1 ] [∑ (𝑤𝑗𝐿𝑗(𝛽̂))𝑛

𝑗=1 ]
′

𝐻−1(𝛽̂)         (4) 

We can rewrite (4) in the same format as (3), with a new residual matrix 

𝐺𝑅𝑆𝑉 = [∑ (𝑤𝑗𝐿𝑗(𝛽̂))𝑛
𝑗=1 ] [∑ (𝑤𝑗𝐿𝑗(𝛽̂))𝑛

𝑗=1 ]
′
, which in the survey notation, can be written as 

 𝐺𝑅𝑆𝑉 = ∑ ∑ 𝑒ℎ′𝑖𝑒ℎ′𝑖
′𝑛

ℎ′

𝑖=1
𝐻′

ℎ′=1  . 

 ℎ′ represents the new cluster, a distinct linear combination of cluster and stratum. 𝐺𝑅𝑆𝑉  mimics 

G matrix in (3), giving a comparable covariance matrix estimation.  

In the next session, we will use the nationally representative Health and Retirement Study (HRS) 

survey data to test both RSVE and normalized weight methods.  

 

HEALTH AND RETIREMENT STUDY DATASET 

Functional impairment, such as difficulty with Activities of Daily Living (ADL), is commonly 

associated with adverse events including acute care hospitalization, nursing home admission, 

and death. In our example, we want to explore the association between long-time survival and 

functional impairment, depression, and physical activities for late middle age participants. 

We created a nationally representative cohort of 5,650 community-dwelling seniors enrolled in 

the Health and Retirement Study (HRS) at age 50-56 years old in survey waves of 1992 or 1994 

(HRS cohort), 1998 (War Babies Cohort-WB), and 2004 (Early Baby Boomers cohort-EBB), and 

who did not have ADL impairment at the time they entered the study sample. HRS is a 

longitudinal study that measures the health and economic circumstances changes within aging 

Americans. It is a nationally representative sample of participants over the age of 50. It started in 

1992 and new participants are added in the study every 6 years so that the sample remains 

representative of the population over age 50.  There are two Primary Sampling Units and 56 strata 

in HRS. 

 In our study, we built a Cox proportional hazard model for 20-year survival estimation. Subjects 

were censored after 20 years follow up. The primary predictors were ADL impairment, 

depression, and physical activities. The secondary predictors included socio-demographic 

variables like age, gender, race, marital status, education level, income, and net worth. As a 



measure of health status, we also adjusted for the body mass index (BMI). We showed the 

estimation of the regression coefficients and the survival prediction for the primary predictors in 

the result section. 

RESULTS 

The main predictors, ADL functional impairment, depression, and physical activities, were all 

statistically significant in the Cox model (p-values<0.05). As expected, both functional 

impairment and depression were associated with an increased risk of death with hazard ratio 

(HR) 95% CI above 1, while physical activity has protective effect for survival with HR 95% CI 

below 1.  

Table 1 Parameter Estimation 

Methods Parameters ADL impairment Depression Physical activity 

SurveyPhreg 
 

Estimate 0.350 0.395 -0.532 

(golden standard) Standard error 0.1203 0.1250 0.0983 

 P-value 0.0052 0.0025 <.0001 

 95% CI for HR 1.42 (1.12, 1.81) 1.49 (1.16, 1.91) 0.59 (0.48, 0.72) 

RSVE Estimate 0.350 0.395 -0.532 

 Standard error 0.1161 0.1223 0.0967 

 P-value 0.0026 0.0012 <.0001 

 95% CI for HR 1.42 (1.13, 1.78) 1.49 (1.19, 1.89) 0.59 (0.49, 0.72) 

Normalized Weight Estimate 0.350 0.395 -0.532 

 Standard error 0.0933 0.0924 0.0882 

 P-value 0.0002 <.0001 <.0001 

 95% CI for HR 1.42 (1.18, 1.80) 1.49 (1.24, 1.78) 0.59 (0.49, 0.70) 

Phreg Estimate 0.338 0.445 -0.414 

 Standard error 0.0853 0.0835 0.0768 

 P-value <.0001 <.0001 <.0001 

 95% CI for HR 1.40 (1.20, 1.66) 1.56 (1.32, 1.84) 0.66 (0.57, 0.77) 

 

The estimates and hazard ratios obtained from SURVEYPHREG, RSVE and Normalized weights 

are identical, which indicates that the maximum likelihood estimator of weighted partially 

likelihood function is consistent when the weight is specified, regardless of the survey design. 

The standard error estimation, however, tells quite a different story. Both RSVE and normalized 

weight methods underestimate the standard errors, which could lead to incorrect hypothesis 

testing. The RSVE method by far provides the closest estimation to the golden standard. Without 

any weights or design specification, the estimate and standard errors from PRREG procedure are 

both underestimated. 

Even both RSVE and normalized weight methods try to mimic the survey design, they still treat 

the sample as simple randomly selected. That is, the nonindependence and disproportionality 

under distinct clusters are not counted when calculating the standard errors. Additionally, 



despite all three variables were statistically significant in all four methods, the p-values from the 

golden standard are larger than the p-values from the rest of the methods. Thus, the result of the 

hypothesis testing with the survey design may be completely different than without considering 

complex survey design, leading to opposite conclusions.  

For the predictions shown in table 2, RSVE and normalized weight gave almost identical survival 

prediction for 20-year follow-up. On the other hand, the standard error estimation had no clear 

patterns. The RSVE standard errors in the reference group (no functional impairment, no 

depression, no physical activities) were smaller than the standard errors using the normalized 

weight method, while in the risk group, the results were the opposite. When no weight was 

specified, predictions were smaller compared to weighted predictions.  

 

Table 2 Survival Prediction 

 ADL impairment Depression Physical activity 

 No  Yes No Yes No Yes 

RSVE       
Survival  0.801 0.736 0.807 0.723 0.746 0.840 

S.E. 0.011 0.025 0.011 0.024 0.015 0.012 

95% CI (0.78, 0.82) (0.69, 0.79) (0.79, 0.89) (0.68, 0.77) (0.72, 0.78) (0.82, 0.86) 

Normalized 
weight       

Survival  0.801 0.736 0.807 0.723 0.746 0.840 

S.E. 0.013 0.022 0.013 0.023 0.017 0.013 
95% CI (0.78, 0.83) (0.69, 0.78) (0.78, 0.83) (0.68, 0.77) (0.72, 0.78) (0.82, 0.89) 

No weight       
Survival  0.784 0.715 0.792 0.692 0.736 0.815 

S.E. 0.011 0.021 0.011 0.021 0.014 0.012 

95% CI (0.76, 0.81) (0.68, 0.76) (0.77, 0.81) (0.65, 0.74) (0.71, 0.77) (0.79, 0.84) 

 

DISCUSSION 

Since there is no solution to estimate the standard errors of survey survival prediction, we tried 

2 methods to bypass the issue. Our rationale was to utilize the BASELINE statement of PHREG 

for survival prediction to get the parameter estimation as close as they are from SURVEYPHREG. 

We applied both Robust Sandwich Variance Estimation and Normalized Weight methods to 

mimic the survey design effects. The parameters estimation indicated the same results among 

golden standard, RSVE and normalized weight, suggesting the consistency of weighted 

maximum likelihood estimator. On the other hand, the standard error estimations were different. 

Both RSVE and Normalized weight methods underestimated the standard error for the 

regression coefficients compared to SURVEYPHREG. Nevertheless, RSVE performed slightly 

better than the Normalized weight method given that the covariance matrix sandwiched — a G 

matrix— is comparable to the G matrix in SURVEYPHREG. Regardless of how we try to mimic 



the survey design, the non-independence and disproportional probability of selection in the sample 

units cannot be replicated. 

CONCLUSION 

The variation of subjects among clusters and strata cannot be completely captured. The survival 

prediction obtained using the RSVE and Normalized weight methods were accurate when 

sampling weights were specified. On the contrary, the standard error estimation was incorrect, 

as indicated by SAS Technical Support in email exchange on this issue. It is difficult to count for 

events with survey design. There is one theoretical solution for the standard error estimation 

(Boudreau and Lawless, 2006), but no statistical packages have adopted it. Survival prediction 

provides invaluable information for researches especially clinicians. The inferences of predictions 

provide a vital way to assess risk uncertainty, which aids clinicians for decision making. As more 

clinicians use survey data as primary data resources, the needs for survey survival prediction is 

increasing. We hope that SAS could develop the BASELINE statement for the SURVEYPHREG 

procedure, so that correct inference for survival prediction can be drawn.  

 

 

 

SAMPLE CODES 

/*Create distinct cluster ID for RSVE. Create normalized weight*/ 

data outcome_ADL1; 

 set outcome_ADL; 

 clusterID=100*secu+stratum; 

 norm_wt=sampling_weight/mean_wt; 

run; 

 

/******Applying different models for parameter estimation***/ 

 

*The golden standard method; 

proc surveyphreg data=outcome_ADL1; 

 class gender(ref='0') race(ref='0') BMI(ref='0') 

marital_status(ref='0') education(ref='0') income(ref='0')  

    networth(ref='0') ADL_diff(ref='0') depression(ref='0') 

phy_acti(ref='0')/param=reference; 

 model mortality*death(0)=age_at_baseline gender race BMI 

marital_status education income  

    networth ADL_diff depression phy_acti; 

 cluster secu; 

 strata stratum; 

 weight sampling_weight; 

run; 

 

*The RSVE method; 



proc phreg data=outcome_ADL1 covsandwich(aggregate); 

class gender(ref='0') race(ref='0') BMI(ref='0') 

marital_status(ref='0') education(ref='0') income(ref='0')  

    networth(ref='0') ADL_diff(ref='0') depression(ref='0') 

phy_acti(ref='0')/param=reference; 

 model mortality*death(0)=age_at_baseline gender race BMI 

marital_status education income networth ADL_diff depression phy_acti; 

 id clusterID;  

 weight sampling_weight; 

run; 

 

*The normalized weight method; 

proc phreg data=outcome_ADL1 ; 

 class gender(ref='0') race(ref='0') BMI(ref='0') 

marital_status(ref='0') education(ref='0') income(ref='0')  

    networth(ref='0') ADL_diff(ref='0') depression(ref='0') 

phy_acti(ref='0')/param=reference; 

 model mortality*death(0)=age_at_baseline gender race BMI 

marital_status education income networth ADL_diff depression phy_acti;  

 weight norm_wt; 

run; 

 

*NO weight method; 

proc phreg data=outcome_ADL1 ; 

 class gender(ref='0') race(ref='0') BMI(ref='0') 

marital_status(ref='0') education(ref='0') income(ref='0')  

    networth(ref='0') ADL_diff(ref='0') depression(ref='0') 

phy_acti(ref='0')/param=reference; 

 model mortality*death(0)=age_at_baseline gender race BMI 

marital_status education income networth ADL_diff depression phy_acti;  

run; 

/***** Prediction for ADL function impairment*********/ 

 

** dicotomize all the categorical variables; 

data outcome_ADL2; 

 set outcome_ADL1; 

 if race=1 then race1=1;else race1=0; 

 if race=2 then race2=1;else race2=0; 

 if race=3 then race3=1;else race3=0; 

 if BMI=1 then BMI1=1;else BMI1=0; 

 if BMI=2 then BMI2=1;else BMI2=0; 

 if BMI=3 then BMI3=1;else BMI3=0; 

 if income=1 then income1=1;else income1=0; 

 if income=2 then income2=1;else income2=0; 

 if income=3 then income3=1;else income3=0; 

 if networth=1 then networth1=1;else networth1=0; 

 if networth=2 then networth2=1;else networth2=0; 

 if networth=3 then networth3=1;else networth3=0; 

run; 

 



/*Creating a covariate set that contains all the mean values of each 

predictor*/ 

proc sql; 

 create table pred_adl as  

 select distinct  

     adl_diff, 

     avg(age_at_baseline) as age_at_baseline, 

     avg(gender) as gender, 

     avg(race1) as race1, 

     avg(race2) as race2, 

     avg(race3) as race3, 

     avg(marital_status) as marital_status, 

     avg(education) as education, 

     avg(BMI1) as BMI1, 

     avg(BMI2) as BMI2, 

     avg(BMI3) as BMI3, 

     avg(income1) as income1, 

     avg(income2) as income2, 

     avg(income3) as income3, 

     avg(networth1) as networth1, 

     avg(networth2) as networth2, 

     avg(networth3) as networth3, 

     avg(depression) as depression, 

     avg(phy_acti) as phy_acti 

 from outcome_ADL2; 

quit; 

/*Use RSVE method to get prediction and sved it in adl_pred_RSVE*/ 

proc phreg data = outcome_ADL2 covsandwich(aggregate) 

plots(overlay)=survival; 

     model mortality*death(0) = age_at_baseline gender race1-race3 

marital_status education BMI1-BMI3 income1-income3 networth1-networth3  

        depression phy_acti 

adl_diff; 

  id clusterID;  

 weight sampling_weight; 

  baseline out=adl_pred_RSVE covariates=pred_adl survival=_all_  

/rowid=adl_diff; 

run; 

/*Getting the prediction at the end of follow-up period*/ 

proc sort data=adl_pred_rsve;by adl_diff mortality;run; 

 

data adl_pred_rsve1 (keep=adl_diff mortality survival StdErrSurvival 

LowerSurvival UpperSurvival); 

 set adl_pred_rsve; 

 by adl_diff mortality; 

 if last.adl_diff; 

run; 
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